This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Scalable Diffusion Models with Transformers

William Peebles”
UC Berkeley

Saining Xie
New York University

Figure 1: Diffusion models with transformer backbones achieve state-of-the-art image quality. We show selected sam-
ples from two of our class-conditional DiT-XL/2 models trained on ImageNet at 512x512 and 256 x 256 resolution.

Abstract

We explore a new class of diffusion models based on the
transformer architecture. We train latent diffusion models
of images, replacing the commonly-used U-Net backbone
with a transformer that operates on latent patches. We an-
alyze the scalability of our Diffusion Transformers (DiTs)
through the lens of forward pass complexity as measured by
Gflops. We find that DiTs with higher Gflops—through in-
creased transformer depth/width or increased number of in-
put tokens—consistently have lower FID. In addition to pos-
sessing good scalability properties, our largest DiT-XL/2
models outperform all prior diffusion models on the class-
conditional ImageNet 512x512 and 256 X256 benchmarks,
achieving a state-of-the-art FID of 2.27 on the latter.

1. Introduction

Machine learning is experiencing a renaissance pow-
ered by transformers. Over the past five years, neural
architectures for natural language processing [42, 8], vi-
sion [10] and several other domains have been subsumed
by transformers [60]. Many classes of image-level gener-
ative models remain holdouts to the trend, though—while
transformers see widespread use in autoregressive mod-
els [43, 3, 6, 47], they have seen less adoption in other gen-
erative modeling frameworks. For example, diffusion mod-
els have been at the forefront of recent advances in image
generation [9, 46]; yet, they all adopt a convolutional U-Net
architecture as the de-facto choice of backbone.

* Work done during an internship at Meta AI, FAIR Team.
Code and project page available here.

4195

160 DiT-S

5
-
'
o

DIT-B piT-L

=
N
o

DiT-XL

=
o
o

(o))
o

FID-50K - ImageNet 256x256
5 3

N
o

D:’\’ | | |

LDM-8-G % ion

8
ADM-U-G
6
' LDM-4-G
4 .
DiT-XL/2-G

2

Scaling Diffusion Transformers

SOTA Diffusion Models w/ Guidance

Figure 2: ImageNet generation with Diffusion Transformers (DiTs). Bubble area indicates the flops of the diffusion
model. Left: FID-50K (lower is better) of our DiT models at 400K training iterations. Performance steadily improves in
FID as model flops increase. Right: Our best model, DiT-XL/2, is compute-efficient and outperforms all prior U-Net-based

diffusion models, like ADM and LDM.

The seminal work of Ho et al. [19] first introduced the
U-Net backbone for diffusion models. Having initially seen
success within pixel-level autoregressive models and con-
ditional GANSs [23], the U-Net was inherited from Pixel-
CNN++ [52, 58] with a few changes. The model is con-
volutional, comprised primarily of ResNet [15] blocks. In
contrast to the standard U-Net [49], additional spatial self-
attention blocks, which are essential components in trans-
formers, are interspersed at lower resolutions. Dhariwal and
Nichol [9] ablated several architecture choices for the U-
Net, such as the use of adaptive normalization layers [40] to
inject conditional information and channel counts for con-
volutional layers. However, the high-level design of the U-
Net from Ho et al. has largely remained intact.

With this work, we aim to demystify the significance of
architectural choices in diffusion models and offer empiri-
cal baselines for future generative modeling research. We
show that the U-Net inductive bias is not crucial to the per-
formance of diffusion models, and they can be readily re-
placed with standard designs such as transformers. As a
result, diffusion models are well-poised to benefit from the
recent trend of architecture unification—e.g., by inheriting
best practices and training recipes from other domains, as
well as retaining favorable properties like scalability, ro-
bustness and efficiency. A standardized architecture would
also open up new possibilities for cross-domain research.

In this paper, we focus on a new class of diffusion models
based on transformers. We call them Diffusion Transform-
ers, or DiTs for short. DiTs adhere to the best practices of
Vision Transformers (ViTs) [10], which have been shown to
scale more effectively for visual recognition than traditional
convolutional networks (e.g., ResNet [15]).

More specifically, we study the scaling behavior of trans-
formers with respect to network complexity vs. sample
quality. We show that by constructing and benchmark-
ing the DiT design space under the Latent Diffusion Mod-
els (LDMs) [48] framework, where diffusion models are
trained within a VAE’s latent space, we can successfully
replace the U-Net backbone with a transformer. We further
show that DiTs are scalable architectures for diffusion mod-
els: there is a strong correlation between the network com-
plexity (measured by Gflops) vs. sample quality (measured
by FID). By simply scaling-up DiT and training an LDM
with a high-capacity backbone (118.6 Gflops), we are able
to achieve a state-of-the-art result of 2.27 FID on the class-
conditional 256 x 256 ImageNet generation benchmark.

