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Figure 1: Diffusion models with transformer backbones achieve state-of-the-art image quality. We show selected sam-
ples from two of our class-conditional DiT-XL/2 models trained on ImageNet at 512x512 and 256 x 256 resolution.

Abstract

We explore a new class of diffusion models based on the
transformer architecture. We train latent diffusion models
of images, replacing the commonly-used U-Net backbone
with a transformer that operates on latent patches. We an-
alyze the scalability of our Diffusion Transformers (DiTs)
through the lens of forward pass complexity as measured by
Gflops. We find that DiTs with higher Gflops—through in-
creased transformer depth/width or increased number of in-
put tokens—consistently have lower FID. In addition to pos-
sessing good scalability properties, our largest DiT-XL/2
models outperform all prior diffusion models on the class-
conditional ImageNet 512x512 and 256 X256 benchmarks,
achieving a state-of-the-art FID of 2.27 on the latter.

1. Introduction

Machine learning is experiencing a renaissance pow-
ered by transformers. Over the past five years, neural
architectures for natural language processing [42, 8], vi-
sion [10] and several other domains have been subsumed
by transformers [60]. Many classes of image-level gener-
ative models remain holdouts to the trend, though—while
transformers see widespread use in autoregressive mod-
els [43, 3, 6, 47], they have seen less adoption in other gen-
erative modeling frameworks. For example, diffusion mod-
els have been at the forefront of recent advances in image
generation [9, 46]; yet, they all adopt a convolutional U-Net
architecture as the de-facto choice of backbone.

* Work done during an internship at Meta AI, FAIR Team.
Code and project page available here.
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Figure 2: ImageNet generation with Diffusion Transformers (DiTs). Bubble area indicates the flops of the diffusion
model. Left: FID-50K (lower is better) of our DiT models at 400K training iterations. Performance steadily improves in
FID as model flops increase. Right: Our best model, DiT-XL/2, is compute-efficient and outperforms all prior U-Net-based

diffusion models, like ADM and LDM.

The seminal work of Ho et al. [19] first introduced the
U-Net backbone for diffusion models. Having initially seen
success within pixel-level autoregressive models and con-
ditional GANSs [23], the U-Net was inherited from Pixel-
CNN++ [52, 58] with a few changes. The model is con-
volutional, comprised primarily of ResNet [15] blocks. In
contrast to the standard U-Net [49], additional spatial self-
attention blocks, which are essential components in trans-
formers, are interspersed at lower resolutions. Dhariwal and
Nichol [9] ablated several architecture choices for the U-
Net, such as the use of adaptive normalization layers [40] to
inject conditional information and channel counts for con-
volutional layers. However, the high-level design of the U-
Net from Ho et al. has largely remained intact.

With this work, we aim to demystify the significance of
architectural choices in diffusion models and offer empiri-
cal baselines for future generative modeling research. We
show that the U-Net inductive bias is not crucial to the per-
formance of diffusion models, and they can be readily re-
placed with standard designs such as transformers. As a
result, diffusion models are well-poised to benefit from the
recent trend of architecture unification—e.g., by inheriting
best practices and training recipes from other domains, as
well as retaining favorable properties like scalability, ro-
bustness and efficiency. A standardized architecture would
also open up new possibilities for cross-domain research.

In this paper, we focus on a new class of diffusion models
based on transformers. We call them Diffusion Transform-
ers, or DiTs for short. DiTs adhere to the best practices of
Vision Transformers (ViTs) [10], which have been shown to
scale more effectively for visual recognition than traditional
convolutional networks (e.g., ResNet [15]).

More specifically, we study the scaling behavior of trans-
formers with respect to network complexity vs. sample
quality. We show that by constructing and benchmark-
ing the DiT design space under the Latent Diffusion Mod-
els (LDMs) [48] framework, where diffusion models are
trained within a VAE’s latent space, we can successfully
replace the U-Net backbone with a transformer. We further
show that DiTs are scalable architectures for diffusion mod-
els: there is a strong correlation between the network com-
plexity (measured by Gflops) vs. sample quality (measured
by FID). By simply scaling-up DiT and training an LDM
with a high-capacity backbone (118.6 Gflops), we are able
to achieve a state-of-the-art result of 2.27 FID on the class-
conditional 256 x 256 ImageNet generation benchmark.

