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Abstract

Weather degraded conditions such as rain, haze, snow,
etc. may degrade the performance of most computer vi-
sion systems. Therefore, effective restoration of multi-
weather degraded images is an essential prerequisite for
successful functioning of such systems. The current multi-
weather image restoration approaches utilize a model that
is trained on a combined dataset consisting of individ-
ual images for rainy, snowy, and hazy weather degrada-
tions. These methods may face challenges when deal-
ing with real-world situations where the images may have
multiple, more intricate weather conditions. To address
this issue, we propose a domain translation-based uni-
fied method for multi-weather image restoration. In this
approach, the proposed network learns multiple weather
degradations simultaneously, making it immune for real-
world conditions. Specifically, we first propose an instance-
level domain (weather) translation with multi-attentive fea-
ture learning approach to get different weather-degraded
variants of the same scenario. Next, the original and
translated images are used as input to the proposed novel
multi-weather restoration network which utilizes a progres-
sive multi-domain deformable alignment (PMDA) with cas-
caded multi-head attention (CMA). The proposed PMDA fa-
cilitates the restoration network to learn weather-invariant
clues effectively. Further, PMDA and respective decoder
features are merged via proposed CMA module for restora-
tion. Extensive experimental results on synthetic and real-
world hazy, rainy, and snowy image databases clearly
demonstrate that our model outperforms the state-of-the-art
multi-weather image restoration methods. Code is avail-
able at https://github.com/pwp1208/Domain_
Translation_Multi-weather_Restoration.

1. Introduction
Fog, snow, rain, haze or their combintations often de-

grade the quality of images recorded for computer vision
applications such as surveillance, traffic monitoring, and
autonomous driving. These applications routinely involve
sub-tasks such as optical flow estimation [36], object detec-

Figure 1. Upper-part: Thumbnail of the proposed domain transla-
tion based multi-weather image restoration approach. Lower-part:
Sample restoration results: (a) de-hazing, (b) de-raining with veil-
ing effect, and (c) de-snowing with veiling effect.

tion [8], depth estimation [27], etc., which use algorithms
or models expecting clean image as their input. Therefore,
restoration of images degraded by one or many weather
conditions is an important problem.

Although remarkable success has been achieved in
restoration of particular domain such as image de-hazing,
image de-raining, and image de-snowing, multi-weather de-
graded image restoration is still an open problem. Existing
works handle multiple weather degradations via separate
weather specific encoders [15], or separate training for each
weather [1]. To handle multiple degradations with sepa-
rate training-based models, typically these weather-specific
models are put in a cascade, e.g., haze removal followed
by rain removal. But, such an approach may produce un-
desirable results as the erroneous output of any one of the
earlier stages affects the overall result in an unpredictable
manner. Also, in order to select the appropriate restora-
tion model, prior information about the degradation must be
available. To overcome these limitations, researchers intro-
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duced various unified (single trainable parameters) models
based on knowledge distillation [4], transformer [33], con-
trastive degradation guidance [12] and degradation removel
with feature corrector [11] for multi-weather image restora-
tion. These models are trained using a combined dataset
that contains individual degraded images representing rainy,
snowy, and hazy weather, etc. As real-world scenario may
have more intricate weather conditions, which limits the
performance of [4], [33], [11], [12] methods. Therefore,
the restoration architecture should be able to perform sig-
nificantly for any weather degradation.

To address the above challenges, we propose multi-
weather image restoration framework where we first cre-
ate different weather degradations of a degraded image and
use them to learn a set of features that jointly represent all
the degraded images. Since the common part across di-
verse weather degraded images is the clean image (i.e., ev-
erything except weather degradations), our feature extrac-
tor learns to suppress the weather specific information and
thus learns weather-invariant features. A practical advan-
tage of this learning scheme is that our feature extractor can
be also used for real data even though it is trained using
synthetic data. This is because the synthetic and real-world
images mainly differ in the weather-degradations, and since
our feature extractor learns to suppress it, it can close the
domain gap between synthetic and real-world data.