2. Related Work

Transformers. Transformers [60] have replaced domain-
specific architectures across language, vision [10], rein-
forcement learning [5, 25] and meta-learning [39]. They
have shown remarkable scaling properties under increas-
ing model size, training compute and data in the language
domain [26], as generic autoregressive models [17] and
as ViTs [63]. Beyond language, transformers have been
trained to autoregressively predict pixels [38, 7, 6]. They
have also been trained on discrete codebooks [59] as both
autoregressive models [1 |, 47] and masked generative mod-
els [4, 14]; the former has shown excellent scaling behavior
up to 20B parameters [62]. Finally, transformers have been
explored in DDPMs to synthesize non-spatial data; e.g., to
generate CLIP image embeddings in DALL-E 2 [46, 41]. In
this paper, we study the scaling properties of transformers
when used as the backbone of diffusion models of images.

4196

-

/| —
/ a
. / Scale —
Noise b / ;
/ Pointwise
32x32x4 32x32x4 / Feedforward
4 4 /
1
Linear and Reshape ,/ Em— 25 |
1 / 1
Layer Norm
Layer Norm / Y
I
N x DIT Block SCLe @
1
. T N Multi-Head
Patchify = Embed '\ e enticn
| \ ' Y1.51
\ Scale, Shift — te—
. \ 1
Noised Timestep ¢ \ Layer Norm MLP
Latent 0 N — |
32x32x4 Label y \ Input Tokens Conditioning /

Latent Diffusion Transformer

DiT Block with adaLN-Zero

Figure 3: The Diffusion Transformer (DiT) architecture. Left: We train conditional latent DiT models. The input latent
is decomposed into patches and processed by several DiT blocks. Right: Details of our DiT blocks. We experiment with
variants of standard transformer blocks that incorporate conditioning via adaptive layer norm, cross-attention and extra input

tokens. Adaptive layer norm works best.

Denoising diffusion probabilistic models (DDPMs).
Diffusion [54, 19] and score-based generative models [22,

] have been particularly successful as generative mod-
els of images [35, 46, 50, 48], in many cases outperform-
ing generative adversarial networks (GANSs) [12] which had
previously been state-of-the-art. Improvements to DDPMs
over the past two years have largely been driven by im-
proved sampling techniques [19, 55, 27], most notably
classifier-free guidance [21], reformulating diffusion mod-
els to predict noise instead of pixels [19] and using cascaded
pipelines where low-resolution base diffusion models are
trained in parallel with upsamplers [20, 9]. For all the dif-
fusion models listed above, convolutional U-Nets [49] are
the de-facto choice of backbone architecture. Concurrent
work [24] introduced a novel, efficient architecture based
on attention for DDPMs; we explore pure transformers.

Architecture complexity. When evaluating architecture
complexity in the image generation literature, it is com-
mon practice to use parameter counts. In general, parameter
counts are poor proxies for the complexity of image models
since they do not account for, e.g., image resolution which
significantly impacts performance [44, 45]. Instead, much
of the analysis in this paper is through the lens of compute.
This brings us in-line with the architecture design literature
where flops are widely-used to gauge complexity. In prac-
tice, the golden metric will depend on particular application
scenarios. Nichol and Dhariwal’s seminal work improving
diffusion models [36, 9] is most related to us—there, they
analyzed the scalability properties of the U-Net architecture
class. In this paper, we focus on the transformer class.

3. Diffusion Transformers
3.1. Preliminaries

Diffusion formulation. Before introducing our architec-
ture, we briefly review some basic concepts needed to
understand diffusion models (DDPMs) [54, 19]. Gaus-
sian diffusion models assume a forward noising process
which gradually applies noise to real data xo: q(z¢|xg) =
N (zy; v/axo, (1 — &;)I), where constants @ are hyperpa-
rameters. By applying the reparameterization trick, we can
sample z; = /@;zo + /1 — e, where ¢, ~ N(0,1).

Diffusion models are trained to learn the reverse process
that inverts forward process corruptions: pg(z;—1|x:) =
N (o (xt), Xg(xt)), where neural networks are used to pre-
dict the statistics of pg. The reverse process model is
trained with the variational lower bound [30] of the log-
likelihood of g, which reduces to £(0) = —p(zo|z1) +
> Drr(q* (xe—1]xe, xo)||po(xi—1]2:)), excluding an ad-
ditional term irrelevant for training. By reparameterizing
Lo as a noise prediction network ey, the model can be
trained using simple mean-squared error between the pre-
dicted noise €g () and the ground truth sampled Gaussian
noise €;: Lgimpie(0) = |lea(1) — €|3. But, in order to
train diffusion models with a learned reverse process co-
variance Yy, the full D1, term needs to be optimized. We
follow Nichol and Dhariwal’s approach [36]: train €y with
Lsimpie, and train 3y with the full £. Once py is trained,
new images can be sampled by initializing x;, ~ N (0,T)
and sampling x;_1 ~ pg(z;—1|x¢) via the reparameteriza-
tion trick.