2. Related Work

Transformers. Transformers [60] have replaced domain-
specific architectures across language, vision [10], rein-
forcement learning [5, 25] and meta-learning [39]. They
have shown remarkable scaling properties under increas-
ing model size, training compute and data in the language
domain [26], as generic autoregressive models [17] and
as ViTs [63]. Beyond language, transformers have been
trained to autoregressively predict pixels [38, 7, 6]. They
have also been trained on discrete codebooks [59] as both
autoregressive models [ 1 |, 47] and masked generative mod-
els [4, 14]; the former has shown excellent scaling behavior
up to 20B parameters [62]. Finally, transformers have been
explored in DDPMs to synthesize non-spatial data; e.g., to
generate CLIP image embeddings in DALL-E 2 [46, 41]. In
this paper, we study the scaling properties of transformers
when used as the backbone of diffusion models of images.
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Figure 3: The Diffusion Transformer (DiT) architecture. Left: We train conditional latent DiT models. The input latent
is decomposed into patches and processed by several DiT blocks. Right: Details of our DiT blocks. We experiment with
variants of standard transformer blocks that incorporate conditioning via adaptive layer norm, cross-attention and extra input

tokens. Adaptive layer norm works best.

Denoising diffusion probabilistic models (DDPMs).
Diffusion [54, 19] and score-based generative models [22,

] have been particularly successful as generative mod-
els of images [35, 46, 50, 48], in many cases outperform-
ing generative adversarial networks (GANSs) [12] which had
previously been state-of-the-art. Improvements to DDPMs
over the past two years have largely been driven by im-
proved sampling techniques [19, 55, 27], most notably
classifier-free guidance [21], reformulating diffusion mod-
els to predict noise instead of pixels [19] and using cascaded
pipelines where low-resolution base diffusion models are
trained in parallel with upsamplers [20, 9]. For all the dif-
fusion models listed above, convolutional U-Nets [49] are
the de-facto choice of backbone architecture. Concurrent
work [24] introduced a novel, efficient architecture based
on attention for DDPMs; we explore pure transformers.

Architecture complexity. When evaluating architecture
complexity in the image generation literature, it is com-
mon practice to use parameter counts. In general, parameter
counts are poor proxies for the complexity of image models
since they do not account for, e.g., image resolution which
significantly impacts performance [44, 45]. Instead, much
of the analysis in this paper is through the lens of compute.
This brings us in-line with the architecture design literature
where flops are widely-used to gauge complexity. In prac-
tice, the golden metric will depend on particular application
scenarios. Nichol and Dhariwal’s seminal work improving
diffusion models [36, 9] is most related to us—there, they
analyzed the scalability properties of the U-Net architecture
class. In this paper, we focus on the transformer class.

3. Diffusion Transformers
3.1. Preliminaries

Diffusion formulation. Before introducing our architec-
ture, we briefly review some basic concepts needed to
understand diffusion models (DDPMs) [54, 19]. Gaus-
sian diffusion models assume a forward noising process
which gradually applies noise to real data xo: q(z¢|xg) =
N (zy; v/axo, (1 — &;)I), where constants @ are hyperpa-
rameters. By applying the reparameterization trick, we can
sample z; = /@;zo + /1 — e, where ¢, ~ N(0,1).

