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Abstract

In our pursuit of advancing multi-modal AI assistants ca-
pable of guiding users to achieve complex multi-step goals,
we propose the task of ‘Visual Planning for Assistance
(VPA)’. Given a succinct natural language goal, e.g., “make
a shelf”, and a video of the user’s progress so far, the aim
of VPA is to devise a plan, i.e. a sequence of actions such
as “sand shelf”, “paint shelf”, etc. to realize the speci-
fied goal. This requires assessing the user’s progress from
the (untrimmed) video, and relating it to the requirements
of natural language goal, i.e. which actions to select and
in what order? Consequently, this requires handling long
video history and arbitrarily complex action dependencies.
To address these challenges, we decompose VPA into video
action segmentation and forecasting. Importantly, we ex-
periment by formulating the forecasting step as a multi-
modal sequence modeling problem, allowing us to leverage
the strength of pre-trained LMs (as the sequence model).
This novel approach, which we call Visual Language Model
based Planner (VLaMP), outperforms baselines across a
suite of metrics that gauge the quality of the generated
plans. Furthermore, through comprehensive ablations, we
also isolate the value of each component – language pre-
training, visual observations, and goal information. We
have open-sourced all the data, model checkpoints, and
training code.

1. Introduction
Imagine assembling a new piece of furniture or follow-

ing a new recipe for a dinner party. To achieve such a goal,
you might follow a manual or a video tutorial, going back
and forth as you perform the steps. Instead of fumbling
through a manual, imagine an assistive agent capable of be-
ing invoked through natural language, having the ability to
understand human actions, and providing actionable multi-
step guidance for achieving your desired goal. Such multi-
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Figure 1: Visual Planning for Assistance overview (top)
and general methodology (bottom). Given a user-
specified, natural language goal (“build a shelf”) and corre-
sponding visual history of the user’s progress till now, VPA
involves predicting a sequence of actions, to assist the user
towards the goal (“cut”, “sand”, “paint”). Our approach is
based on multi-modal sequence modeling where we reuse
pre-trained video segmentation and language models.

modal assistive agents should be able to reason human ac-
tivities from visual observations, contextualize them to the
goal at hand, and plan future actions for providing guidance.

To quantify the progress and aid the development of such
multi-modal neural models, we need a intuitive task, as il-
lustrated in the example in Fig. 1 (top). We call this Visual
Planning for Assistance (VPA) that we detail next. Given
a user-specified goal in natural language (“build shelf”)
and corresponding video observations of the user’s progress
towards this goal, the task objective should be to gener-
ate the ordered sequence of next actions towards achiev-
ing the goal (“cut ! sand ! paint”). We base VPA off
instructional YouTube videos of such procedural activities
from large, open-sourced datasets – CrossTask [89] and
COIN [73]. This is a natural choice as procedural hu-
man activities (cooking, assembly, repair, etc.) are a per-
fect source of multi-step and complex sequence of actions,
where humans routinely seek guidance. Realistic nature
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of VPA makes it particularly challenging. Operating on
untrimmed videos requires dealing with potentially many ir-
relevant background frames, chunking actions in the videos
will also be imperative. Another challenge is the validity of
the plan of actions i.e. they must respect the constraints of
the activity – the shelf shouldn’t be painted before sanding.

The natural next question is – what’s a good way to
tackle VPA? Marrying research from video forecasting &
anticipation with embodied AI [19, 17], we cast VPA as
goal-conditioned task planning. We approach VPA by
utilizing video action segmentation and transformer-based
neural sequence modeling – the former allows us to deal
with long video history and the latter can handle arbitrary
sequential constraints [86, 39]. The formulation (particu-
larly, transformer-based neural sequence modeling) allows
us to tap into the prowess of pre-trained language mod-
els (PTLMs). These PTLMs contain useful priors about
action-action similarity, action-goal association, and action
ordering [7, 30, 58], that our formulation can piggy-back
off. Particularly, our model – Visual Language Model Plan-
ner (VLaMP) – conditions the generated plan onto the vi-
sual history by using a transformer-based mapper network
that projects embeddings corresponding to visual history
into the input space of the LM. Using VPA as the testbed,
we show that VLaMP outperforms a range of standardized
baselines. We undertake head-on ablations to quantify ef-
fect of each component of VLaMP – language pre-training
of the LM, the visual history, and goal description. We be-
lieve the modularity of our approach can allow researchers
to swap components with their own, to made rapid progress
towards VPA.

In summary, our main contributions are: (1) a new
task VPA on human interaction videos capturing unique as-
pects of real-world vision-powered assistive agents; (2) a
general-purpose methodology for VPA, which allows lever-
aging pre-trained multi-modal encoders and sequence mod-
els; (3) an instantiation of this methodology (we call
VLaMP), where we reuse sequence priors from PTLM and
investigate its efficacy across two, well-studied datasets of
procedural human activities.