4197

Classifier-free guidance. Conditional diffusion models
take extra information as input, such as a class label c.
In this case, the reverse process becomes pg(xi—1|z¢, ¢),
where €9 and Yy are conditioned on c. In this setting,
classifier-free guidance can be used to encourage the sam-
pling procedure to find x such that log p(c|z) is high [21].
By Bayes Rule, logp(c|z) o« logp(z|c) — logp(zx), and
hence V, log p(c|z) x V, log p(x|c) — V, log p(z). By in-
terpreting the output of diffusion models as the score func-
tion, the DDPM sampling procedure can be guided to sam-
ple = with high p(z|c) by: ég(z¢,¢) = ep(a,0) + s -
V. logp(z|c) o< eg(ws, D) +s- (ea(z,) —€g (w4, D)), where
s > 1 indicates the scale of the guidance (note that s = 1 re-
covers standard sampling). Evaluating the diffusion model
with ¢ = () is done by randomly dropping out ¢ during
training and replacing it with a learned “null” embedding
(). Classifier-free guidance is widely-known to yield sig-
nificantly improved samples over generic sampling tech-
niques [21, 35, 46], and the trend holds for our DiT models.

Latent diffusion models. Training diffusion models di-
rectly in high-resolution pixel space can be computationally
prohibitive. Latent diffusion models (LDMs) [48] tackle this
issue with a two-stage approach: (1) learn an autoencoder
that compresses images into smaller spatial representations
with a learned encoder E; (2) train a diffusion model of
representations z = FE(x) instead of a diffusion model of
images x (F is frozen). New images can then be generated
by sampling a representation z from the diffusion model
and subsequently decoding it to an image with the learned
decoder x = D(z).

As shown in Figure 2, LDMs achieve good performance
while using a fraction of the Gflops of pixel space diffusion
models like ADM. Since we are concerned with compute
efficiency, this makes them an appealing starting point for
architecture exploration. In this paper, we apply DiTs to
latent space, although they could be applied to pixel space
without modification as well. This makes our image genera-
tion pipeline a hybrid-based approach; we use off-the-shelf
convolutional VAEs and transformer-based DDPMs.

3.2. Diffusion Transformer Design Space

We introduce Diffusion Transformers (DiTs), a new ar-
chitecture for diffusion models. We aim to be as faithful to
the standard transformer architecture as possible to retain
its scaling properties. Since our focus is training DDPMs of
images (specifically, spatial representations of images), DiT
is based on the Vision Transformer (ViT) architecture which
operates on sequences of patches [10]. DiT retains many of
the best practices of ViTs. Figure 3 shows an overview of
the complete DiT architecture. In this section, we describe
the forward pass of DiT, as well as the components of the
design space of the DiT class.

HEEEEEEEEEEEE

T = (I/p)*

Input Tokens T x d

Noised Latent
IXIxC

<p->

Figure 4: Input specifications for DiT. Given patch size
p X p, a spatial representation (the noised latent from the
VAE) of shape I x I x C'is “patchified” into a sequence
of length T' = (I/p)? with hidden dimension d. A smaller
patch size p results in a longer sequence length and thus
more Gflops.

Patchify. The input to DiT is a spatial representation z
(for 256 x 256 x 3 images, z has shape 32 x 32 x 4). The
first layer of DiT is “patchify,” which converts the spatial
input into a sequence of 7' tokens, each of dimension d,
by linearly embedding each patch in the input. Following
patchify, we apply standard ViT frequency-based positional
embeddings (the sine-cosine version) to all input tokens.
The number of tokens 7' created by patchify is determined
by the patch size hyperparameter p. As shown in Figure 4,
halving p will quadruple 7", and thus at least quadruple total
transformer Gflops. Although it has a significant impact on
Gflops, note that changing p has no meaningful impact on
downstream parameter counts.
We add p = 2,4, 8 to the DiT design space.

DiT block design. Following patchify, the input tokens
are processed by a sequence of transformer blocks. In ad-
dition to noised image inputs, diffusion models sometimes
process additional conditional information such as noise
timesteps t, class labels ¢, natural language, etc. We explore
four variants of transformer blocks that process conditional
inputs differently. The designs introduce small, but impor-
tant, modifications to the standard ViT block design. The
designs of all blocks are shown in Figure 3.

— In-context conditioning. We simply append the vec-
tor embeddings of ¢ and c as two additional tokens in
the input sequence, treating them no differently from
the image tokens. This is similar to cls tokens in
ViTs, and it allows us to use standard ViT blocks with-
out modification. After the final block, we remove the
conditioning tokens from the sequence. This approach
introduces negligible new Gflops to the model.