Diffusion models are trained to learn the reverse process
that inverts forward process corruptions: pg(z;—1|x:) =
N (o (xt), Xg(xt)), where neural networks are used to pre-
dict the statistics of pg. The reverse process model is
trained with the variational lower bound [30] of the log-
likelihood of g, which reduces to £(0) = —p(zo|z1) +
> Drr(q* (xe—1]xe, xo)||po(xi—1]2:)), excluding an ad-
ditional term irrelevant for training. By reparameterizing
Lo as a noise prediction network ey, the model can be
trained using simple mean-squared error between the pre-
dicted noise €g () and the ground truth sampled Gaussian
noise €;: Lgimpie(0) = |lea(1) — €|3. But, in order to
train diffusion models with a learned reverse process co-
variance Yy, the full D1, term needs to be optimized. We
follow Nichol and Dhariwal’s approach [36]: train €y with
Lsimpie, and train 3y with the full £. Once py is trained,
new images can be sampled by initializing x;,  ~ N (0,T)
and sampling x;_1 ~ pg(z;—1|x¢) via the reparameteriza-
tion trick.
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Classifier-free guidance. Conditional diffusion models
take extra information as input, such as a class label c.
In this case, the reverse process becomes pg(xi—1|z¢, ¢),
where €9 and Yy are conditioned on c. In this setting,
classifier-free guidance can be used to encourage the sam-
pling procedure to find x such that log p(c|z) is high [21].
By Bayes Rule, logp(c|z) o« logp(z|c) — logp(zx), and
hence V, log p(c|z) x V, log p(x|c) — V, log p(z). By in-
terpreting the output of diffusion models as the score func-
tion, the DDPM sampling procedure can be guided to sam-
ple = with high p(z|c) by: ég(z¢,¢) = ep(a,0) + s -
V. logp(z|c) o< eg(ws, D) +s- (ea(z, ) —€g (w4, D)), where
s > 1 indicates the scale of the guidance (note that s = 1 re-
covers standard sampling). Evaluating the diffusion model
with ¢ = () is done by randomly dropping out ¢ during
training and replacing it with a learned “null” embedding
(). Classifier-free guidance is widely-known to yield sig-
nificantly improved samples over generic sampling tech-
niques [21, 35, 46], and the trend holds for our DiT models.

Latent diffusion models. Training diffusion models di-
rectly in high-resolution pixel space can be computationally
prohibitive. Latent diffusion models (LDMs) [48] tackle this
issue with a two-stage approach: (1) learn an autoencoder
that compresses images into smaller spatial representations
with a learned encoder E; (2) train a diffusion model of
representations z = FE(x) instead of a diffusion model of
images x (F is frozen). New images can then be generated
by sampling a representation z from the diffusion model
and subsequently decoding it to an image with the learned
decoder x = D(z).

As shown in Figure 2, LDMs achieve good performance
while using a fraction of the Gflops of pixel space diffusion
models like ADM. Since we are concerned with compute
efficiency, this makes them an appealing starting point for
architecture exploration. In this paper, we apply DiTs to
latent space, although they could be applied to pixel space
without modification as well. This makes our image genera-
tion pipeline a hybrid-based approach; we use off-the-shelf
convolutional VAEs and transformer-based DDPMs.

3.2. Diffusion Transformer Design Space

We introduce Diffusion Transformers (DiTs), a new ar-
chitecture for diffusion models. We aim to be as faithful to
the standard transformer architecture as possible to retain
its scaling properties. Since our focus is training DDPMs of
images (specifically, spatial representations of images), DiT
is based on the Vision Transformer (ViT) architecture which
operates on sequences of patches [10]. DiT retains many of
the best practices of ViTs. Figure 3 shows an overview of
the complete DiT architecture. In this section, we describe
the forward pass of DiT, as well as the components of the
design space of the DiT class.
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Figure 4: Input specifications for DiT. Given patch size
p X p, a spatial representation (the noised latent from the
VAE) of shape I x I x C'is “patchified” into a sequence
of length T' = (I/p)? with hidden dimension d. A smaller
patch size p results in a longer sequence length and thus
more Gflops.

Patchify. The input to DiT is a spatial representation z
(for 256 x 256 x 3 images, z has shape 32 x 32 x 4). The
first layer of DiT is “patchify,” which converts the spatial
input into a sequence of 7' tokens, each of dimension d,
by linearly embedding each patch in the input. Following
patchify, we apply standard ViT frequency-based positional
embeddings (the sine-cosine version) to all input tokens.
The number of tokens 7' created by patchify is determined
by the patch size hyperparameter p. As shown in Figure 4,
halving p will quadruple 7", and thus at least quadruple total
transformer Gflops. Although it has a significant impact on
Gflops, note that changing p has no meaningful impact on
downstream parameter counts.
We add p = 2,4, 8 to the DiT design space.

DiT block design. Following patchify, the input tokens
are processed by a sequence of transformer blocks. In ad-
dition to noised image inputs, diffusion models sometimes
process additional conditional information such as noise
timesteps t, class labels ¢, natural language, etc. We explore
four variants of transformer blocks that process conditional
inputs differently. The designs introduce small, but impor-
tant, modifications to the standard ViT block design. The
designs of all blocks are shown in Figure 3.

