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Abstract

Recently, prompt-based learning has made impressive
progress on image class-incremental learning, but it still
lacks sufficient exploration in the video domain. In this
paper, we will fill this gap by learning multiple prompts
based on a powerful image-language pre-trained model,
i.e., CLIP, making it fit for video class-incremental learn-
ing (VCIL). For this purpose, we present a space-time
prompting approach (ST-Prompt) which contains two kinds
of prompts, i.e., task-specific prompts and task-agnostic
prompts. The task-specific prompts are to address the
catastrophic forgetting problem by learning multi-grained
prompts, i.e., spatial prompts, temporal prompts and com-
prehensive prompts, for accurate task identification. The
task-agnostic prompts maintain a globally-shared prompt
pool, which can empower the pre-trained image models
with temporal perception abilities by exchanging contexts
between frames. By this means, ST-Prompt can transfer
the plentiful knowledge in the image-language pre-trained
models to the VCIL task with only a tiny set of prompts to be
optimized. To evaluate ST-Prompt, we conduct extensive ex-
periments on three standard benchmarks. The results show
that ST-Prompt can significantly surpass the state-of-the-
art VCIL methods, especially it gains 9.06% on HMDB51
dataset under the 1× 25 stage setting.

1. Introduction
Video understanding [49, 11, 1, 32] has achieved out-

standing performance with the quick development of deep
neural networks. However, training such a model heavily
depends on the currently available labeled data. When dif-
ferent classification tasks are presented sequentially in prac-
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Figure 1. An comparison between existing VCIL methods based
on exemplar or frame replay and our ST-Prompt. Compared to the
rehearsal-based approaches, our ST-prompt can better solve the
problem of catastrophic forgetting when only a small amount of
memory is consumed to store a tiny set of prompts.

tical applications, a crucial problem is to maintain the ac-
curacy of the model as data arrives over time. Under this
circumstance, due to the limitations of memory and pri-
vacy, the model can just access the videos of the current
task and few even no examples of historical tasks, which
requires that the model should adapt to the current task
without catastrophic forgetting [34]. The machine learn-
ing paradigm to handle the above challenges is called Video
Class-Incremental Learning (VCIL) [35, 36, 61].

Most existing class-incremental learning approaches
have achieved remarkable performance through a rehearsal
buffer of the old tasks in both the image [40, 45, 59, 4]
and video [36, 47, 36] fields. However, these methods suf-
fer from suboptimal performance with smaller buffer sizes
and severe catastrophic forgetting once the rehearsal buffer
is not accessed, hence leading to limited applications. To
solve this problem, several prompt-based learning methods
in image domain [54, 53, 51] are proposed to train only
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a tiny set of parameters, i.e., prompts, to effectively in-
struct a pre-trained model to learn incremental tasks with-
out buffering past examples. Typically, L2P [54] learns
a single prompt pool to attach complementary prompts to
the pre-trained backbone. Nevertheless, this new paradigm
has shown great potential for images, but it is still underex-
plored in the video domain. In this paper, we will concen-
trate on exploring this paradigm on VCIL to bridge this gap.
Directly applying these existing methods for the VCIL task
tends to be inadequate. The core reason is that the prompt
strategy for images cannot model temporal variations and
dynamics across spatial features. Meanwhile, video data
possesses a more complicated semantic structure than static
images, so a single prompt pool like L2P may be insuffi-
cient to learn the abundant semantics. Therefore, we think
a properly redesigned prompt framework will contribute to
improving the performance of the VCIL task.