4198

100 ‘ —8— XL/2 In-Context
\ XL/2 Cross-Attention
80 XL/2 adaLN
—0— XL/2 adaLN-Zero
v
a
é 60
[T
40
20

100K 200K 300K 400K
Training Steps

Figure 5: Comparing different conditioning strategies.
adalLN-Zero outperforms cross-attention and in-context
conditioning at all stages of training.

— Cross-attention block. We concatenate the embeddings
of ¢ and c into a length-two sequence, separate from
the image token sequence. The transformer block is
modified to include an additional multi-head cross-
attention layer following the multi-head self-attention
block, similar to the original design from Vaswani et
al. [60], and also similar to the one used by LDM for
conditioning on class labels. Cross-attention adds the
most Gflops to the model, roughly a 15% overhead.

— Adaptive layer norm (adaLN) block. Following
the widespread usage of adaptive normalization lay-
ers [40] in GANSs [2, 28] and diffusion models with U-
Net backbones [9], we explore replacing standard layer
norm layers in transformer blocks with adaptive layer
norm (adalLLN). Rather than directly learn dimension-
wise scale and shift parameters v and 3, we regress
them from the sum of the embedding vectors of ¢ and
c. Of the three block designs we explore, adaLN adds
the least Gflops and is thus the most compute-efficient.
It is also the only conditioning mechanism that is re-
stricted to apply the same function to all tokens.

— adaLN-Zero block. Prior work on ResNets has found
that initializing each residual block as the identity
function is beneficial. For example, Goyal et al. found
that zero-initializing the final batch norm scale factor ~y
in each block accelerates large-scale training in the su-
pervised learning setting [13]. Diffusion U-Net mod-
els use a similar initialization strategy, zero-initializing
the final convolutional layer in each block prior to any
residual connections. We explore a modification of
the adaLN DiT block which does the same. In addi-
tion to regressing -y and /3, we also regress dimension-
wise scaling parameters « that are applied immediately
prior to any residual connections within the DiT block.

Model Layers N Hiddensized Heads Gflops u=s.p=4

DiT-S 12 384 6 1.4
DiT-B 12 768 12 5.6
DiT-L 24 1024 16 19.7
DiT-XL 28 1152 16 29.1

Table 1: Details of DiT models. We follow ViT [10] model
configurations for the Small (S), Base (B) and Large (L)
variants; we also introduce an XLarge (XL) config as our
largest model.

We initialize the MLP to output the zero-vector for all
o; this initializes the full DiT block as the identity
function. As with the vanilla adaLN block, adalLN-
Zero adds negligible Gflops to the model.

We include the in-context, cross-attention, adaptive layer
norm and adalLN-Zero blocks in the DiT design space.

Model size. We apply a sequence of N DiT blocks, each
operating at the hidden dimension size d. Following ViT,
we use standard transformer configs that jointly scale IV,
d and attention heads [10, 63]. Specifically, we use four
configs: DiT-S, DiT-B, DiT-L and DiT-XL. They cover a
wide range of model sizes and flop allocations, from 0.3
to 118.6 Gflops, allowing us to gauge scaling performance.
Table 1 gives details of the configs.
We add B, S, L and XL configs to the DiT design space.

Transformer decoder. After the final DiT block, we need
to decode our sequence of image tokens into an output noise
prediction and an output diagonal covariance prediction.
Both of these outputs have shape equal to the original spa-
tial input. We use a standard linear decoder to do this; we
apply the final layer norm (adaptive if using adalLN) and lin-
early decode each token into a p X p x 2C' tensor, where C'is
the number of channels in the spatial input to DiT. Finally,
we rearrange the decoded tokens into their original spatial
layout to get the predicted noise and covariance.

The complete DiT design space we explore is patch size,
transformer block architecture and model size.

4. Experimental Setup

We explore the DiT design space and study the scaling
properties of our model class. Our models are named ac-
cording to their configs and latent patch sizes p; for exam-
ple, DiT-XL/2 refers to the XLarge config and p = 2.

Training. We train class-conditional latent DiT models at
256 x 256 and 512 x 512 image resolution on the Ima-
geNet dataset [31], a highly-competitive generative mod-
eling benchmark. We initialize the final linear layer with
zeros and otherwise use standard weight initialization tech-
niques from ViT. We train all models with AdamW [33, 29].