2. Related Work
Forecasting in Videos. VPA entails future action se-
quence prediction for a video and is closely related to an-
ticipation in video understanding, including future localiza-
tion [22, 40, 78], future frame prediction [77, 46, 53], next
active object estimation [21, 5, 25, 67, 4, 24, 44], as well
as short- and long-term action anticipation [66, 15, 20, 23,
25, 65, 64, 57, 45, 1, 52, 50, 11, 79]. While short-term fore-
casting approaches, such as [66], are limited to predicting
the single next action occurring only a few seconds into
the future, our work focuses on predicting sequences of ac-
tions over longer time horizons (on the order of minutes)

Action
Prediction

Goal
Modality

Visual
Reasoning

Action anticipation [14] Single None Video-based
Action forecasting [25] Multiple, ordered None Video-based
Procedural planning [9] Multiple, ordered Vision Image-based
VPA (ours) Multiple, ordered Natural Language Video-based

Table 1: VPA vs. prior tasks related to forecasting of
real-world human activities. We predict an ordered se-
quence of actions given video history with a focus on natu-
ral language goal-conditioning for human-assistive applica-
tions.

into the future. The long-term action (LTA) forecasting
benchmarking was recently established on a small subset of
Ego4D [25], and although VPA is similarly devised to pre-
dict a temporally ordered sequence of actions conditioned
on video-based visual observations, our approach differs in
that the LTA task does no goal-conditioning. Our task in-
corporates goal-conditioning on long term sequence predic-
tion as we argue this will drive the development of critical
system aspects, such as virtual assistants that afford human
interaction via the natural language goals. Additionally, in
contrast to LTA, we focus on a wide range of goal-oriented
activities available within the CrossTask and COIN datasets.
Tab. 1 highlights the differences between VPA and other
forecasting tasks.
Procedural Planning Approaches. VPA is similar to the
task of procedure planning [9], wherein given a starting
and terminating visual observation, the aim is to predict
the actions that would transform the state from starting to
terminating. However, we argue that due to the unavail-
ability of the terminating visual state, the procedure plan-
ning task is not useful in a real-world assistance setting.
While several recent works introduce novel models for pro-
cedure planning, these models cannot be deployed for VPA
either because they rely heavily on the availability of visual
goal [70, 87, 6], or assume access to true action history [49].
Transformers for Decision Making. VLaMP autoregres-
sively predicts future states and/or observations and actions
and is similar in spirit to sequence models for decision mak-
ing such as GATO [61], Decision Transformer [12], and
Trajectory Transformer [35]. VLaMP extends such models
to work with egocentric observations that humans observe
in the day-to-day activities.
Planning in Embodied AI using LMs. Past research has
leveraged PTLMs for task planning in real world for embod-
ied agents [30, 68, 41, 7, 42, 31, 18, 16, 36]. Many of these
works focus on converting a high-level task or instruction
into sequence of low-level steps and then ground them in
the environment using either affordance functions [7], vi-
sual feedback [31], or multimodal prompts [36, 18]. Ow-
ing to their focus on robotic agents, these works focus on
predominately pick-place tasks. Instead VPA is focused on
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complex tasks, in which humans might require assistance
in the form of recommended future actions. Consequently,
VLaMP requires grounding and reasoning of much more
complex states and actions, which it accomplishes by fine-
tuning a pretrained LM on multimodal sequences of (visual)
observations and (text-based) actions.
Multi-modal LMs. Recent works have successfully used
the transformer architecture for modeling multi-modal se-
quences that have visual tokens. For instance, [47, 59, 2,
48, 29, 18] train large transformer based multi-modal se-
quence prediction models. While [3, 74, 56] focus on
adapting pre-trained LMs to work with visual tokens by
aligning the representation spaces of the two modalities.
VLaMP’s approach of modeling sequence of visual and
textual representations using PTLMs is similar in spirit to
these, i.e. VLaMP also uses a mapper network to align video
representations to LM’s token space and jointly learns the
mapper with LM finetuning for VPA. However, in contrast
to previous works, VLaMP predicts the visual tokens au-
toregressively at inference time to enable forecasting of the
state for planning. Consequently, VLaMP’s token predic-
tion loss is multi-modal, unlike most multi-modal LMs that
only use token prediction loss for text tokens.

3. Visual Planning for Assistance
Here, we introduce the task of Visual Planning for Assis-

tance (VPA), towards enabling multi-step guidance to hu-
mans in their real-world activities. We instantiate VPA for
procedural activities, where humans routinely seek assis-
tance. In this section, we include the definition of VPA,
and describe the evaluation protocol.

3.1. Task Definition

The following two intuitive inputs are given to any model
performing VPA.
Goal Prompt (G). The natural language description (in
short phrase) of the user’s goal, emulating a typical user’s
request for assistance for a day-to-day task. Examples in-
clude, “build a shelf” and “change a tire”.
Visual History (Vt). An untrimmed video that provides
context about the user’s progress towards a goal from the
start till time, say t. We assume that Vt contains k actions
or steps {a1, . . . , ak} pertaining to the goal. However, VPA
doesn’t have access to {a1, . . . , ak} or k and must work
with Vt.

Given these two inputs, Vt and G, the objective of VPA is
to generate a plan T . The plan is a sequence of actions that
should be executed (in the next steps) to assist the user in
achieving the goal G. Concretely, the prediction is denoted
by T = (ak+1, . . . , ak+l), where ai are represented in natu-
ral language but come from a closed set A. Here, l  K de-
notes the number of future actions that should be predicted,

out of the K number of remaining actions required to ac-
complish the goal. For our shelf-building example, the cor-
rect T = (sand shelf, paint shelf, attach shelf),
capturing the remaining 3 future actions (here, l = N = 3).