Motivated by the above observations, we propose ST-
Prompt, a space-time prompting method for video class-
incremental learning. Specifically, we design ST-Prompt
with two components, i.e., task-specific prompts and task-
agnostic prompts. The task-specific prompts are tapped
by multi-grained prompts, i.e., spatial prompts, temporal
prompts and comprehensive prompts, which can better dis-
cover the complicated spatio-temporal semantics in videos
to address the catastrophic forgetting problem. The task-
agnostic prompts learn a complementary prompt for each
frame and then gather them back for all frames; hence
we can equip the image pre-trained model with temporal
modeling capacities without any edition of model struc-
ture. Compared with the task-specific prompts, the task-
agnostic prompts are task-independent and thus share a
generic and globally-shared prompt pool for all tasks. By
this means, ST-Prompt has two advantages: 1) it can si-
multaneously take advantage of the knowledge priors in
the image-language pre-trained model and learn the spatio-
temporal information, which makes the model more suit-
able for VCIL; 2) it can markedly reduce the memory cost
by just saving a set of prompt parameters without preserv-
ing redundant videos anymore, as shown in Figure 1. In the
experimental stage, we quantificationally and qualitatively
evaluate ST-Prompt on three standard benchmarks. The
results show that ST-Prompt can achieve significant gains
over the current top-performing approaches, which demon-
strates the effectiveness of our method.

In summary, the main contributions of this paper are as
follows:

• We first explore the great potential of image-language
pre-trained model in video incremental tasks and
achieve significant performance improvement by uti-
lizing its sufficient semantic information through
prompt-based methods;

• We proposed ST-Prompt, containing task-specific

prompts and task-agnostic prompts, which can sig-
nificantly reduce the memory cost and forgetting rate
while modeling temporal variations and dynamics
across spatial features without modifying the model
structure;

• The proposed ST-Prompt achieves remarkable perfor-
mance on multiple standard action recognition incre-
mental benchmarks over state-of-the-art methods.

2. Related Work

In this section, we will introduce the methods related to
ST-Prompt, including the works for image and video class-
incremental learning, and prompt-based learning.

2.1. Image Class-Incremental Learning

In recent years, class-incremental learning has been
widely studied and numerous methods have been proposed
in the image domain [52, 56, 10, 43]. These methods can
be roughly partitioned into three categories: regularization-
based methods, exemplar-based methods and architecture-
based methods. Regularization-based methods [23, 60, 21]
constrain the optimization of network parameters to pre-
serve the important information of learned tasks, in which
the most popular technique utilized is knowledge distilla-
tion [29, 12, 14]. The exemplar-based methods [40, 57, 45]
typically store a small set of representative exemplars [59,
50] or generated synthetic examples [22, 55] from previous
classes to prevent catastrophic forgetting, which is always
combined with regularization of a distillation loss to encour-
age knowledge retention further. The architecture-based
methods [26, 42, 48] retain the knowledge of old tasks by
designing specific components in the architecture [41, 64]
or expanding current feature extractor for new data[58, 38].

2.2. Video Class-Incremental Learning

In the video domain, studies on this field are still
scarce. The existing solutions are always the combina-
tion of regularization-based and exemplar-based methods
and focus on how to formulate temporal information bet-
ter. For example, TCD [35] computes time-channel im-
portance for weighted distillation, [61] decomposes spatio-
temporal knowledge transfer for stronger constraint and
vCLIMB [47] focuses on temporal-consistency regulariza-
tion of untrimmed video. Both TCD [35] and vCLIMB [47]
have claimed that more stored examples in memory can ef-
fectively encourage incremental performance. Specifically,
FrameMaker [36] tends to design a memory-efficient video
incremental learning method by learning a condensed frame
for each representative video of old classes. However, it still
demands to preserve some old frames.
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Figure 2. The overall framework of the proposed ST-Prompt, which mainly contains two kinds of prompts, task-specific prompts and
task-agnostic prompts. For each input video, we first extract multi-grained features with the image encoder of a CLIP model, then select
corresponding prompts from predefined prompt pools. Finally, the prompts are prepended to the video and text embedding feature respec-
tively to instruct the model to learn incremental tasks.

2.3. Prompt-based Learning

Recently, with the rise of large pre-trained models [39,
3, 18, 28], the general pre-trained models are utilized to
adapt to multiple down-sampling tasks by finetuning or
prompting. The concept of prompt was first proposed in
the field of natural language processing [31, 5, 37], and
later it was more widely used in language[25, 27, 16] and
visual[19, 2, 20] tasks to modify the input texts or im-
ages, such that the language or image model obtains addi-
tional information about a specific task. Some methods con-
sider multi-modality information simultaneously, and de-
sign prompts for the vision-language models[63, 62, 17].