4199

S/8
B/8
L/8
XL/8

S/4
B/4
L/4
XL/4

—— S5/2
B/2
L2

~0— XL/2

N

200K 400K 600K

Training Steps

800K 200K

400K

Training Steps

600K 800K 200K 400K 600K 800K

Training Steps

200 s/8

S/4
—— 5/2

N

150

FID-50K
=
o
IS

v
=)

B/8
B/4
B/2

L8 XL/8
L/a XL/4
L2 - XL12

N

200K 400K 600K

Training Steps

800K 200K 400K 600K

Training Steps

800K

200K 400K 600K

Training Steps

800K 200K 400K 600K 800K

Training Steps

Figure 6: Scaling the DiT model improves FID at all stages of training. We show FID-50K over training iterations for 12
of our DiT models. Top row: We compare FID holding patch size constant. Bottom row: We compare FID holding model
size constant. Scaling the transformer backbone yields better generative models across all model sizes and patch sizes.

We use a constant learning rate of 1 x 1074, no weight de-
cay and a batch size of 256. The only data augmentation
we use is horizontal flips. Unlike much prior work with
ViTs [57, 61], we did not find learning rate warmup nor
regularization necessary to train DiTs to high performance.
Even without these techniques, training was highly stable
across all model configs and we did not observe any loss
spikes commonly seen when training transformers. Follow-
ing common practice in the generative modeling literature,
we maintain an exponential moving average (EMA) of DiT
weights over training with a decay of 0.9999. All results
reported use the EMA model. We use identical training hy-
perparameters across all DiT model sizes and patch sizes.
Our training hyperparameters are almost entirely retained
from ADM. We did not tune learning rates, decay/warm-up
schedules, Adam 31/Bs or weight decays.

Diffusion. We use an off-the-shelf pre-trained variational
autoencoder (VAE) model [30] from Stable Diffusion [48].
The VAE encoder has a downsample factor of 8—given an
RGB image = with shape 256 x 256 x 3, z = E(x) has
shape 32 x 32 x 4. Across all experiments in this section,
our diffusion models operate in this Z-space. After sam-
pling a new latent from our diffusion model, we decode it
to pixels using the VAE decoder x = D(z). We retain diffu-
sion hyperparameters from ADM [9]; specifically, we use a
tmax = 1000 linear variance schedule ranging from 1 x 1074
to 2 x 102, ADM’s parameterization of the covariance ¥y
and their method for embedding input timesteps and labels.

Evaluation metrics. We measure scaling performance
with Fréchet Inception Distance (FID) [18], the standard
metric for evaluating generative models of images.

We follow convention when comparing against prior works
and report FID-50K using 250 DDPM sampling steps.
FID is known to be sensitive to small implementation de-
tails [37]; to ensure accurate comparisons, all values re-
ported in this paper are obtained by exporting samples and
using ADM’s TensorFlow evaluation suite [9]. FID num-
bers reported in this section do not use classifier-free guid-
ance except where otherwise stated. We additionally report
Inception Score [51], sFID [34] and Precision/Recall [32]
as secondary metrics.

Compute. We implement all models in JAX [1] and train
them using TPU-v3 pods. DiT-XL/2, our most compute-
intensive model, trains at roughly 5.7 iterations/second on a
TPU v3-256 pod with a global batch size of 256.

S. Experiments

DiT block design. We train four of our highest Gflop
DiT-XL/2 models, each using a different block design—
in-context (119.4 Gflops), cross-attention (137.6 Gflops),
adaptive layer norm (adaLLN, 118.6 Gflops) or adaLN-zero
(118.6 Gflops). We measure FID over the course of training.
Figure 5 shows the results. The adalLN-Zero block yields
lower FID than both cross-attention and in-context condi-
tioning while being the most compute-efficient. At 400K
training iterations, the FID achieved with the adal.N-Zero
model is nearly half that of the in-context model, demon-
strating that the conditioning mechanism critically affects
model quality. Initialization is also important—adal.N-
Zero, which initializes each DiT block as the identity func-
tion, significantly outperforms vanilla adalLN. For the rest
of the paper, all models will use adalLN-Zero DiT blocks.

4200

Increasing transformer size

Decreasing patch size

Figure 7: Increasing transformer forward pass Gflops increases sample quality. Best viewed zoomed-in. We sample from
all 12 of our DiT models after 400K training steps using the same input latent noise and class label. Increasing the Gflops
in the model—either by increasing transformer depth/width or increasing the number of input tokens—yields significant
improvements in visual fidelity.

4201

160
s/8 B/8 U8 XU8
s/a B/4 L/a XL/4
140 o 512 B/2 2 @ X2
120
v 100
o
re)
A 80
s >
60
40
Correlation: -0.93
20 . @
100 10t 102

Transformer Gflops

Figure 8: Transformer Gflops are strongly correlated
with FID. We plot the Gflops of each of our DiT models
and each model’s FID-50K after 400K training steps.