In day-to-day activities, we request assistance for goals
in natural language. However, prior works procedural plan-
ning [9, 6] assume access to visual goal state. This is not
a realistic assumption for an AI agent assisting humans.
Hence, we purposefully relax this assumption, making our
formulation of the task significantly more practical. More-
over, an agent with access to the visual modality, should be
able to improve its plan by filtering out relevant informa-
tion from the raw video stream of the progress. These are
the two central assumptions around which we formulate the
task of VPA.

3.2. Evaluation
Open-Sourced Video Data. We leverage existing datasets
CrossTask [89] and COIN [73], originally developed to en-
able video action understanding for VPA, based on the fol-
lowing three requirements:
• Rich diversity of activities from multiple domains: The
data from different domains such as cooking, assembly etc.,
enables testing of VPA models in a more generalized man-
ner.
• Goal-oriented activities consisting of long sequences of
actions: Since the objective is to generate l future actions,
activities in these datasets that require diverse sequences of
actions e.g., “making a pancake”, instead of “running” are
more suitable for VPA.
• Action annotations from a fixed closed set of actions : Ac-
tion labels described using verb-noun from a finite set [14],
which are temporally aligned with the videos. This makes
evaluating the accuracy of T prediction straightforward.
Specifically, free-form, narration-style descriptions of ac-
tions that are available in recent video datasets aid in effi-
cient multi-modal representation learning for video under-
standing [25, 54]. However, evaluating the quality of action
sequences towards goal achievement, where each action is
described in free-form natural language, is non-trivial. We
leave the instantiation of VPA with free-form natural lan-
guage actions as future work.

Table 2 summarizes the features from CrossTask and
COIN, aligned with the above requirements.

Metrics. The planning performance of a VPA model
is measured by comparing the generated plan T̂ =

(âk+1, . . . , âk+l) to the ground truth plan T for l actions
in the future, given Vt and G. Here âk+i denotes the predic-
tion for the k+ i-th step given history till k-th step. Consis-
tent with community practices [9, 6], we use the following
metrics, listed in decreasing order of strictness: success rate
(SR), mean accuracy (mAcc), mean intersection over union

15304



Dataset # train
videos

# test
videos

# test
samples

actions per
video # goals # domains

CrossTask [89] 1756 752 4123 7.6 ± 4.3 18 3
COIN [73] 9428 1047 2011 3.9 ± 2.4 180 12

Table 2: VPA datasets. We evaluate VPA on two existing
video datasets containing multiple goal-oriented procedural
activities from varied domains. Such activities contain se-
quences of multiple actions making them ideal for VPA.

(mIOU). Success rate requires an exact match between all
actions and their sequence between T̂ and T . Mean ac-
curacy is the accuracy of the actions at each step. Unlike
success rate, mean accuracy does not require a 100% match
to ground truth. Instead it considers matching at each indi-
vidual step. Lastly, mean intersection over union captures
the cases where the model predicts the steps correctly, but
fails to identify the correct order. Concretely,

mIOUl =

��â{k+1:k+l}
T
a{k+1:k+l}

��
��â{k+1:k+l}

S
a{k+1:k+l}

�� , (1)

mAccl =
1

l

lX

i=1

[âk+i, = ak+i], (2)

SRl =

lY

i=1

[âk+i = ak+i], (3)

where [·] is the identity function, which is 1 when the con-
dition in its input is true, and 0, and â{k+1:k+l} denotes the
set of l future actions in T̂ , i.e., a sequence but disregarding
the order. To complement the above metrics, we also mea-
sure the accuracy of predicting the next action i.e. nAcc,
as defined in (4), where ‘n’ stands for next. Note that all
metrics are averaged over the test set details of which are
included in Sec. 5.

nAcc = [âk+1 = ak+1] (4)

4. Visual LM Planner
VPA can be viewed as a sequential decision making

problem, where the model (say, ⇡) predicting the sequence
of next actions is a policy conditioned on the visual history
Vt, serving as (partially-observed) state, and goal prompt
G. Inspired by the offline learning formulation closest to
‘learning from offline demonstrations’ [27, 76, 37, 81], in
VLaMP, we formulate VPA as a goal-conditioned, multi-
modal sequence prediction problem. 1 This formulation
allows us to leverage high-capacity sequence models like

1Future works may explore alternate policy optimizations based on
reward shaping, inverse RL, or by employing additional online interactions
through photorealistic simulation [38, 63, 71, 69, 82, 33, 34, 10, 80].

Transformers [75], which have been successfully applied to
sequential decision making [35, 12]. Furthermore, inspired
by the recent success of pre-trained transformer language
models (PTLMs) on such tasks, [62, 30, 12], we propose
to leverage PTLMs as the sequence model in our formu-
lation. In the remainder of this section we describe our
approach for VPA, called Visual Language Model based
Planner (VLaMP), consisting of a segmentation module and
PTLM based sequence prediction module.