Following this idea, we propose a domain translation
based unified approach for multi-weather image restoration.
In order to achieve this, we first used a domain transla-
tion approach, where any of the degraded image can be
translated to specific domain (e.g., hazy, rain with veil,
snow with veil). We then propose a restoration architecture
which takes domain translated and original degraded im-
ages as input to generate degradation free output. The pro-
posed restoration network comprises of two components:
namely a progressive multi-domain deformable alignment
(PMDA) and cascaded multi-head attention (CMA) blocks.
PMDA module perform inter domain offset feature align-
ment which facilitates the restoration network to learn
weather-invariant representation effectively. Further, the
CMA block is proposed to aggregate the respective PMDA
and decoder features for effective restoration. Our main
contributions are:

• A novel unified architecture for multi-weather image
restoration. It utilizes a single trainable model to re-
store all weather degradations.

• A domain-translation with multi-attentive feature
learning to achieve unified model’s generalizability.

• A progressive multi-domain deformable alignment
and cascaded multi-head attention modules for multi-
weather image restoration.

Extensive experimental analysis on various weather-
degraded synthetic and real-world datasets demonstrate that

the proposed multi-weather restoration framework outper-
forms the existing state-of-the-art (SOTA) methods. An
overview and sample results of the proposed method for
real-world images are given in Figure 1.

2. Related Work
2.1. Single Weather Degradation Removal

De-hazing: Earlier research on single image de-hazing
was directed towards hand-crafted based approaches [6],
[32]. The emergence of deep learning networks brought
advancements in degradation removal methods, and the re-
searchers proposed various approaches towards the task
of haze, rain or snow removal from images. Zhou et
al. [40] proposed feedback spatial attention-based archi-
tecture with iterative extraction of the high-level informa-
tion. With iterative process, the improper feature learning
at the initial steps may cause an up-stretched error at the
last stage and lead to ineffective results. Recently, Liu et al.
[17] proposed three-stage visibility enhancement approach
with multi-scale attention with multi-feature fusion module.
The hazy-image and depth-map-based feature learning with
cross-connection and residual channel attention module is
proposed in [7] for the de-hazing task. However, getting
an accurate depth map for dense hazy images is a challeng-
ing task which may produce unrealistic de-hazing results.
Density and depth information is integrated with unpaired
learning for image de-hazing [37].
De-raining: Deng et al. [5] considered rain removal and
detail recovery as separate tasks and proposed two parallel
sub-networks which make use of dilated convolutions and
squeeze-and-excitation networks. Zamir et al. [38], pro-
posed a multi-stage approach which progressively restores
a degraded image by injecting supervision at each stage,
while processing different scales of the input images.
De-snowing: Snow removal from single image is even more
challenging task due to the non-transparency property of
snow, which results in occluded background region and
loss of details. In [39], the authors analyzed the differ-
ence between snow streaks and clear background edges,
and applied a multi-guided filter to remove snowflakes.
A three-stage hierarchical approach is proposed in [34],
which combine image decomposition and dictionary learn-
ing. Even though these algorithms work effectively for spe-
cific weather degradation removal, performance may de-
grade in the presence of real-world weather degradation.
Because along with rain or snow streaks, there is a strong
veiling effect present, particularly in heavy rain or snow.

2.2. Multi-weather Degradation Removal
In 2019, the first attempt was made in [1], to handle sin-

gle image de-hazing and the de-raining problem with spe-
cific weather training. A two-stage approach is proposed
[14], in which the first stage estimates the rain streaks, trans-
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Figure 2. Overview of the proposed multi-weather image restoration algorithm. Initially, the weather degraded image is translated to
different domains (ID1: hazy, ID2: rain with veil and ID3: snow with veil). Next, these translated and input images are processed through
separate encoders and aligned using proposed progressive multi-domain feature alignment with cascaded multi-head attention module.