Scaling model size and patch size. We train 12 DiT mod-
els, sweeping over model configs (S, B, L, XL) and patch
sizes (8, 4,2). Note that DiT-L and DiT-XL are significantly
closer to each other in terms of relative Gflops than other
configs. Figure 2 (left) gives an overview of the Gflops of
each model and their FID at 400K training iterations. In
all cases, we find that increasing model size and decreasing
patch size yields considerably improved diffusion models.

Figure 6 (top) demonstrates how FID changes as model
size is increased and patch size is held constant. Across all
four configs, significant improvements in FID are obtained
over all stages of training by making the transformer deeper
and wider. Similarly, Figure 6 (bottom) shows FID as patch
size is decreased and model size is held constant. We again
observe considerable FID improvements throughout train-
ing by simply scaling the number of tokens processed by
DiT, holding parameters approximately fixed.

DiT Gflops are critical to improving performance. The
results of Figure 6 suggest that parameter counts do not
uniquely determine the quality of a DiT model. As model
size is held constant and patch size is decreased, the trans-
former’s total parameters are effectively unchanged (actu-
ally, total parameters slightly decrease), and only Gflops are
increased. These results indicate that scaling model Gflops
is actually the key to improved performance. To investi-
gate this further, we plot the FID-50K at 400K training steps
against model Gflops in Figure 8. The results demonstrate
that different DiT configs obtain similar FID values when
their total Gflops are similar (e.g., DiT-S/2 and DiT-B/4).
We find a strong negative correlation between model Gflops
and FID-50K, suggesting that additional model compute is
the critical ingredient for improved DiT models. In Fig-
ure 12 (appendix), we find that this trend holds for other
metrics such as Inception Score.

200 S/8 B/8 L/8 XL/8
s/a B/4 L4 XL/4
175 —e— SP2 B/2 2 -@ X2
150 *
¥ 125 : ”
Q \ 20
E 100 By 15
75 T\ \\10
50
25
0
107 108 10° 1010 1011 1012

Training Compute (Gflops)

Figure 9: Larger DiT models use large compute more
efficiently. We plot FID as a function of training compute.

Larger DiT models are more compute-efficient. In
Figure 9, we plot FID as a function of total training compute
for all DiT models. We estimate training compute as model
Gflops - batch size - training steps - 3, where the factor of
3 roughly approximates the backwards pass as being twice
as compute-heavy as the forward pass. We find that small
DiT models, even when trained longer, eventually become
compute-inefficient relative to larger DiT models trained for
fewer steps. Similarly, we find that models that are identi-
cal except for patch size have different performance profiles
even when controlling for training Gflops. For example,
XL/4 is outperformed by XL/2 after roughly 10'° Gflops.

Visualizing scaling. We visualize the effect of scaling on
sample quality in Figure 7. At400K training steps, we sam-
ple an image from each of our 12 DiT models using iden-
tical starting noise xy,, , sampling noise and class labels.
This lets us visually interpret how scaling affects DiT sam-
ple quality. Indeed, scaling both model size and the number
of tokens yields notable improvements in visual quality.

5.1. State-of-the-Art Diffusion Models

256256 ImageNet. Following our scaling analysis, we
continue training our highest Gflop model, DiT-XL/2, for
TM steps. We show samples from the model in Figures 1,
and we compare against state-of-the-art class-conditional
generative models. We report results in Table 2. When us-
ing classifier-free guidance, DiT-XL/2 outperforms all prior
diffusion models, decreasing the previous best FID-50K of
3.60 achieved by LDM to 2.27. Figure 2 (right) shows that
DiT-XL/2 (118.6 Gflops) is compute-efficient relative to la-
tent space U-Net models like LDM-4 (103.6 Gflops) and
substantially more efficient than pixel space U-Net mod-
els such as ADM (1120 Gflops) or ADM-U (742 Gflops).

4202

Class-Conditional ImageNet 256 <256

Model FID| sFID| IST Precisiont Recallf
BigGAN-deep [2] 6.95 7.36 171.4 0.87 0.28
StyleGAN-XL [53] 2.30 402 265.12 0.78 0.53
ADM [Y] 1094 6.02 100.98 0.69 0.63
ADM-U 7.49 5.13 127.49 0.72 0.63
ADM-G 4.59 525 186.70 0.82 0.52
ADM-G, ADM-U 3.94 6.14 21584 0.83 0.53
CDM [20] 4.88 - 158.71

LDM-8 [48] 15.51 - 79.03 0.65 0.63
LDM-8-G 7.76 - 209.52 0.84 0.35
LDM-4 10.56 - 103.49 0.71 0.62
LDM-4-G (cfg=1.25) 3.95 - 178.22 0.81 0.55
LDM-4-G (cfg=1.50) 3.60 - 247.67 0.87 0.48
DiT-XL/2 9.62 6.85 121.50 0.67 0.67
DiT-XL/2-G (cfg=1.25) 3.22 528 201.77 0.76 0.62
DiT-XL/2-G (cfg=1.50) 2.27 4.60 278.24 0.83 0.57

Table 2: Benchmarking class-conditional generation on
ImageNet 256 x256. DiT achieves state-of-the-art FID.