Meanwhile, the emergence of large pre-trained models
and prompt-based learning also shows excellent potential
in incremental learning. L2P [54], DualPrompt [53] and
S- iPrompts [51] exploit prompting method to image in-
cremental learning and achieve good performance with-
out saving old exemplars. Especially, S-Prompting uti-
lizes both image and text prompts together with a pre-
trained vision-language model and gains outstanding per-
formance in domain-incremental learning. In this paper,
we focus on the properties of video, adapting large image
pre-trained models to the video domain for video class-
incremental learning by space-time prompting. We pro-
pose to decompose the complex video features into multi-
ple space-time granularities for accurate task identification
while exchanging the temporal information between frames
by task-agnostic prompts.

3. Method

In this section, we will first introduce the basic setting of
the video class-incremental learning task. Then we discuss
the proposed ST-Prompt in detail, as shown in Figure 2. In
the end, we present the training and inference procedure.

3.1. Problem Formulation

In video class-incremental learning, different tasks
{T 1, T 2, · · · , T K} arrive in a sequence and each task T k

corresponds to its specific dataset Dk = {(V k
i , yki ), y

k
i ∈

Lk}, which contains the input video example V k
i and its la-

bel yki . The labels in task k belong to a predefined label set
Lk and do not appear in previous tasks. The goal of VCIL is
to train a single model that has the ability to classify videos
of all seen classes correctly. We focus on the more chal-
lenging problem of exemplar-free video class-incremental
learning, i.e., no exemplar of old classes can be used in the
current task, in which the core is to avoid forgetting histori-
cal information, termed catastrophic forgetting.

In this paper, we follow the prompt-based incremental
learning paradigm in the image domain [54, 51] to alleviate
the forgetting problem, which is composed of two stages: i)
based on the pre-trained vision-language model like CLIP,
they optimize a tiny set of learnable visual and text prompts
for each incremental task independently (i.e. task-specific
prompts) to learn new knowledge and retain the historical
information; ii) during inference, due to the lack of task
identity of the test example, they select the proper visual and
text prompts from the prompt pool by prompt matching, and
then prepend them to the visual embedding V k

ie and the class
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embedding W k
we respectively. The final prediction is deter-

mined by the similarities between the visual features and the
text features of class names. However, different from static
images, videos contain more complicated spatio-temporal
clues, and it is intractable to capture these semantic clues
well in the video tasks via a single kind of prompt. Mean-
while, the image pre-trained model lacks temporal model-
ing capability for videos, which requires us to make up for
this defect during the prompting process. Overall, the es-
sential point for VCIL is to design a reasonable prompt-
ing method to recall the spatio-temporal information in the
video task well.

3.2. Space-time prompting

The proposed space-time prompting (ST-Prompt) con-
tains two components, i.e., task-specific prompts and task-
agnostic prompts.

Task-specific Prompts. To prevent catastrophic forget-
ting, we train task-specific prompts for each incremental
task T k with the pre-trained model (the image encoder
fv and text encoder fl) frozen. Specifically, we devote
to designing multi-grained prompts to utilize the temporal
and spatial variations of different videos for more accurate
task identification. Formally, for each task T k, there are
three different granularities of task-specific prompt pools as
Eq. 1. For brevity, we omit the symbol k in this section. If
there is no additional explanation, it indicates the situation
in incremental task T k.

P = {Ps,Pt,Pc}
Pm = {{P v

m1, P
l
m1}, ..., {P v

mN , P l
mNm

}},

P v
mn ∈ RLv×Dv

, P l
mn ∈ RLl×Dl

,m ∈ {s, t, c},

(1)

where Ps, Pt and Pc are the spatial, temporal and compre-
hensive task-specific prompt pools. Each element in prompt
pools is organized as the formulation of a visual-text prompt
pair, where P v

mn and P l
mn are the commensurable visual

and text prompt respectively. Additionally, Nm is the num-
bers of prompts in each prompt pool. Lv and Ll are the
length of the visual and text prompt, and Dv and Dl are
their embedding dimension.