mission map, and atmospheric light from the input image.
Li et al. [15] proposed a multi-weather image restoration
approach where authors leverage neural architecture search
for processing the features extracted from the task-specific
encoders of rain with veil, rain-drop, and snow. Also, the se-
lection of particular encoder while dealing with real-world
weather degraded images is one of the limitation of [15].
Similar to heavy rain, heavy snow will also show a strong
veiling effect in the real scene. The first attempt was made
by [2] to handle snow and veiling effects simultaneously.
They used the modified partial convolution and the differ-
entiable dark channel prior layer. Chen et al. [3] pro-
posed a dual-tree wavelet transform based approach with
complex wavelet loss. In [38], authors proposed a multi-
stage architecture that progressively learns restoration func-
tions from degraded images. They handle image de-raining,
de-blurring, and de-noising degradations via specific train-
ing. Recently, a contrastive-based degraded encoder and
degradation-guided restoration network is proposed in [12]
to handle image de-nosing, de-raining, and de-hazing tasks.
Valanarasu et al. [33] proposed a transformer-based ap-
proach for rain with veil, snow and rain-drop removal.
They also introduced learnable weather-type embeddings
to handle different weather degradation effectively. Chen
[4] propsoed two-stage i.e. knowledge collation and knowl-
edge examination with multi-teacher and student architec-
ture for adverse weather removal. Kulkarni et al. [11] pro-
posed dual stream (appearing degradation and veiling effect
removal) architecture for multi-weather image restoration.
These [4] (28M) [15] (41M), [33] (31M) methods achieved
superior performance but at the cost of increased computa-
tional complexity.

2.3. Domain Translation
Since our proposed restoration model is built upon do-

main translation, we briefly review it in this section. With
a recent deep learning advancement, many algorithms are
proposed for domain transfer task like structure-guided ar-
bitrary [18], semantic context-aware [16], etc. In [10], au-
thors proposed a memory-guided unsupervised approach
to perform diverse translation between two visual domains
e.g., Sunny to night, rainy to sunny. They have used
separate content and style encoders to learn content and
style features from input and target domains. Inspired by
this, we have proposed an architecture for instance-level
image-to-image translation between original degraded in-
put to required domains. To the best of author’s knowledge,
this is the first weather-to-weather translation approach for
restoration tasks.

3. Proposed Framework
In this work, a solution to handle multiple weather degra-

dations is proposed with a unified network without any pre-
trained weights or domain specific knowledge.
Overall Pipeline: Overview of the proposed framework is
shown in Figure 2. Given a weather degraded image (I),
we first aim to learn a weather invariant representation of
the image making the restoration task for multi-weather sce-
nario easier. To learn a weather-invariant representation for
I , we first propose the domain translation (DT) of given im-
age I into its different weather variants. For example, we
take any weather degraded image I and translate it into a
corresponding hazy, rain with veil and snow with veil im-
ages. We refer to each weather condition as a domain, de-
noting them as hazy (D1), rain with veil (D2), and snow
with veil (D3), etc. In using domain translation, our main
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Figure 3. Overview of the proposed domain translation architec-
ture with multi-attentive feature extraction (MFE) module.

idea is to create different weather degradations of the same
image and use them to train a feature extractor to learn a
common set of features that simultaneously represent all
the degraded images. Since the common part across diverse
weather degraded images is the clean image (everything ex-
cept weather degradations), our feature extractor learns to
suppress the weather specific information and thus learn-
ing weather-invariant features. Another practical advantage
is that this feature extractor can be used for real data even
though it is learnt using synthetic data. This is because only
difference between the synthetic generated and real-world
images lies in the weather-degradations and since our fea-
ture extractor learns to suppress it, the domain gap between
synthetic and real-world data is closed.

We propose a restoration generator (Gr) where these
weather degraded images (I , ID1, ID2 and ID3) are fed as in-
put. The proposed Gr encodes each of the inputs via multi-
receptive and multi-scale convolution block based encoders
(see in Figure 2) in order learn to domain-relevant fea-
tures (see FD1

l , FD2

l , FD3

l , F I
l∈(1,3) in Figure 2). Except first

encoder, every encoder down-samples the input features.
At last encoder layer, these separately learned features are
aggregated and forwarded to the decoder via successive
deformable convolutions (DC3) for final reconstruction.
These extracted features are then processed through suc-
cessive decoder layers to have final restored image. While
reconstruction, the independently learned encoder features
processed via proposed progressive multi-domain feature
alignment (PMDA) are forwarded to the respective decoder
through skip connection. Further, the PMDA features and
respective decoder features are merged effectively through
proposed cascaded multi-head attention (CMA) to provide
the restored image (Ig). Summarizing the overall pipeline
of the proposed framework as: 1) domain translation (refer
Section 3.1), and 2) Multi-weather image restoration (refer
Section 3.2). Detailed exposition of each step of the pro-
posed pipeline is provided in following subsections.