4.1. Planning with Segmentation and Forecasting

We define ⇡ as a goal-conditioned, multi-modal se-
quence prediction problem:

⇡ = P (ak+1, ak+2, · · · | Vt, G). (5)

where ⇡ models the probability of goal-relevant and valid
future actions sequences conditioned on Vt and G.

Modeling the multi-modal sequence in Eq. 5 is compu-
tationally expensive and difficult to scale because of the
high-dimensional state space of raw untrimmed video Vt.2
Also, there is limited data to learn the distribution over
valid action sequences for goals in real-world applications.
Tackling these challenges, we argue that the latent space
of factors influencing the future plan can indeed be ex-
pressed in lesser dimensions. Particularly, to ensure scal-
ability for handling raw videos and sample efficiency in
learning valid action sequence distributions, we decompose
our policy ⇡ into two modules. The first module is video
segmentation, which converts the untrimmed video history
Vt into a sequence of video segments i.e. a segment history
Sk = (s1, . . . , sk), where each segment corresponds to an
action ai that occurred in the video. The second module en-
ables forecasting i.e. it transforms the output of the segmen-
tation module and generates the plan (see Fig. 1 (bottom)).
While a probabilistic formulation of this decomposition can
be expressed as:

⇡ =

X

Sk

P (ak+1, ak+2, · · · | Sk, G)| {z }
Forecasting

P (Sk | Vt)| {z }
Segmentation

, (6)

where the segment history Sk is a latent variable, the sum-
mation over all possible segment histories is intractable.
We, however, use Eq. 6 as the guiding expression to formu-
late the input and output of both modules. Next, we include
the technical details of both of these modules.

4.2. Segmentation Module

This module splits the untrimmed video history Vt into
segment history Sk of multiple segments, each segment

2A typical untrimmed video of 100p video of 5 minutes at 8fps will
have 27 raw pixel values.
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Figure 2: VLaMP – Segmentation Module. The
untrimmed visual history Vt is converted into segments,
each consisting of observation oi and the action ai. The ob-
servation oi is the collection of video frames of � seconds
around the start time stamp ti of the corresponding action
ai. Two such segments are shown here.

corresponding to an action. The segmentation is done us-
ing a video-action segmentation model in three steps: pre-
processing, classification, and consolidation. In the pre-
processing step, the raw video frames from Vt are bundled
into fixed-length window clips ci, each of length 1 second,
to obtain Vt = (c1, . . . , ct). In the classification step, a
video-action segmentation model is used to output the most
probable action for each clip ci, which can be denoted as
Ãt = (ã1, ã2, . . . , ãt). Finally, in the consolidation steps,
we convert Ãt into a form that can be used by the fore-
casting module; this form consists of two sequences: ac-
tion history Ak and observation history Ok. To this end,
same actions in consecutive seconds in Ãt are consolidated
to form the action history Ak = (a1, . . . , ak). As illus-
trated in Fig. 2, assuming ti denotes the starting times-
tamp for ai, we also extract video frames from ti � �/2
to ti + �/2 to obtain a observation window oi correspond-
ing to ai, and consequently the full observation history
Ok = (o1, . . . , ok). The resultant segment history is termed
Sk = ((o1, a1), . . . , (ok, ak)), summarized in Fig. 2.

4.3. Forecasting Module
The usefulness of ⇡’s decomposition expressed in Eq. (6)

becomes apparent now. Modeling the segmentation mod-
ule’s output as segment history Sk, where each segment
consisting of action and observations, allows writing the
output of the forecasting module in an autoregressive man-
ner:

P (ak+1, ak+2, · · · | o1, a1, . . . , ok, ak, G)

=

Y

i>0

X

ok+i

P (ok+i, ak+i | o1, a1, . . . , ok, ak, G). (7)

Illustrated in Fig. 3, this autoregressive expression allows
the possibility of using any sequence-to-sequence neural

network as the forecasting module in combination with
pretrained text and video encoders for representing action
and observation history Ak and Ok. This general-purpose
framework allows the use of any neural sequence model –
LSTM [28], GRU [13], Transformers [75], etc. We choose
to instantiate the forecasting module for ⇡ using a pretrained
transformer-based LM. Next we present the details of the
encoders for the two modalities and the LM based sequence
model.
Action encoder (fact) Each action ai in Ak is encoded by
fact and the output is denoted by ↵i. Concretely, token em-
beddings are expressed as:

(↵1, . . . ,↵k) = (fact(a1), . . . , fact(ak)) ,where

↵i = (↵1
i , . . . ,↵

ri
i ) 2 Rri⇥d (8)

As we illustrate in Fig. 3 (left), each action ai is tokenized
into ri tokens using appropriate tokenizer for the LM, the
tokens are indexed using the vocabulary of the LM, and are
represented using an embedding lookup from the token em-
beddings of the LM to produce ↵i. Here, ri is the number
of tokens and d is the dimensionality of token embeddings.
Observation encoder (fobs). Visual cues play an inte-
gral role in knowing what actions lie ahead, towards achiev-
ing the goal prompt G. To this end, the visual observa-
tions Ok are encoded and play a critical role in the plan-
ner. Recall, the visual observation history Ok comprises of
oi corresponding to action ai, each of � frames. As illus-
trated in Fig. 3 (middle), we transform each oi employing
the widely-adopted S3D backbone [84] fS3D⇤ (⇤ denotes
backbone is frozen). We must project visual encodings to
a shared latent space of action (language) embeddings de-
scribed before (↵i). To this end, we map S3D features via a
trainable transformer mapper fmap. Concretely,