— In-context conditioning. We simply append the vec-
tor embeddings of ¢ and c as two additional tokens in
the input sequence, treating them no differently from
the image tokens. This is similar to cls tokens in
ViTs, and it allows us to use standard ViT blocks with-
out modification. After the final block, we remove the
conditioning tokens from the sequence. This approach
introduces negligible new Gflops to the model.
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Figure 5: Comparing different conditioning strategies.
adalLN-Zero outperforms cross-attention and in-context
conditioning at all stages of training.

— Cross-attention block. We concatenate the embeddings
of ¢ and c into a length-two sequence, separate from
the image token sequence. The transformer block is
modified to include an additional multi-head cross-
attention layer following the multi-head self-attention
block, similar to the original design from Vaswani et
al. [60], and also similar to the one used by LDM for
conditioning on class labels. Cross-attention adds the
most Gflops to the model, roughly a 15% overhead.

— Adaptive layer norm (adaLN) block.  Following
the widespread usage of adaptive normalization lay-
ers [40] in GANSs [2, 28] and diffusion models with U-
Net backbones [9], we explore replacing standard layer
norm layers in transformer blocks with adaptive layer
norm (adalLLN). Rather than directly learn dimension-
wise scale and shift parameters v and 3, we regress
them from the sum of the embedding vectors of ¢ and
c. Of the three block designs we explore, adaLN adds
the least Gflops and is thus the most compute-efficient.
It is also the only conditioning mechanism that is re-
stricted to apply the same function to all tokens.

— adaLN-Zero block. Prior work on ResNets has found
that initializing each residual block as the identity
function is beneficial. For example, Goyal et al. found
that zero-initializing the final batch norm scale factor ~y
in each block accelerates large-scale training in the su-
pervised learning setting [13]. Diffusion U-Net mod-
els use a similar initialization strategy, zero-initializing
the final convolutional layer in each block prior to any
residual connections. We explore a modification of
the adaLN DiT block which does the same. In addi-
tion to regressing -y and /3, we also regress dimension-
wise scaling parameters « that are applied immediately
prior to any residual connections within the DiT block.

Model Layers N Hiddensized Heads Gflops u=s.p=4

DiT-S 12 384 6 1.4
DiT-B 12 768 12 5.6
DiT-L 24 1024 16 19.7
DiT-XL 28 1152 16 29.1

Table 1: Details of DiT models. We follow ViT [10] model
configurations for the Small (S), Base (B) and Large (L)
variants; we also introduce an XLarge (XL) config as our
largest model.

We initialize the MLP to output the zero-vector for all
o; this initializes the full DiT block as the identity
function. As with the vanilla adaLN block, adalLN-
Zero adds negligible Gflops to the model.

We include the in-context, cross-attention, adaptive layer
norm and adalLN-Zero blocks in the DiT design space.

Model size. We apply a sequence of N DiT blocks, each
operating at the hidden dimension size d. Following ViT,
we use standard transformer configs that jointly scale IV,
d and attention heads [10, 63]. Specifically, we use four
configs: DiT-S, DiT-B, DiT-L and DiT-XL. They cover a
wide range of model sizes and flop allocations, from 0.3
to 118.6 Gflops, allowing us to gauge scaling performance.
Table 1 gives details of the configs.
We add B, S, L and XL configs to the DiT design space.

Transformer decoder. After the final DiT block, we need
to decode our sequence of image tokens into an output noise
prediction and an output diagonal covariance prediction.
Both of these outputs have shape equal to the original spa-
tial input. We use a standard linear decoder to do this; we
apply the final layer norm (adaptive if using adalLN) and lin-
early decode each token into a p X p x 2C' tensor, where C'is
the number of channels in the spatial input to DiT. Finally,
we rearrange the decoded tokens into their original spatial
layout to get the predicted noise and covariance.

The complete DiT design space we explore is patch size,
transformer block architecture and model size.

4. Experimental Setup

We explore the DiT design space and study the scaling
properties of our model class. Our models are named ac-
cording to their configs and latent patch sizes p; for exam-
ple, DiT-XL/2 refers to the XLarge config and p = 2.

Training. We train class-conditional latent DiT models at
256 x 256 and 512 x 512 image resolution on the Ima-
geNet dataset [31], a highly-competitive generative mod-
eling benchmark. We initialize the final linear layer with
zeros and otherwise use standard weight initialization tech-
niques from ViT. We train all models with AdamW [33, 29].
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Figure 6: Scaling the DiT model improves FID at all stages of training. We show FID-50K over training iterations for 12
of our DiT models. Top row: We compare FID holding patch size constant. Bottom row: We compare FID holding model
size constant. Scaling the transformer backbone yields better generative models across all model sizes and patch sizes.