Figure 4. Visual results of the proposed DT network.

3.1. Domain-translation Architecture
The proposed DT approach takes weather degraded im-

age (I) as input and translates it to other weather do-
mains IDi∈(1,2,3). We have used U-Net [28] architecture
as generator to perform translation of any weather de-
graded image over the required domain. This architec-
ture mainly comprises of four encoders and four decoders
(see DT in Figure 2). The encoder block is defined as:
{Enl l×f ; [l ∈ (1, 4), f = 16]}. Similar to this, the de-
coder block is defined as: {Del l×f ; [l ∈ (4, 1), f = 16]},
where, l and (l × f ) represent encoder or decoder level and
number of filters in encoder or decoder respectively.
Multi-attentive Feature Extraction: The input image (I)
is given to the encoder which will give features

(
ψlϵ(1,4)

)
.

While giving a skip connection from the respective encoder
to the decoder, we have processed these features via the pro-
posed multi-attentive feature extraction (MFE) module (see
MFE block in DT of 2 for more details). In MFE, the re-
spective lth encoder-level features (ψl) are processed as:

xMR
G =

〈
C3

dϵ(1,2,3) (ψl)
〉
;xMS

G =
〈
C

kϵ(1,3,5)
1 (ψl)

〉
(1)

where, xMR
G and xMS

G are multi-receptive and multi-scale
features, Ck

d is convolution with k × k kernel and d di-
lation rate, ⟨·⟩ is concatenation followed by convolution
with 1 × 1 kernel (refer Figure 3 for more details). Re-
quired contextual and spatial information is extracted using
dilated and multi-scale convolutions through large recep-
tive fields. Here, we form four different groups by splitting
the features into groups of xMR

Giϵ(1,4)
and xMS

Giϵ(1,4)
containing

equal number of channels in each group and merge respec-
tive xMR

Gi
and xMS

Gi
to form xiϵ(1,4). Further, these merged

features xiϵ(1,4) are processed via multi-scale attention as :
C1Dk(xi) ⊙ ς(C1Dk(xi)), where ς is GeLu activation, ⊙
is dot product, k = (2 × i) − 1 (see Figure 3). This split-
ting and merging of multi-receptive and multi-scale features
through multi-scale attention help the network for robust
feature representation learning. Sample visual results for
domain translation network are shown in Figure 4. From
Figure 4, it is clear that the proposed DT network is able
to generate three different degradation (ID1, ID2, ID3) irre-
spective of input degradation. With this intuition, the three
outputs of the DT architecture (ID1, ID2, ID3) are used along
with original weather degraded image (I) as input to the
proposed restoration architecture.
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Figure 5. Overview of the proposed progressive multi-domain de-
formable alignment module for effective feature aggregation.

3.2. Multi-weather Image Restoration Architecture
The proposed restoration framework is shown in Fig-

ure 2 which comprises two major modules: 1) Progres-
sive Multi-domain Deformable Alignment, and 2) Cascaded
Multi-head Attention module. Details are given below. Pro-
gressive Multi-domain Deformable Alignment: As vari-
ous weather degradations have different representation (re-
fer DT images of Figure 4), the unified architecture urges
alignment of domain (weather) translated features for ef-
fective multi-weather restoration. To achieve effective fea-
ture alignment, we propose a progressive multi-domain de-
formable alignment module. The proposed PMDA facili-
tates the network to learn weather-invariant representation
effectively. The independently learned features from all
the translated domains i.e. FD1