The selection of prompts from these prompt pools is re-
alized through feature matching as Figure 3(a). We apply
K-Means algorithm to store the centroids of video features
and search for the nearest centroid of the given video sample
to identify its relevant prompt. The matching of three kinds
of prompts corresponds to features in three different granu-
larities of video V , i.e. spatial feature Fs(V ), temporal fea-
ture Ft(V ) and comprehensive feature Fc(V ). Specifically,
the spatial and temporal features are calculated by pooling
the temporal and spatial dimensions separately, while the
comprehensive feature is the average of [CLS] token out-
put. After the feature matching, the selected task-specific

Feature Matching

Selected
Prompt

Centroid-Prompt Pair

Video
Feature

Attention Map Prompt

Candidate
Prompts

Frame-level Attention

Frame
Feature

(a)

(b)

Figure 3. The details of prompt matching methods in prompt pools.
(a) We select prompts corresponding to the nearest centroid with
query feature for the task-specific prompts; (b) We utilize the sim-
ilarities between the frame feature and centroids as the attention
map for the task-agnostic prompts.

prompts are organized together as:

P v = f(P v
s∗, P

v
t∗, P

v
c∗), P

l = f(P l
s∗, P

l
t∗, P

l
c∗) (2)

where (P v
s∗, P

l
s∗), (P

v
t∗, P

l
t∗) and (P v

c∗, P
l
c∗) are the prompts

selected from three task-specific prompt pools. f is the or-
ganization function, which can be stacking, addition, multi-
plication, or other operations. In this paper, we use addition
for its better performance.

Finally, the visual and text prompts are prepended to the
visual and text embedding respectively, and the whole input
of the visual and text encoder is of the format:

Vp = [P v;Ve],Wwp = [P l;Wwe]. (3)

where ; indicates the prepending operation, Ve is the video
embedding feature of video V and Wwe is the word embed-
ding feature of w-th class name in task T k.

Additionally, when we utilize the visual pre-trained
models without a language branch, such as ViT with Im-
ageNet pre-trained weights, the classification head replaces
the text encoder and the prompts in each prompt pool just
contain the visual prompt P v

mn. The other definition and uti-
lization of the task-specific prompts are similar to the above.

Task-agnostic prompts. When tackling video incremen-
tal tasks, the image pre-trained model processes each video
frame separately and cannot model the temporal variations
and relations between different frames. Although we uti-
lize different granularities of prompts for task identification,
it is not enough to make the model understand the tem-
poral information of videos well. To enhance the tempo-
ral modeling ability and adaptability of image pre-trained
models, we propose task-agnostic prompts to highlight the
different information contained in frames. Specifically, we
establish an additional temporal-modeling prompt pool as
Pa = {Pa1, ..., PaNa

}, where Pan ∈ RLa×Dv

is the
prompt and Na is the total number of prompts. Compared
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with the task-specific prompts, temporal modeling is a more
general concept for videos, which is task-agnostic and all
prompts from the whole pool can be selected and attached
without task limitation.

For the selection of task-agnostic prompts, we also store
the centroids of the frame features during training by K-
Means algorithm. Differently, in order to utilize the in-
formation in the temporal-modeling prompt pool compre-
hensively, the final prompt according to each frame is not
selected by feature matching simply but is calculated by
frame-level attention as Figure 3(b). For each frame Ij
in video V , the attention map for all candidate prompts
Sj = {Sj1, Sj2, ..., SjNa

} is generated according to the
similarity between the frame feature fv(Ij) and the cen-
troids. Specifically, we utilize the cosine similarity to cal-
culate Sjn in this paper. And then the task-agnostic prompt
corresponding to the frame Ij is calculated as follows:

Pj =

Na∑
n=1

eSjn/τ∑Na

n=1 e
Sjn/τ

Pan ∈ RDv

(4)

where τ is the temperature parameter. Finally, the prompts
of different frames are stacked together to adapt to the video
embedding as Vp = [P1;P2; ...;PT ;Ve]. In this way, each
frame will obtain the context information of others. Al-
though they go forward through an image pre-trained model
separately, the information exchange of different frames re-
alizes the temporal modeling.