(�1, . . . ,�k) = (fobs(o1), . . . , fobs(ok)) ,where

�i = (�1
i , . . . ,�

�
i ) 2 R�⇥d and fobs = fS3D⇤ � fmap (9)

Overall, as we show in Fig. 3 (right), the resultant en-
coded sequence of representation for Sk is thus

fenc(Sk) = (�1,↵1, . . . ,�k,↵k) = Hk,

Sequence model (fseq). Given the above encoding for the
segment history Sk, the role of the sequence model is to
predict a representation of the next token, that would in re-
turn enable VLaMP plan generation capabilities for VPA.
Importantly, in the process of generating sequence of fu-
ture actions autoregressively, we would also need to gener-
ate the representations of ‘future observations’. Therefore,
as we shown in Fig. 3, our sequence model, which con-
sists of the transformer layers of a PTLM, also produces
representations for vision (in addition to the necessary ac-
tion tokens). Before proceeding further, we pause and in-
troduce additional notation for the sequence model, which
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Figure 3: VLaMP – Forecasting Module. As shown in left and middle, actions and observations obtained from the segmen-
tation module are encoded using appropriate modality encoders. The observation encoder leverages pretrained video encoder
for observations, while also learning a mapper that aligns the representations from observations with actions. As shown on
the right, VLaMP uses a joint sequence model on top of interleaved action (blue) and observation (gray) representations to
forecast autoregressively the next representation.
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Figure 4: Tokenized Sequence with Masks. The encoded
sequence of representations for k = 2 segments, denoted
alternatively using modality agnostic notation of H2 and
mask M for next token prediction training.

will make the subsequent explanation for training and infer-
ence easier to follow. As shown in Figure 4, we alternatively
denote the sequence of representations (�1,↵1, . . . ,�k,↵k)

by Hk = (h1, . . . , hn), with n = k� +
Pk

i=1 ri. A binary
mask M = (m1, . . . ,mn), where mi is 1 if the correspond-
ing representation is for an action and 0 otherwise, can help
obtain necessary action or visual observations. With this
notation, given first j representations denoted as h1:j , one
step of the sequence model produces the representation for
j + 1, i.e., fseq(h1:j) = ĥj+1.

4.4. Training
The joint training of the segmentation and forecasting

modules following Eq. (6) is intractable. 3 But, by exploit-
ing the availability of unpaired training data, we approxi-
mate Eq. (6) by feeding in the output of the segmentation
module to the forecasting module and training them sep-
arately, each on their respective labeled data. The video-
action segmentation model is trained utilizing the Video-
CLIP setup [85], where in the segmentation model performs
classification to predict the action for each second of the
video. The forecasting model is trained by adopting the

3Despite tuning attempts, we found joint optimization to be intractable
and inefficient on resources.

next representation prediction objective. Unlike vanilla LM
pretraining, however, we also need to train for predicting
visual representations in addition to text (action). There-
fore, we use two different losses Lact and Lobs for text and
visual representations respectively. Specifically, Lact is the
conventional cross-entropy loss over the LM’s vocabulary
VLM for the action representations while Lobs is the mean-
squared error between the predicted and the ground truth
observation representations. The total loss is the sum of
both the loss terms as shown in Eq. (11).

L = �

nX

j=1

mj Lact(ĥj) + (1�mj)Lobs(ĥj),where

Lact = hj · ĥj � log

|VLM|X

p=1

exp

⇣
hp · ĥj

⌘
; (10)

Lobs =
khj � ĥjk

2
2

d
(11)

In order to have a stable training, we use ground truth ac-
tion history to construct Sk (and subsequently Hk) instead
of the output of the segmentation module. Appendix B pro-
vides further details on loss and optimizers for training.
Inference. We next detail the inference procedure for
VLaMP. Recall that we use 1 : n to denote a sequence of
n representations (i.e, h1:n = (h1, . . . , hn)). Additionally,
we denote the concatenation operator over two representa-
tion sequences by “⇧”. With this notation at hand, we define
the score of an action a 2 A for following history h1:n as

�(h1:n ⇧ fact(a)) =
raX

j=1

aj · fseq(h1:n ⇧ a1:j), (12)

where · is the vector dot product, and fact(a) = ↵1:ra =

(↵1, . . . ,↵ra) is the sequence of encoded representations
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for action a. In other words, this score is the sum of unnor-
malized log-probability under the sequence model using the
standard softmax distribution. We use this scoring function
with to perform beam search (detailed inference algorithm:
Algo. 1 in App. B).

5. Experiments
We instantiate VLaMP’s segmentation module utilizing

VideoCLIP [85] that has been fine-tuned on COIN and
CrossTask. Similarly, we instantiate VLaMP’s sequence
model fseq (in the forecasting module) by GPT2 [60]. We
utilize the open-sourced model weights of GPT2 (from
HuggingFace [83]). For inference, we use Algo. 1 presented
in Appendix B, with beam size B = 10 for CrossTask and
a B = 3 for COIN.