l , FD2

l , FD3

l and input im-
age F I

l of lth encoder layer are forwarded to the proposed
PMDA module (refer the Figure 5 for more details). Ini-
tially, every domain features are split into four groups i.e.
γdomain
i , i ∈ (1, 4), domain ∈ (D1,D2,D3, I). Further,

we process two input domains progressively in proposed
inter-domain offset feature alignment (see in Figure 5).
Here, in the inter domain offset feature alignment, inputs
from any two domains are used to generate the offsets for
actual deformable convolution layer (see DA in Figure 5).
Initially, the D1 domain features are aligned with input im-
age features. Because, the rainy and snowy degradations
are more complex as compared to hazy degradation. All
the aligned features of all the respective ith group γdomain

i

are finally merged to generate γ′i. All the groups are pro-
cessed in similar way through inter-domain offset feature
alignment (see in Figure 5) and concatenation followed
by a convolution → Relu layer as:

γl =< γ′1, γ
′
2, γ

′
3, γ

′
4 > (2)

where, l is lth encoder layer, < · > is concatenation fol-
lowed by 1 × 1 convolution and ReLu operation. In the
progressive inter-domain offset feature alignment for every
group γi, the offset generation and deformable alignment is

Figure 6. Overview of the proposed cascaded multi-head attention
module for feature merging.

done with the offset convolution and deformable convolu-
tion respectively with different kernel size k = (2× i)− 1
i.e. for i = 4 the kernel size is k = 7 for both offset con-
volution (Ck) and deformable convolution (DCk) (see DA
in Figure 5). Overall response of progressive inter-domain
feature alignment (see in Figure 5) for ith group as:

γ′i =< γIi , χ, φ(χ, γ
D2
i ), φ(φ(χ, γD2

i ), γD3
i ) > (3)

where, χ = φ(γIi , γ
D1
i ), φ is the progressive inter-domain

feature alignment. This PMDA module helps for disen-
tanglement of task-relevant data of restoration and task-
irrelevant data of various degradation. Therefore, these
PMDA features are then forwarded to the respective de-
coder level via skip connection. Cascaded Multi-head
Attention: To effectively merge the decoder features with
the respective processed encoder features via PMDA mod-
ule, we propose a cascaded multi-head attention (CMA).
The multi-head attention proposed here consists of de-
formable convolutions to capture maximum receptive fields.
Like transformer layers, the proposed CMA has the struc-
ture as attention→layer-norm→feed forward
network. So the proposed CMA is able to capture the
long term dependencies along-with the high receptive fields
due to deformable attention. We use the term cascaded as
we are using two successive multi-head attentions (MHA)
(see in Figure 6) with two inputs from previous decoder(
De(i−1)

)
and respective PMDA level feature (ξl). This

cascading allows to capture global dependencies effectively.
The output of MHA is given as:

Z = σ(Q ·KT ) · V (4)

where, Q = X , K = DC3(C1(Y )), V = DC3(C1(Y )),
and X , Y are the inputs to MHA. So the input to first MHA
are De(i−1) and ξl and second MHA are Z1 and De(i−1)

(see Figure 6). To further process these features, we pass the
response of first and second MHA through layer-norm
(LN) with respect to ξl and De(i−1) respectively. So the
responses of both the LN are given as:
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LN1 = LN(Z2 +De(i−1)); LN2 = LN(Z1 + ξl) (5)

Further, the output of first LN is processed through feed
forward network (FFN) followed by a LN. Finally, the
output of the CMA (Dei) is given as:

Dei = ⟨LN2, LN(FFN(LN1) + LN1)⟩ (6)

where, < · > is concatenation operation.

4. Training Settings
The proposed restoration network is trained using syn-

thetic data with original and domain translated images as in-
put to get restored image under adversarial settings similar
to [9], [23], [22]. To get domain transalted images, domain
translation network is trained separately for each required
domain like D1: hazy, D2: rain with veil and D3: snow
with veil under adversarial settings [9]. The initial learning
rate is set to 2 × 10−4 which is reduced by factor of 0.1 as
the losses plateau. The networks are trained with PyTorch
library on NVIDIA DGX Tesla V100 32 GB GPU. While
training the networks, the discriminator is same as in [9].