We use a constant learning rate of 1 x 1074, no weight de-
cay and a batch size of 256. The only data augmentation
we use is horizontal flips. Unlike much prior work with
ViTs [57, 61], we did not find learning rate warmup nor
regularization necessary to train DiTs to high performance.
Even without these techniques, training was highly stable
across all model configs and we did not observe any loss
spikes commonly seen when training transformers. Follow-
ing common practice in the generative modeling literature,
we maintain an exponential moving average (EMA) of DiT
weights over training with a decay of 0.9999. All results
reported use the EMA model. We use identical training hy-
perparameters across all DiT model sizes and patch sizes.
Our training hyperparameters are almost entirely retained
from ADM. We did not tune learning rates, decay/warm-up
schedules, Adam 31/Bs or weight decays.

Diffusion. We use an off-the-shelf pre-trained variational
autoencoder (VAE) model [30] from Stable Diffusion [48].
The VAE encoder has a downsample factor of 8—given an
RGB image = with shape 256 x 256 x 3, z = E(x) has
shape 32 x 32 x 4. Across all experiments in this section,
our diffusion models operate in this Z-space. After sam-
pling a new latent from our diffusion model, we decode it
to pixels using the VAE decoder x = D(z). We retain diffu-
sion hyperparameters from ADM [9]; specifically, we use a
tmax = 1000 linear variance schedule ranging from 1 x 1074
to 2 x 102, ADM’s parameterization of the covariance ¥y
and their method for embedding input timesteps and labels.

Evaluation metrics. We measure scaling performance
with Fréchet Inception Distance (FID) [18], the standard
metric for evaluating generative models of images.

We follow convention when comparing against prior works
and report FID-50K using 250 DDPM sampling steps.
FID is known to be sensitive to small implementation de-
tails [37]; to ensure accurate comparisons, all values re-
ported in this paper are obtained by exporting samples and
using ADM’s TensorFlow evaluation suite [9]. FID num-
bers reported in this section do not use classifier-free guid-
ance except where otherwise stated. We additionally report
Inception Score [51], sFID [34] and Precision/Recall [32]
as secondary metrics.

Compute. We implement all models in JAX [1] and train
them using TPU-v3 pods. DiT-XL/2, our most compute-
intensive model, trains at roughly 5.7 iterations/second on a
TPU v3-256 pod with a global batch size of 256.

S. Experiments

DiT block design. We train four of our highest Gflop
DiT-XL/2 models, each using a different block design—
in-context (119.4 Gflops), cross-attention (137.6 Gflops),
adaptive layer norm (adaLLN, 118.6 Gflops) or adaLN-zero
(118.6 Gflops). We measure FID over the course of training.
Figure 5 shows the results. The adalLN-Zero block yields
lower FID than both cross-attention and in-context condi-
tioning while being the most compute-efficient. At 400K
training iterations, the FID achieved with the adal.N-Zero
model is nearly half that of the in-context model, demon-
strating that the conditioning mechanism critically affects
model quality. Initialization is also important—adal.N-
Zero, which initializes each DiT block as the identity func-
tion, significantly outperforms vanilla adalLN. For the rest
of the paper, all models will use adalLN-Zero DiT blocks.
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Decreasing patch size

Figure 7: Increasing transformer forward pass Gflops increases sample quality. Best viewed zoomed-in. We sample from
all 12 of our DiT models after 400K training steps using the same input latent noise and class label. Increasing the Gflops
in the model—either by increasing transformer depth/width or increasing the number of input tokens—yields significant
improvements in visual fidelity.

4201



160
s/8 B/8 U8 XU8
s/a B/4 L/a XL/4
140 o 512 B/2 2 @ X2
120
v 100
o
re)
A 80
s >
60
40
Correlation: -0.93
20 . @
100 10t 102

Transformer Gflops
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with FID. We plot the Gflops of each of our DiT models
and each model’s FID-50K after 400K training steps.

Scaling model size and patch size. We train 12 DiT mod-
els, sweeping over model configs (S, B, L, XL) and patch
sizes (8, 4,2). Note that DiT-L and DiT-XL are significantly
closer to each other in terms of relative Gflops than other
configs. Figure 2 (left) gives an overview of the Gflops of
each model and their FID at 400K training iterations. In
all cases, we find that increasing model size and decreasing
patch size yields considerably improved diffusion models.