3.3. Training and Inference

During training, only the prompts are trainable, while the
pre-trained model is fixed. In incremental step T k, the train-
ing of prompts in task-specific prompt pools is restrained so
that only the prompts corresponding to task T k can be se-
lected and utilized. The task-agnostic prompt pool does not
have this constraint because temporal modeling is a more
general concept independent of task identification.

During inference, for each new video, we first extract
multi-grained features by the pre-trained image encoder
fv , and then select task-specific and task-agnostic prompts
from prompt pools through feature matching or frame-level
attention. Finally, the selected prompts are prepended to the
video and text embedding features respectively. The classi-
fication result is according to the similarity output.

When ST-Prompt is utilized based on a one-branch vi-
sual model, in order to separate different tasks better, the
classification head is also split according to the task iden-
tity and every incremental session trains its own classifier.
Differently, without the text branch, the classifier cannot uti-
lize the multi-grained task-specific prompts flexibly and can
only be selected by the video-level comprehensive feature.
The classifier selection corresponds to the task that the se-
lected comprehensive task-specific prompt belongs to.

4. Experiment

In this section, we compare our results with baselines
and state-of-the-art VCIL methods. We also show ablation
studies on the effect of different components and analyze
our results in different practical settings.

4.1. Experiment setup

Datasets. We evaluate our method on UCF101 [44],
HMDB51 [24] and Something-Something V2 [13], which
are the standard action recognition datasets. We follow the
video frequently-used class-incremental benchmarks pre-
sented in TCD [35]. For UCF101, the model is trained on
51 classes first, and the other 50 classes are divided into 5,
10 and 25 tasks. For HMDB51, we train the base model
using videos from 26 classes, and the rest of the classes are
separated into 5 or 25 groups. For Something-Something
V2, we first train 84 classes in the initial stage and generate
the incremental groups of 10 and 5 classes.

Evaluation Protocol. After each incremental step, we
evaluate the model on all seen classes and the class-
incremental methods are finally assessed by the average ac-
curacy of all tasks.

Implementation Details. Our method is based on CLIP
ViT-B/16 [39], a visual-language model pre-trained with
numerous image-text pairs. While the pre-trained model
is frozen, the visual and textual prompts are optimized us-
ing a batch size of 64 and an initial learning rate of 0.001
with cosine descending for 50 epochs in each task. We
carefully choose compared methods in the same environ-
ment for a fair comparison. However, most existing class-
incremental learning methods are not adaptive to visual-
language models. Therefore, we also apply our approach
on ImageNet pre-trained ViT-B/16 [8] and reproduce other
class-incremental learning methods on the same backbone.

4.2. Main Results.

We compare our proposed ST-Prompt with existing
state-of-the-art class-incremental learning approaches un-
der multiple challenging settings on three datasets in Ta-
ble 1 and Table 2. For the approaches in the image do-
main, we reproduce them by treating the video as a whole
as that in the image field. From the tables, we can draw
the following conclusions. First, ST-Prompt notably outper-
forms existing rehearsal-free methods in VCIL, containing
two recent prompt-based approaches, L2P and S-iPrompts
in the image domain. With ImageNet pre-trained ViT,
ST-Prompt respectively surpasses S-iPrompts by around
4.22%, 4.98% and 7.27% on HMDB51, UCF101 and
Something-something v2, respectivly. This indicates that
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UCF101 HMDB51

Methods Buffer Size 10× 5 stages 5× 10 stages 2× 25 stages 5× 5 stages 1× 25 stages
ImageNet pre-trained ViT-B/16

iCaRL [40]

10/class

70.58 69.51 67.28 43.90 37.15
UCIR [15] 77.55 74.59 71.77 48.20 39.42

PODNet [9] 76.50 76.17 73.83 48.38 43.35
Co2L [6] 78.54 77.13 75.59 49.76 44.15

TCD† [35] 78.13 76.87 75.74 50.29 44.04
FrameMaker† [36] 79.37 79.55 79.32 51.43 46.37