Class-Conditional ImageNet 512 %512

Model FID| sFID] ISt Precisiont Recallf
BigGAN-deep [] 8.43 8.13 177.90 0.88 0.29
StyleGAN-XL [53] 2.41 4.06 267.75 0.77 0.52
ADM [9] 23.24 10.19 58.06 0.73 0.60
ADM-U 9.96 5.62 121.78 0.75 0.64
ADM-G 7.72 6.57 172.71 0.87 0.42
ADM-G, ADM-U 3.85 586 221.72 0.84 0.53
DiT-XL/2 1203 7.12 105.25 0.75 0.64
DiT-XL/2-G (cfg=1.25) 4.64 5.77 174.77 0.81 0.57
DiT-XL/2-G (cfg=1.50) 3.04 5.02 240.82 0.84 0.54

Table 3: Benchmarking class-conditional image gener-
ation on ImageNet 512x512. Note that prior work [9]
measures Precision and Recall using 1000 real samples for
512 x 512 resolution; for consistency, we do the same.

Our method achieves the lowest FID of all prior generative
models, including the previous state-of-the-art StyleGAN-
XL [53]. Finally, we also observe that DiT-XL/2 achieves
higher recall values at all tested classifier-free guidance
scales compared to LDM-4 and LDM-8. When trained for
only 2.35M steps (similar to ADM), XL/2 still outperforms
all prior diffusion models with an FID of 2.55.

512x512 ImageNet. We train a new DiT-XL/2 model on
ImageNet at 512 x 512 resolution for 3M iterations with
identical hyperparameters as the 256 x 256 model. With a
patch size of 2, this XL/2 model processes a total of 1024
tokens after patchifying the 64 x 64 x 4 input latent (524.6
Gflops). Table 3 shows comparisons against state-of-the-art
methods. XL/2 again outperforms all prior diffusion models
at this resolution, improving the previous best FID achieved
by ADM from 3.85 to 3.04. Even with the increased num-
ber of tokens, XL/2 remains compute-efficient. For exam-
ple, ADM uses 1983 Gflops and ADM-U uses 2813 Gflops;
XL/2 uses 524.6 Gflops. We show samples from the high-
resolution XL/2 model in Figure | and the appendix.

180 s/8 B/8 L8 XL/8
s/4 B/4 L4 XL4
160 —o- 512 B2 2 @ X2

o
a
= 80 \

10 102 103 104 10°
Sampling Compute (Gflops)

Figure 10: Scaled-up sampling compute does not com-
pensate for a lack of model compute. We plot FID-10K of
DiT models after 400K training iterations using [16, 32, 64,
128, 256, 1000] sampling steps against the total compute
used to sample each image. Small models cannot close the
performance gap with our large models, even if they sample
with more test-time Gflops than the large models.

5.2. Scaling Model vs. Sampling Compute

Diffusion models can use additional compute after train-
ing by increasing the number of sampling steps when gener-
ating an image. Given the impact of model Gflops on sam-
ple quality, in this section we study if smaller DiT models
can outperform larger ones by using more sampling com-
pute. We compute FID for all 12 of our DiT models at 400K
training iterations, using [16, 32, 64, 128, 256, 1000] sam-
pling steps per-image. Results are in Figure 10. Consider
DiT-L/2 using 1000 sampling steps versus DiT-XL/2 using
128 steps. In this case, L/2 uses 80.7 Tflops to sample each
image; XL/2 uses 5x less compute—15.2 Tflops—to sam-
ple each image. Nonetheless, XL/2 has the better FID-10K
(23.7 vs 25.9). In general, scaling-up sampling compute
cannot compensate for a lack of model compute.

6. Conclusion

We introduce Diffusion Transformers (DiTs), a simple
transformer-based backbone for diffusion models that out-
performs prior U-Net models and inherits the excellent scal-
ing properties of the transformer model class. Given the
promising scaling results in this paper, future work should
continue to scale DiTs to larger models and token counts.
DiT could also be explored as a drop-in backbone for text-
to-image models like DALL-E 2 and Stable Diffusion.

Acknowledgements. We thank Kaiming He, Ronghang
Hu, Alexander Berg, Shoubhik Debnath, Tim Brooks, Ilija
Radosavovic and Tete Xiao for helpful discussions. William
Peebles is supported by the NSF GRFP. Saining Xie re-
ceives support from Google’s TRC program and a contri-
bution from Cirrascale.