Figure 6 (top) demonstrates how FID changes as model
size is increased and patch size is held constant. Across all
four configs, significant improvements in FID are obtained
over all stages of training by making the transformer deeper
and wider. Similarly, Figure 6 (bottom) shows FID as patch
size is decreased and model size is held constant. We again
observe considerable FID improvements throughout train-
ing by simply scaling the number of tokens processed by
DiT, holding parameters approximately fixed.

DiT Gflops are critical to improving performance. The
results of Figure 6 suggest that parameter counts do not
uniquely determine the quality of a DiT model. As model
size is held constant and patch size is decreased, the trans-
former’s total parameters are effectively unchanged (actu-
ally, total parameters slightly decrease), and only Gflops are
increased. These results indicate that scaling model Gflops
is actually the key to improved performance. To investi-
gate this further, we plot the FID-50K at 400K training steps
against model Gflops in Figure 8. The results demonstrate
that different DiT configs obtain similar FID values when
their total Gflops are similar (e.g., DiT-S/2 and DiT-B/4).
We find a strong negative correlation between model Gflops
and FID-50K, suggesting that additional model compute is
the critical ingredient for improved DiT models. In Fig-
ure 12 (appendix), we find that this trend holds for other
metrics such as Inception Score.
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Figure 9: Larger DiT models use large compute more
efficiently. We plot FID as a function of training compute.

Larger DiT models are more compute-efficient. In
Figure 9, we plot FID as a function of total training compute
for all DiT models. We estimate training compute as model
Gflops - batch size - training steps - 3, where the factor of
3 roughly approximates the backwards pass as being twice
as compute-heavy as the forward pass. We find that small
DiT models, even when trained longer, eventually become
compute-inefficient relative to larger DiT models trained for
fewer steps. Similarly, we find that models that are identi-
cal except for patch size have different performance profiles
even when controlling for training Gflops. For example,
XL/4 is outperformed by XL/2 after roughly 10'° Gflops.

Visualizing scaling. We visualize the effect of scaling on
sample quality in Figure 7. At400K training steps, we sam-
ple an image from each of our 12 DiT models using iden-
tical starting noise xy,, , sampling noise and class labels.
This lets us visually interpret how scaling affects DiT sam-
ple quality. Indeed, scaling both model size and the number
of tokens yields notable improvements in visual quality.

5.1. State-of-the-Art Diffusion Models

256256 ImageNet. Following our scaling analysis, we
continue training our highest Gflop model, DiT-XL/2, for
TM steps. We show samples from the model in Figures 1,
and we compare against state-of-the-art class-conditional
generative models. We report results in Table 2. When us-
ing classifier-free guidance, DiT-XL/2 outperforms all prior
diffusion models, decreasing the previous best FID-50K of
3.60 achieved by LDM to 2.27. Figure 2 (right) shows that
DiT-XL/2 (118.6 Gflops) is compute-efficient relative to la-
tent space U-Net models like LDM-4 (103.6 Gflops) and
substantially more efficient than pixel space U-Net mod-
els such as ADM (1120 Gflops) or ADM-U (742 Gflops).
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Class-Conditional ImageNet 256 <256

Model FID| sFID| IST Precisiont  Recallf
BigGAN-deep [2] 6.95 7.36 171.4 0.87 0.28
StyleGAN-XL [53] 2.30 402  265.12 0.78 0.53
ADM [Y] 1094  6.02 100.98 0.69 0.63
ADM-U 7.49 5.13 127.49 0.72 0.63
ADM-G 4.59 525 186.70 0.82 0.52
ADM-G, ADM-U 3.94 6.14 21584 0.83 0.53
CDM [20] 4.88 - 158.71

LDM-8 [48] 15.51 - 79.03 0.65 0.63
LDM-8-G 7.76 - 209.52 0.84 0.35
LDM-4 10.56 - 103.49 0.71 0.62
LDM-4-G (cfg=1.25) 3.95 - 178.22 0.81 0.55
LDM-4-G (cfg=1.50) 3.60 - 247.67 0.87 0.48
DiT-XL/2 9.62 6.85 121.50 0.67 0.67
DiT-XL/2-G (cfg=1.25) 3.22 528  201.77 0.76 0.62
DiT-XL/2-G (cfg=1.50)  2.27 4.60 278.24 0.83 0.57

Table 2: Benchmarking class-conditional generation on
ImageNet 256 x256. DiT achieves state-of-the-art FID.