L2P [54] 81.24 80.09 78.58 49.98 45.87
iCaRL [40]

5/class

66.58 67.70 64.27 41.08 36.13
UCIR [15] 75.55 72.78 66.76 45.38 38.40

PODNet [9] 74.50 74.36 72.82 45.56 42.33
Co2L [6] 77.57 76.32 74.58 47.10 43.56

TCD† [35] 76.13 75.06 73.73 48.38 43.02
FrameMaker† [36] 78.37 77.74 76.31 50.58 45.65

L2P [54] 79.93 77.78 76.27 47.67 42.56
Finetuning

0/class

24.83 13.61 6.24 18.30 4.89
Finetuning-frozen 67.10 65.71 7.39 36.64 4.95

LwFMC [29] 45.73 28.01 16.43 27.01 17.21
LwM [7] 46.98 28.70 16.92 27.94 17.85
L2P [54] 76.72 75.11 73.26 45.00 39.89

S-iPrompts [51] 77.16 77.83 77.99 50.67 51.45
ST-Prompt† 83.74 81.53 82.66 55.13 55.43

CLIP ViT-B/16
Zero shot [39]

0/class
69.68 69.61 69.87 40.19 40.42

S-liPrompts [51] 80.60 80.27 80.43 53.11 53.89
ST-Prompt† 84.75 85.54 85.67 60.14 60.54

Table 1. Comparison with the state-of-the-art approaches over class-incremental action recognition performance on UCF101 and HMDB51.
Compared methods are grouped based on different rehearsal buffer sizes. † indicates the methods designed for video.

our design of multi-grained task-specific prompts and task-
agnostic prompts plays an essential role in video feature
formulation and temporal perception. The more tremen-
dous increase on Ssv2 also claims the effectiveness of ST-
Prompt for the motion-sensitive dataset. Second, compared
with rehearsal-based methods, our ST-Prompt also has a
significant advantage. ST-Prompt achieves better perfor-
mance than the top existing approach, FrameMaker, by ap-
proximately 6.38% and 3.23% on HMDB51 and UCF101,
separately, although FrameMaker stores additional 80 ex-
amples for each class. Third, using the pre-trained vision-
language model, CLIP, as the backbone for VCIL, the per-
formance of ST-Prompt improves further by about 5.06%,
2.67% and 3.49% respectively. The reason is that ClIP pro-
vides more abundant prior knowledge about semantic infor-
mation, which is vital for subsequent prompting.

4.3. Ablation Study.

In this section, we present ablation studies on the prop-
erties and effectiveness of our core designs. If not specified,
the ablation studies are performed on HMDB51 with 5 steps

and UCF101 with 10 steps.

Task-specific Prompts. In Table 3, we first explore how
to organize different kinds of task-specific prompts together
in Eq. 2. The results show that the addition operation
achieves better performance than stacking and multiplica-
tion, whose reason may be that different prompts can mod-
ulate each other better without prepending too many param-
eters to the embedding feature in this way.

Then, to prove the effectiveness of different parts of our
task-specific prompts, we remove each kind of prompts re-
spectively under the combination method of addition and
show their results in Table 4. From the results, we can find
that: first, when three kinds of prompts are utilized sepa-
rately, the comprehensive task-specific prompts achieve the
best performance, which demonstrates that they depict the
video feature more integrally; second, when the compre-
hensive prompts are combined with the temporal or spatial
prompts, the performance increases by 1.9% or 1.54% on
HMDB51, and 1.26% or 1.34% on UCF101, respectively.
Differentiated promotions in different datasets imply that
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Methods Buffer Size
10× 9
Stages

5× 18
Stages

ImageNet pre-trained ViT-B/16
iCaRL [40]

5/class

20.41 16.62
UCIR [15] 24.32 19.31

PODNet [9] 27.63 20.14
TCD† [35] 29.32 24.69

FrameMaker† [36] 31.41 26.57
L2P [54] 26.02 21.33

Finetuning

0/class

11.04 6.23
Finetuning-frozen 7.99 5.97

LwFMC [29] 15.21 11.41
L2P [54] 23.25 18.49

S-iPrompts [51] 30.58 26.33
ST-Prompt 36.84 31.60

CLIP ViT-B/16
Zero-shot

0/class
3.56 3.57

S-liPrompts [51] 33.69 30.84
ST-Prompt† 39.98 35.44

Table 2. Comparison with the top approaches on Something-
something v2.† indicates the methods designed for video.