5.1. Data and Baselines

Data. For a video V with goal G, both CrossTask [89]
and COIN [73] provide annotations of the form
{ak, (tk, t0k)}

K
k=1, where ak are the actions in the video, and

tk (resp. t0k) are the start (resp. end) timestamps for ak. 4

Given an annotated video consisting of K steps, we gen-
erate K � l examples, each with input xk = (G, Vtk) and
output yk = (ak+1, . . . , ak+l), for k = 1, . . .K� l (leaving
at least l steps to predict in each example). 5 Therefore
from M videos, we generated N =

PM
m=1(Km � l)

examples, where Km is the number of steps in the m-th
video, forming a dataset D = {x(j), y(j)}Nj=1 suitable for
VPA (total number of samples in shown in Table 2).
Baselines. As a first step towards benchmarking, we utilize
two heuristic baselines – a random baseline and most prob-
able action baseline. Additionally, we also adopt a variety
of strong goal-conditioned models. The procedure planning
task is most relevant task from the literature to VPA, there-
fore, we adapt (details in App. A.1) the widely used DDN
model introduced by Chang et al. [9], which is an estab-
lished model in many procedural planning benchmarks in
prior works [6, 87, 70]. Building bridges to the research
community working on Ego4D’s Long Term action Antic-
ipation benchmark (LTA) [25], we also evaluate their best
performing baseline. Finally, we include a prompt-based
GPT-3 planner. Zooming out, these baselines span sev-
eral paradigms: prompt-based, and random baselines are
learning-free, the most-probable and random baselines are
non-neural, while DDN and LTA baselines are learned and

4Despite the presence of prepositions, majority of actions in COIN
and CrossTask can be described using a verb-noun pair. While similar
verbs exist, they are never paired with the same nouns. Therefore, there
are no repeated actions. Example: while verb ‘lift’ w/ noun ‘barbell’ and
verb ‘pickup’ w/ ‘button’ exists in the action library, the complements (‘lift
button’ & ‘pick up barbell’) do not.

5Since we evaluate for three and four next steps on our datasets, we
use the maximum required length and set l = 4.

neural. Succinct descriptions of baselines are included next
(details are deferred to Appendix A):
• Random: Predicts the plan by picking all l actions
uniformly randomly from the set of all actions A.
• Random w/ goal: A stronger baseline; for each goal G,
we allow privilege access to a set of applicable actions
to that goal AG ✓ A, and predicts the plan by randomly
picking actions from the restricted set.
• Most probable action: Given the previous action aj , picks
the most probable next action aj according conditional
probability Pr(ai|aj) obtained using frequency count from
the training.
• Most probable action w/ goal: Akin to random w/
goal baseline, we also evaluate a goal-conditioned most
probable action baseline, that uses a goal-specific set
of actions AG ⇢ A during sampling. Since the most
probable baselines, provide a probability distribution over
the actions, we also employ beam search (for fairness, with
the same beam size same as VLaMP), and pick the highest
scoring plan.
• Dual Dynamics Network (DDN) [9]: Accounting for the
difference in task definition, i.e. lack of visual goal, a direct
application of DDN inference algorithm was not possible.
So we keep DDN’s network structure but use Algo. 1 for
inference on VPA.
• Ego4D Long Term Action Anticipation (LTA) [25] :
The best performing baseline for LTA uses a SlowFast
visual encoder followed by a transformer aggregator.
We adapt this baseline using the S3D encoder for a fair
apples-to-apples comparison with VLaMP.
• Prompt-based GPT-3 Planner: Huang et al. [30] utilize
a LLM as zero-shot planners, we also experiment with
prompting a frozen pretrained large language model i.e.
GPT-3 for VPA (additional details in App. A.2).

5.2. Quantitative Results

In the following, we include quantitative findings of
benchmarking methods on two video data sources (Tab. 3)
and head-on ablations (Tab. 4).
Improved performance across video datasets. As we
show in Tab. 3, VLaMP significantly outperforms the base-
lines for both CrossTask and COIN. DDN that is cus-
tomized for procedural tasks performs significantly bet-
ter than heuristic baselines leading to a mAcc boost from
12.7 ! 24.1% (row 2 and 5, l = 4, Tab. 3). With our novel
decomposition and pretraining objective, VLaMP outper-
forms DDN with a further bump up from 24.1 ! 31.7%
(row 5 and 7).
Steady gains in short & long horizon predictions. As
length of prediction l increases (l = 1 to l = 4), the
performance naturally decreases, across all baselines and
tasks. With this in mind and zooming in on COIN re-
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Method l = 1 l = 3 l = 4

{n/m}Acc SR mAcc mIOU SR mAcc mIOU

CrossTask Video Dataset [89]