4.1. Domain Translation Losses
We train the proposed DT network separately (see

ϕ1, ϕ2, ϕ3 in Figure 2) for generating each weather de-
graded image (ID1, ID2, ID3). While training of the net-
work to generate particular weather degraded image (e.g.,
ID2), any of the synthetically degraded images (I) is pro-
vided as input. The loss is calculated between the domain
translated image (e.g., ID2) and the respective target (e.g.,
IRv). We denote by IH , IRv , ISv are the synthetically de-
graded target images for ID1, ID2, ID3 domains respectively.
Using these notations, the loss is calculated between the im-
age pairs (ID1, IH ), (ID2, IRv), and (ID3, ISv) for generation
of ID1, ID2 and ID3 images respectively. The adversarial
learning is adopted for DT network training. Along with L1

loss, adversarial loss (LA) for DT network is calculated. To
guide the network for textural and structural information,
the perceptual loss (LV ) is calculated between the trans-
lated and original target image by passing them through the
pre-trained VGG19 model [30]. Further, the contrastive loss
(Lc) [35] in a common latent feature space is used to max-
imize and minimize the difference between (IDi∈(1,2,3)

, I)
and (IDi∈(1,2,3)

, ITi∈(H,Rv,Sv)
) respectively. Also, the style

loss (LSd
) with mean and standard deviation are considered.

The total loss (Ld) is:

Ld(Di,Ti) = λ1L1+λ2LA+λ3LV +λ4Lc+λ5Ls (7)

where, the weights λkϵ(1,5) for each loss are set empirically.

4.2. Image Restoration Losses
Along with domain-translated images (IDiϵ(1,2,3)

), the
original degraded image (I) is used as input to get restored
image (Ig). The proposed restoration network is required to
generate the restored image similar to the clean image (Ic)

in adversarial manner. The L1 loss is used to optimize the
network for better reconstruction. The adversarial loss (LA)
is the min-max problem between generator and discrimina-
tor, respectively. Along with this loss, the perceptual loss
(LV ) [30] between (Ig, Ic), contrastive loss (Lc) [35] be-
tween (I, Ig, Ic) are considered. So, the total loss (Lr) is:

Lr(Ig, Ic) = λ1L1 + λ2LA + λ3LV + λ4Lc (8)
where, the weights λkϵ(1,4) for each loss are set empirically.
(loss functions are explained in supplementary material).

5. Results and Discussion
5.1. Datasets and Evaluation Metrics
Synthetic Objective Testing Set (SOTS) [13]: 1000 in-
door and outdoor images are provided for testing purpose.
From training set, 5000 images are considered for training
purpose. We have used outdoor images for result analysis.
Outdoor-Rain Database (ORD) [14]: This database im-
ages are degraded by rain and fog. 9000 and 750 images
are provided for training and testing purpose respectively.
Comprehensive Snow Database (CSD) [3] : 8000 and
2000 images are provided for training and testing purpose
respectively with combination of snow and fog degradation.
Real-world Databases: The image restoration algorithm is
said to be domain generalised if it restores the synthetic as
well as real-world degraded images efficiently. To scruti-
nize this, we have used three different real-world degraded
image datasets named as Real-world Task-driven Testing
Set (RTTS) [13], Snow realistic [19] and Rain In Driving
(RID) [31] for experimental analysis .

We have considered all synthetic databases training sets
in combination for training of the proposed restoration net-
work. For testing purpose, the respective testing sets and
real-world datasets are used. The reference based evalu-
ation metrics includes average Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index Measure (SSIM).
Average Naturalness Image Quality Evaluator (NIQE) [21],
Entropy and Blind/Referenceless Image Spatial Quality
Evaluator (BRISQUE) [20] evaluation metrics are used in
case of real-world weather degraded image restoration. We
have used the released source code and provided trained
models by respective authors to get the results on synthetic
and real-world datasets.