Operation Stacking Multiplication Addition

HMDB51 55.24 54.96 56.02
UCF101 82.82 82.45 83.58

Table 3. Ablation for the ensemble ways of task-specific prompts.

STP TTP CTP HMDB51 UCF101

✓ ✗ ✗ 44.62 72.45
✗ ✓ ✗ 45.46 73.84
✗ ✗ ✓ 53.11 80.27
✓ ✓ ✗ 49.34 76.93
✓ ✗ ✓ 54.65 81.61
✗ ✓ ✓ 55.01 81.53
✓ ✓ ✓ 56.02 83.58

Table 4. Ablations for task-specific prompts on HMDB51 with 5
steps and UCF101 with 10 steps. STP, TTP and CTP represent
spatial, temporal and comprehensive prompts respectively.

temporal information is more critical for HMDB51, while
the spatial feature for UCF101; third, utilizing all three
kinds of task-specific prompts can further improve the final
accuracy, which proves the combination of multi-grained
prompts contribute to more correct task identification.

Further, we visualize some clustering results of different
granularities of the video feature in Figure 4. The com-
prehensive feature judges video task-id from the overall
perspective, and the clustered videos usually belong to the
same spatial and temporal clusters, such as ”Smile”. The
temporal and spatial prompts implement the local informa-
tion for more complicated video task matching. Videos

Method TAP HMDB51 UCF101

TSP ✗ 56.02 83.58
TSP+LE ✗ 56.06 83.55
TSP+SP ✗ 57.04 83.87
TSP+CP ✗ 58.30 84.05

TSP+PE [46] ✗ 57.96 84.04
TSP+SH [33] ✗ 58.27 84.25
TSP+TS [30] ✗ 58.74 84.34
ST-Prompt ✓ 60.14 85.54

Table 5. Comparison with some baseline methods about task-
agnostic prompts (TAP) on HMDB51 with 5 steps and UCF101
with 10 steps.

Method TAP HMDB51 UCF101

L2P [54] ✗ 45.00 75.11
✓ 46.76 76.07

S-iPrompts [51] ✗ 50.67 77.83
✓ 54.44 79.74

S-liPrompts [51] ✗ 53.11 80.27
✓ 55.77 81.82

ST-Prompt ✗ 56.02 83.58
✓ 60.14 85.54

Table 6. Ablations for task-agnostic prompts (TAP) on HMDB51
with 5 steps and UCF101 with 10 steps.

with the same motion but different spatial features are gath-
ered together according to their temporal features, such as
”Dive” in different scenarios, while spatial features distin-
guishes actions with mixed temporal information but obvi-
ous spatial similarities.

Task-agnostic Prompts. We compare our task-agnostic
prompts for temporal modeling with a set of baselines
in the proposed framework in Table 5. “LE” represents
prompt length expansion, which excludes the performance
improvement caused by increasing the number of parame-
ters. And the results also prove that learning task-agnostic
prompts about spatial (“SP”) or comprehensive (“CP”) in-
formation are not as effective as temporal modeling. Then
we compare the effect of our temporal-modeling prompts
with some other parameter-free temporal modeling meth-
ods, such as positional encoding (“PE”), temporal shuf-
fle (“SH”) and temporal shift (“TS”). We can observe
that utilizing task-agnostic prompts to exchange the con-
text of different frames can gain the best performance of
60.14%. Further, we validate the effectiveness of task-
agnostic prompts by adding them to other prompt-based
methods in the image domain, as shown in Table 6, which
indicates that it is a general approach to improve the ability
of temporal perception for image pre-trained models.