Random 0.9 0.0 0.9 1.5 0.0 0.9 1.9
Random w/ goal 13.2 0.3 13.4 23.6 0.0 12.7 27.8
Most probable 10.4 1.7 6.1 9.9 1.3 5.5 13.9
Most probable w/ goal 12.4 2.4 8.9 15.5 1.5 7.9 20.5
DDN [9] 33.4 6.8 25.8 35.2 3.6 24.1 37.0
LTA [25] 26.9 2.4 24.0 35.2 1.2 21.7 36.8
VLaMP (ours) 50.6 10.3 35.3 44.0 4.4 31.7 43.4

COIN Video Dataset [73]

Random 0.1 0.0 0.1 0.2 0.0 0.1 0.2
Random w/ goal 24.5 1.7 21.4 42.7 0.3 20.1 47.7
Most probable 0.7 1.6 4.3 6.8 1.6 8.2 15.3
Most probable w/ goal 23.9 10.9 18.0 24.9 9.1 16.3 32.2
DDN [9] 29.3 10.1 22.3 32.2 7.0 21.0 37.3
GPT-3 prompt-based [30] 19.3 1.7 11.1 19.5 0.0 10.5 21.0
VLaMP (ours) 45.2 18.3 39.2 56.6 9.0 35.2 54.2

Table 3: Performance on different datasets and horizons.
The mean of various metrics (Sec. 3.1) obtained using 5
runs with different random seeds (std. errors are provide
in Appendix E). Note that the action and observation his-
tory are the output of the separately finetuned video-action
segmentation model and hence are noisy compared to the
ground truth history.

sults, we observe large gains of VLaMP over DDN (next
best method). Particularly, a relative improvement of 54%
(29.3 ! 45.2) in mAcc for l = 1 (row 7 and 8, Tab. 3) and
68% (21.0 ! 35.2) for l = 4 is demonstrated by VLaMP
over DDN.
Goal-conditioning is crucial. A key difference between
the task formulations of LTA and VPA is goal conditioning
(see Sec. 2). Comparing rows for LTA model and VLaMP–
there is almost 2x gap (27% vs. 51%, l=1, Tab. 3). This un-
derscores the importance of goal-conditioning. To second
this inference, in Tab. 4 (rows 1 and 2), we precisely ab-
late the effect of providing the goal as a textual description
for the basic (last-observation-only) model. The only differ-
ence is goal prompt G, which increases mAcc performance
from 44.5 ! 53.1% for l = 1 and 28.3 ! 34.7% for l = 3.
Goal-conditioned random and most probable baseline
come close to DDN on easy metrics. For fair compar-
isons, we include heuristic baselines. We observe the per-
formance of random w/ goal and most probable w/ goal
comes close to DDN, when evaluated using lenient metrics
like mAcc and mIOU (see COIN results in Tab. 3). Note,
that these two baselines enjoy the privileged access to (a
much smaller) ‘relevant actions set’ for a given goal. On
an average, the relevant or feasible action set is smaller for
COIN than CrossTask videos. This apriori access to feasi-
ble actions make random w/ goal and most probable w/ goal
competitive (albeit, slightly unfair) baselines.
Prompt-based LLM planner is not competitive. We
evaluate the prompt-based GPT-3 planner on COIN and find

G Ak Ok l = 3 l = 1

SR mAcc mIOU nAcc

1 7 7 ok 6.8 ± 0.3 28.3 ± 1.9 34.8 ± 2.0 44.5 ± 3.8

2 3 7 ok 8.9 ± 0.2 34.7 ± 0.7 41.6 ± 0.8 53.1 ± 2.0

3 3 3 7 14.9 ± 0.3 37.8 ± 0.4 50.8 ± 0.6 48.0 ± 0.2

4 3 3 Ok 15.2 ± 0.3 43.5 ± 0.8 51.4 ± 0.9 64.8 ± 0.9

R 3 3 Ok 10.7 ± 0.2 36.5 ± 0.7 41.7 ± 0.6 61.4 ± 1.8

Table 4: Role of different inputs and LM pre-training in
VLaMP. G, Ak, Ok denote the three inputs to VLaMP:
goal, action history and observation history, respectively.
Shorthand of ok means only the most recent observation
of the full history (Ok) is used. Mean ± std. error over
5 random seeds on CrossTask are reported. The row R cor-
responds to the forecasting module of VLaMP trained with
random initialization (same model architecture) as opposed
to initialization using the weights of a pre-trained LM.

that the prompt based model performs significantly worse
than VLaMP. This highlights that VPA is not easy to solve
using just a PTLM and prompting.