5.2. Real-world Result Evaluation
The RTTS [13], Snow realistic [19] and RID [31]

datasets are considered for real-world experimental analy-
sis. The NIQE (↓), entropy (↑) and BRISQUE (↓) param-
eters are used for real-world quantitative analysis as pro-
vided in [29] (↓: lower is better, ↑: higher is better). The
qualitative and quantitative analysis on real-world degraded
images are provided in Figure 7 and Table 1 respectively.
Proposed method de-hazing results follow the depth crite-
ria. Whereas, UMVR, KD and TW methods are unable to
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Figure 7. Qualitative analysis of the proposed and existing methods: UMVR [11], KD [4], TW [33] for multi-weather image restoration.

Table 1. Subjective results on real-world weather degraded images
for de-hazing, de-raining with veil and snow with veil removal.

Database Methods NIQE (↓) Entropy (↑) BRISQUE (↓)

RTTS

UMVR [11] 5.009 7.221 28.625
KD [4] 4.996 7.297 26.837

TW [33] 5.703 7.263 29.874
Ours 4.859 7.505 24.761

RID

UMVR [11] 6.604 7.486 24.296
KD [4] 6.943 7.459 24.841

TW [33] 7.496 7.393 24.165
Ours 7.625 7.492 23.931

Snow
realistic

UMVR [11] 4.296 7.354 23.761
KD [4] 6.643 7.459 24.841

TW [33] 5.628 7.331 25.377
Ours 4.196 7.572 21.884

remove haze in depth (see column 1 and 2 from Figure 7).
In presence of heavy rain, the baseline methods are not able
to remove the rain effect completely due to strong veiling
effect. Whereas, the proposed method can remove the rain
with veiling effect significantly (see column 3 and 4 from
Figure 7). In case of heavy snow, the effect of veiling ef-

Table 2. Quantitative results analysis for de-hazing (SOTS), de-
raining with veil (ORD) and snow with veil (CSD) removal in
terms of average PSNR/SSIM.

Methods SOTS CSD ORD
UMVR [11] 33.41/0.980 28.65/0.900 22.99/0.830

KD [4] 34.64/0.985 31.35/0.950 29.05/0.916
TW [33] 32.45/0.955 29.76/0.940 27.96/0.950

Ours 36.26/0.987 32.95/0.942 31.24/0.951

fect is still present in the restored results of existing meth-
ods. However, the veiling effect is reduced substantially
with the proposed restoration method (see column 5 and 6
from Figure 7). From the visual results, it is observed that
the proposed method restores plausible results as compared
to existing SOTA methods.

5.3. Synthetic Result Evaluation
We compared the proposed approach with SOTA uni-

fied restoration methods: UMVR [11], KD [4], TW [33] on
SOTS-outdoor, CSD and outdoor-rain databases in terms of
average PSNR, and SSIM. The quantitative analysis is pro-
vided in the Table 2 (see supplementary material for qual-
itative results). The provided qualitative and quantitative
results validate the effectiveness of the proposed method
compared to existing unified (UMVR [11], KD [4], TW
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Figure 8. Visual analysis of the proposed and existing methods:
UMVR [11], KD [4], TW [33] for night-time image restoration.

Table 3. Ablation study on the proposed modules with outdoor rain
database (IL: Independent Learning, PMDA: Progressive Multi-
domain Alignment and CMA: Cascaded Multi-head Attention)

Module PSNR SSIM
Baseline 26.49 0.887

Baseline + IL (Net-1) 27.89 0.905
Baseline + IL + PMDA (Net-2) 29.53 0.942
Baseline + IL + PMDA + CMA 31.24 0.951

[33]) methods on synthetic datasets. Specifically, our uni-
fied architecture has ∼11M parameters (including domain-
translation architecture) whereas the existing unified archi-
tectures KD [4], and TW [33] have ∼28M and ∼31M pa-
rameters respectively.
As seen from the Table 1 and 2, our method’s performance
on synthetic data is usually comparable to SOTA that are
trained using the respective synthetic datasets. We note that
while our method learns from the synthetic data, it does not
over-fit on synthetic data. Therefore, it performs well on
both synthetic and real-world datasets. This proves that the
domain generalization ability of the proposed method is bet-
ter compared to SOTA unified restoration methods.