In addition, We depict the change of category-wise ac-
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Methods Backbone Stored Exemplars Memory Cost Average Accuracy
TCD [35] ImageNet Pre-trained ViT-B/16 10 examples/class 585.70M 50.29

FrameMaker [36] ImageNet Pre-trained ViT-B/16 80 examples/class 585.70M 51.43
ST-Prompt ImageNet Pre-trained ViT-B/16 0 2.98M 55.13
ST-Prompt CLIP ViT-B/16 0 4.47M 60.14

Table 7. The comparison of the overhead of our ST-Prompt and other VCIL methods on HMDB51 with 5 steps.

Figure 4. The visualization of multi-grained video feature cluster-
ing results.
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Figure 5. The change of category-wise accuracy after utilizing
task-agnostic prompts on HMDB51 with 5 steps.

curacy after utilizing task-agnostic prompts in Figure 5.
The significant increase in the accuracy of some motion-
sensitive classes, such as ”Dive” and ”Somersault”, proves
the role of our task-agnostic prompts in improving the tem-
poral modeling capability of models.

The Temperature τ . The temperature τ in Eq. 4 decides
the smoothness of the attention weights. Too small τ makes
the final prompt of each frame lose the understanding of
global information, and too large τ introduces noise. From
Figure 6(a), we observe that τ = 0.3 guides the best perfor-
mance of final average accuracy.

The Length of Prompts. The length of different kinds
of prompts Lv, Lt, La decides the capacity of each learn-
able prompt. Figure 6(b) illustrates how the average accu-
racy changes when the length of different prompts varies. It
is evident that a too-small visual or text prompt length al-
ways negatively affects results, while an oversized prompt
may cause underfitting. We set the prompt length as 5 for
both visual and text task-specific prompts according to the
curves. In addition, we can discover that the final accu-
racy is not sensitive to the length of task-agnostic prompts

Figure 6. The effects of some hyperparameters in ST-Prompt.

and even decreases during the length is larger. Hence, we
choose the length of the task-agnostic prompts as 1.

The Number of Prompts. Figure 6(c) presents how the
number of different prompts Nm(m ∈ {s, t, c, a}) in each
incremental task influences the performance of our ap-
proach, where the number in the base task is calculated ac-
cording to the proportion of the number of classes. Three
different task-specific prompts and task-agnostic prompts
are explored separately. In general, the more prompts per
task, i.e., the more pre-defined centroids per task during
clustering, the higher accuracy gained. Especially, the com-
prehensive prompt is more sensitive to the cluster number.
For simplicity, the number of different prompts is set as 5.

4.4. Overhead Analysis

We compare the memory cost and average accuracy of
ST-Prompt with other VCIL methods in Table 7. Our ST-
Prompt utilizes only a set of prompts and prompt keys in
each task, while previous rehearsal-based methods store
a number of video examples or frames. Therefore, ST-
Prompt has significant memory advantages over previous
VCIL methods. Our ST-Prompt achieves performance in-
creasing by around 8.71% with only 0.76% memory cost of
other methods.

5. Discussions

Limitation. Compared with the previous video incremen-
tal learning approaches, ST-Prompt achieves a significant
performance boost without any additional memory cost
for video example saving. Nevertheless, ST-Prompt relies
on the large pre-trained model, which may fail when the
knowledge contained in it is not sufficient. Meanwhile, our
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ST-Prompt prepends prompts to the embedding feature and
has not discussed the phenomenon that prompts are prefixed
to the hidden layers.

Conclusion. In this paper, we propose ST-Prompt, a
novel space-time prompting framework for video class-
incremental learning. It explores how to address the
VCIL problem in a rehearsal-free way by learning multiple
prompts based on a powerful image-language pre-trained
model. ST-Prompt mainly consists of two components,
task-specific prompts and task-agnostic prompts. The task-
specific prompts tackle the catastrophic forgetting problem
by learning multi-grained prompts for task identification.
The task-agnostic prompts implement the temporal model-
ing ability of the image pre-trained model. In this way, ST-
Prompt achieves a new state-of-the-art performance, which
has already surpassed the methods with a memory buffer.
We hope this simple and practical framework can inspire
attention to prompting-based methods in VCIL.
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