5.3. Ablations and Error Analysis
We undertake head-on ablations to quantify effect of

each component of VLaMP – action history, the visual his-
tory, and language pre-training of the LM. To remove con-
founding factors, in Tab. 4 we use the ground truth output
for the segmentation module. Following this, we include
detailed error analysis.
Action and observation history improve complemen-
tary planning metrics. As seen in all the rows with ac-
tion history Tab. 4 (i.e. Ak), the provision of action his-
tory increases difficult metrics such as SR. In comparing
rows 2 and 3, we see that SR increases relatively by 67%
(8.9 ! 14.9), simply by using action history even with-
out access to any past observation. However, the lack of
observation history affects nAcc, which drops relatively by
10% (53.1 ! 48.0) when observation history is swapped
by action history between rows 2 and 3. This implies that
observation history is important to predict the person’s state
in the task and what they might do next.
Priors from the pre-trained LM improve performance.
In Tab. 4 row R, we report the performance of VLaMP when
its forecasting module is trained with random weight initial-
ization, i.e., the transformer of the same architecture trained
from scratch instead of LM pre-training. We find the per-
formance in row R is thus much lower than that of VLaMP
with pre-trained LM shown in row 4. This underscores the
crucial importance of LM pre-training.
Segmentation errors are detrimental. While the accuracy
of video-action segmentation module (particularly, Video-
CLIP model) is quite good – 80.2% for CrossTask (68.7%
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for COIN), we believe this should be a major focus for fu-
ture research. Why? The effect of this segmentation error in
VLaMP’s performance is quantified by comparing VLaMP
row in Tab. 3 (CrossTask) with corresponding performance
assuming perfect segmentation (Tab. 4, row 4). A relative
50% gap in success and big gaps in all other metrics.

The gap in performance increases 
with errors in segmentation.  

Figure 5: Effect of segmentation errors. Performance of
VLaMP on CrossTask with classification errors (%) in the
video-action segmentation. As the errors increase, the per-
formance gap between the full model and the one without
access to observations increases.

Visual observation history mitigates effect of video-
action segmentation errors. Errors by segmentation mod-
ule lead to mis-classification of actions, in turn leading to
erroneous action history. To precisely study the effect of
erroneous action history on VLaMP’s performance, we per-
form controlled experiments wherein we add noise in the
ground truth segmentation. This helps us tune desired seg-
mentation error, irrespective of VideoCLIP’s accuracy (in
segmentation module). We achieve this by replacing a cal-
culated % of ground-truth actions by random actions. De-
creasing performance, with increasing segmentation classi-
fication error, is expected and observed in Fig. 5. Further,
we compare two models variations, VLaMP(G,Ak, Ok) i.e.
the full model (uses both action and observation history)
and VLaMP(A,Ak) that does not have visual observation
history. As we increase segmentation classification error,
the gap in the performance of these model variations in-
creases. We infer that visual observations add robustness in
VPA against video-action segmentation errors.
Errors do not drop as more history is provided. In Fig. 6,
we show mAcc w.r.t. the number of steps k in the history i.e.
length of (Ok, Ak). As more information is available (due
to more steps in the history), one may expect the accuracy to
improve. However, this isn’t the trend for many tasks. For
e.g., note the accuracy drops for the task “add oil to your

Add oil to car
Build shelves
Change a tire
Grill steak
Jack up a car
Make a latte
Make ice-cream
Make pickles
Make French cake
Make French toast
Make Irish coffee
Make jello shots
Make fish curry
Make fried rice
Make lemonade
Make meringue
Make pancakes
Make taco salad

History length (k)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Accuracy in the tail of long activities is chal-
lenging. Longer history (Ok, Ak) do not necessary lead to
better accuracy. Further longer histories occur with increas-
ing rarity, leading to learning challenges. (Plot shows mAcc
for l = 3 CrossTask vs. the #steps in history k)

car” w.r.t k. Digging deeper, we find two reasons for this
pattern. First, we find that tasks with long history like “add
oil to your car” tend to have repetitive steps towards the end
of their action trajectories, making it difficult to predict the
precise number and the pattern of such repetitions in VPA.
Second is simply a data issue – long trajectories are also
exponentially less frequent in the dataset. This forms the
tail of the data distribution of action sequences in the dataset
(see App. E for statistics). Consequently, prediction in this
tail of activities, is a pertinent challenge for future research.

6. Conclusion
Visual Planning for Assistance is a new and intuitive

formulation to support planning from natural visual obser-
vations for assisting humans in day-to-day activities. We
benchmark VPA using standardized suite of prior base-
lines and a new multi-modal sequence modeling forma-
tion of VLaMP. The novel decomposition of a VLaMP pol-
icy into video action segmentation and forecasting leads to
several efficiency and modeling benefits, that benefit the
community, even beyond VPA. Particularly, this allows to
leverage pre-trained LM that leads to significant perfor-
mance gains. Alternative decompositions, self-supervised
pre-training objectives for PTLMs, modeling multiple ac-
tors, and tapping into other modalities (audio, camera meta-
data, etc.) [26, 55, 43, 72, 32, 88] are interesting ways for-
ward for the community, on the exciting task of VPA.
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and Yoshua Bengio. On the properties of neural machine

translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014. 5

[14] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al.
Scaling egocentric vision: The epic-kitchens dataset. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 720–736, 2018. 2, 3

[15] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Antonino Furnari, Evangelos Kazakos, Jian Ma, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price,
et al. Rescaling egocentric vision. arXiv preprint
arXiv:2006.13256, 2020. 2

[16] Ishita Dasgupta, Christine Kaeser-Chen, Kenneth Marino,
Arun Ahuja, Sheila Babayan, Felix Hill, and Rob Fergus.
Collaborating with language models for embodied reason-
ing. arXiv preprint arXiv:2302.00763, 2023. 2

[17] Matt Deitke, Dhruv Batra, Yonatan Bisk, Tommaso Campari,
Angel X Chang, Devendra Singh Chaplot, Changan Chen,
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