5.4. Night-time Multi-weather Restoration
Weather-degraded image/video restoration is equally im-

portant in night conditions as in day conditions [24]. There-
fore, we examined the effectiveness of the proposed and
existing networks for night-time multi-weather degradation
removal. We labeled this analysis as cross-domain. We di-
rectly tested the proposed and existing models on real-world
night-time multi-weather images downloaded from Inter-
net. Sample results for night-time de-hazing, de-raining
and de-snowing are provided in the Figure 8. From the vi-
sual results, it is observed that the proposed method perfor-
mance is significantly better compared to existing methods
for night-time multi-weather restoration.

5.5. Ablation Study
We analyse the contributions of individual modules (in-

dependent feature learning, PMDA, and CMA) of the pro-

Figure 9. Object detection and depth estimation analysis on de-
graded and restored images by existing UMVR [11], KD [4], TW
[33], and proposed multi-weather image restoration method.

posed architecture in the ablation study conducted on ORD
database. We start the ablation with single encoder-decoder
architecture and named as “Baseline”.

Independent Feature Learning: In the proposed restora-
tion approach, four inputs (ID1, ID2, ID3 and I) are pro-
cessed parallelly to learn the features independently. Is
this independent feature learning effective for multi-
weather image restoration? To examine this, these inputs
are processed through single (baseline) and parallel Net-1
encoders. From the Table 3 results, it is clear that the pro-
posed independent feature learning is effective for extract-
ing the features from all domains.

Progressive Multi-domain Deformable Alignment:
Along with effective feature extraction, the multi-domain
feature alignment has significant importance in restoration.
To do this task, we have proposed PMDA module and used
at each encoder stage. How does this proposed PMDA
module helps the network to integrate the multi-domain
features effectively? To scrutinize this, the efficiency of
proposed restoration network is examined without (Net-1)
and with (Net-2) PMDA. The quantitative analysis is
provided in Table 3. From these results, it is evident that
the proposed PMDA works effectively for multi-domain
feature alignment.

Cascaded Multi-head Attention: Applying attention on
the encoder or decoder features affects differently while
restoring the clean image. Therefore, we have applied cas-
caded multi-head attention on respective PMDA and de-
coder features. We analysed the network accuracy with-
out (Net-2) and with (baseline+IL+PMDA+CMA) CMA
module i.e. final proposed network. The results in Table 3
proves the effectiveness of the proposed CMA module for
restoration. The more ablation analysis for SOTS and CSD
database is provided in the supplementary material.

5.6. Real-world Applications
Restoration module can be used as a preprocessing step

for down-stream applications like object detection, depth
estimation, etc. To this end, we have evaluated the benefits
of the proposed and existing restoration methods as a pre-
processing step for the object detection [26] and depth es-
timation task [25]. The visual analysis for object detection
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and depth predictions is provided in Figure 9. As seen from
the Figure 9, depth predictions or confidence in detecting
objects of the restored images with proposed approach are
more accurate than existing methods and degraded image.
Clearly, the proposed domain-translation based restoration
approach performs favourably against the SOTA methods
for object detection and depth predictions task.

6. Conclusion
In this work, we proposed the first weather-invariant

representation learning based multi-domain progressive
deform-able alignment architecture for multi-weather im-
age restoration. The weather-invariant representation learn-
ing helps to learn a representation that is common across
diverse weather conditions and also similar across real or
synthetic weather degraded images. Further, the proposed
progressive multi-domain deform-able alignment module
effectively merges the independently learned multi-domain
features. This progressive alignment of features helps the
network to reduce the degradation in step-by-step man-
ner. Finally, effective restoration is done via CMA to cap-
ture long-term dependencies with respective PMDA and de-
coder features. Results analysis is conducted on real-world
and synthetic benchmark hazy, rainy and snowy datasets.
Also, the night-time multi-weather restoration results are
analysed as cross-domain analysis. Extensive comparisons
demonstrate the generalizability of the proposed method
over SOTA methods. Further, we have analysed the effec-
tiveness of the proposed and existing methods for object
detection and depth estimation tasks for verifying its use-
fulness in real-world applications.
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