4203

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. 6
Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthesis.
In ICLR, 2019. 5,9

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. In NeurIPS, 2020. 1
Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T
Freeman. Maskgit: Masked generative image transformer. In
CVPR, pages 11315-11325, 2022. 2

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srini-
vas, and Igor Mordatch. Decision transformer: Reinforce-
ment learning via sequence modeling. In NeurIPS, 2021. 2
Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, 2020. 1, 2

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.
Generating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019. 2

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL-HCT, 2019.
1

Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In NeurIPS, 2021. 1, 2, 3, 5,
6,9, 12

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In /CLR, 2020. 1, 2,
4,5

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis, 2020. 2
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.
3

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv:1706.02677, 2017.
5

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo
Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vec-
tor quantized diffusion model for text-to-image synthesis. In
CVPR, pages 10696-10706, 2022. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

4204

Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 12
Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B
Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws
for autoregressive generative modeling. arXiv preprint
arXiv:2010.14701, 2020. 2

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. 2017. 6

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 2, 3

Jonathan Ho, Chitwan Saharia, William Chan, David J
Fleet, Mohammad Norouzi, and Tim Salimans. Cas-
caded diffusion models for high fidelity image generation.
arXiv:2106.15282,2021. 3,9

Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. 3, 4

Aapo Hyvirinen and Peter Dayan. Estimation of non-
normalized statistical models by score matching. Journal
of Machine Learning Research, 6(4), 2005. 3

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125-1134,
2017. 2

Allan Jabri, David Fleet, and Ting Chen. Scalable adap-
tive computation for iterative generation. arXiv preprint
arXiv:2212.11972,2022. 3

Michael Janner, Qiyang Li, and Sergey Levine. Offline rein-
forcement learning as one big sequence modeling problem.
In NeurlIPS, 2021. 2

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models. arXiv:2001.08361, 2020. 2, 13
Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. In Proc. NeurIPS, 2022. 3

Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 5

Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In /CLR, 2015. 5

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114,2013. 3, 6
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, 2012. 5

Tuomas Kynk&dnniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall met-
ric for assessing generative models. In NeurIPS, 2019. 6
Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv:1711.05101,2017. 5

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W
Battaglia. Generating images with sparse representations.
arXiv preprint arXiv:2103.03841, 2021. 6

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever,
and Mark Chen. Glide: Towards photorealistic image
generation and editing with text-guided diffusion models.
arXiv:2112.10741,2021. 3,4

Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In ICML, 2021. 3
Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On
aliased resizing and surprising subtleties in gan evaluation.
In CVPR, 2022. 6

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
age transformer. In International conference on machine
learning, pages 4055—4064. PMLR, 2018. 2

William Peebles, Ilija Radosavovic, Tim Brooks, Alexei
Efros, and Jitendra Malik. Learning to learn with genera-
tive models of neural network checkpoints. arXiv preprint
arXiv:2209.12892, 2022. 2

Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with a
general conditioning layer. In AAAZ, 2018. 2,5

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 2

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. 2018. 1

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. 2019. 1

Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo,
and Piotr Dollar. On network design spaces for visual recog-
nition. In ICCV, 2019. 3

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dolldr. Designing network design
spaces. In CVPR, 2020. 3

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv:2204.06125, 2022. 1,2, 3,4
Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In ICML, 2021. 1,2
Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2, 3, 4,
6,9

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234-241.
Springer, 2015. 2, 3

(50]

(51]

[52]

(53]

[54]

[55]

(561

(571

(58]

[59]

[60]

[61]

[62]

(63]

4205

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic text-to-
image diffusion models with deep language understanding.
arXiv:2205.11487,2022. 3

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, Xi Chen, and Xi Chen. Improved
techniques for training GANs. In NeurIPS, 2016. 6

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P
Kingma. PixelCNN++: Improving the pixelcnn with dis-
cretized logistic mixture likelihood and other modifications.
arXiv preprint arXiv:1701.05517, 2017. 2

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. In SIGGRAPH,
2022. 9

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, 2015. 3
Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. arXiv:2010.02502, 2020. 3
Yang Song and Stefano Ermon. Generative modeling by es-
timating gradients of the data distribution. In NeurIPS, 2019.
3

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross
Wightman, Jakob Uszkoreit, and Lucas Beyer. How to train
your ViT? data, augmentation, and regularization in vision
transformers. TMLR, 2022. 6

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,
Oriol Vinyals, Alex Graves, et al. Conditional image genera-
tion with pixelcnn decoders. Advances in neural information
processing systems, 29, 2016. 2

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, F.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1,
2,5

Tete Xiao, Piotr Dollar, Mannat Singh, Eric Mintun, Trevor
Darrell, and Ross Girshick. Early convolutions help trans-
formers see better. In NeurIPS, 2021. 6

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong,
Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku,
Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autore-
gressive models for content-rich text-to-image generation.
arXiv:2206.10789, 2022. 2

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lu-
cas Beyer. Scaling vision transformers. In CVPR, 2022. 2,
5