Class-Conditional ImageNet 512 %512

Model FID| sFID] ISt Precisiont  Recallf
BigGAN-deep [] 8.43 8.13 177.90 0.88 0.29
StyleGAN-XL [53] 2.41 4.06 267.75 0.77 0.52
ADM [9] 23.24  10.19  58.06 0.73 0.60
ADM-U 9.96 5.62 121.78 0.75 0.64
ADM-G 7.72 6.57 172.71 0.87 0.42
ADM-G, ADM-U 3.85 586  221.72 0.84 0.53
DiT-XL/2 1203  7.12 105.25 0.75 0.64
DiT-XL/2-G (cfg=1.25) 4.64 5.77 174.77 0.81 0.57
DiT-XL/2-G (cfg=1.50)  3.04 5.02  240.82 0.84 0.54

Table 3: Benchmarking class-conditional image gener-
ation on ImageNet 512x512. Note that prior work [9]
measures Precision and Recall using 1000 real samples for
512 x 512 resolution; for consistency, we do the same.

Our method achieves the lowest FID of all prior generative
models, including the previous state-of-the-art StyleGAN-
XL [53]. Finally, we also observe that DiT-XL/2 achieves
higher recall values at all tested classifier-free guidance
scales compared to LDM-4 and LDM-8. When trained for
only 2.35M steps (similar to ADM), XL/2 still outperforms
all prior diffusion models with an FID of 2.55.

512x512 ImageNet. We train a new DiT-XL/2 model on
ImageNet at 512 x 512 resolution for 3M iterations with
identical hyperparameters as the 256 x 256 model. With a
patch size of 2, this XL/2 model processes a total of 1024
tokens after patchifying the 64 x 64 x 4 input latent (524.6
Gflops). Table 3 shows comparisons against state-of-the-art
methods. XL/2 again outperforms all prior diffusion models
at this resolution, improving the previous best FID achieved
by ADM from 3.85 to 3.04. Even with the increased num-
ber of tokens, XL/2 remains compute-efficient. For exam-
ple, ADM uses 1983 Gflops and ADM-U uses 2813 Gflops;
XL/2 uses 524.6 Gflops. We show samples from the high-
resolution XL/2 model in Figure | and the appendix.

180 s/8 B/8 L8 XL/8
s/4 B/4 L4 XL4
160 —o- 512 B2 2 @ X2

o
a
= 80 \

10 102 103 104 10°
Sampling Compute (Gflops)

Figure 10: Scaled-up sampling compute does not com-
pensate for a lack of model compute. We plot FID-10K of
DiT models after 400K training iterations using [16, 32, 64,
128, 256, 1000] sampling steps against the total compute
used to sample each image. Small models cannot close the
performance gap with our large models, even if they sample
with more test-time Gflops than the large models.

5.2. Scaling Model vs. Sampling Compute

Diffusion models can use additional compute after train-
ing by increasing the number of sampling steps when gener-
ating an image. Given the impact of model Gflops on sam-
ple quality, in this section we study if smaller DiT models
can outperform larger ones by using more sampling com-
pute. We compute FID for all 12 of our DiT models at 400K
training iterations, using [16, 32, 64, 128, 256, 1000] sam-
pling steps per-image. Results are in Figure 10. Consider
DiT-L/2 using 1000 sampling steps versus DiT-XL/2 using
128 steps. In this case, L/2 uses 80.7 Tflops to sample each
image; XL/2 uses 5x less compute—15.2 Tflops—to sam-
ple each image. Nonetheless, XL/2 has the better FID-10K
(23.7 vs 25.9). In general, scaling-up sampling compute
cannot compensate for a lack of model compute.

6. Conclusion

We introduce Diffusion Transformers (DiTs), a simple
transformer-based backbone for diffusion models that out-
performs prior U-Net models and inherits the excellent scal-
ing properties of the transformer model class. Given the
promising scaling results in this paper, future work should
continue to scale DiTs to larger models and token counts.
DiT could also be explored as a drop-in backbone for text-
to-image models like DALL-E 2 and Stable Diffusion.
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