
DELFlow: Dense Efficient Learning of Scene Flow for Large-Scale Point Clouds

Chensheng Peng1, Guangming Wang1, Xian Wan Lo1, Xinrui Wu1, Chenfeng Xu2,
Masayoshi Tomizuka2, Wei Zhan2, and Hesheng Wang1*

1Department of Automation, Key Laboratory of System Control and Information Processing of
Ministry of Education, Shanghai Jiao Tong University

2 Mechanical Systems Control Laboratory, University of California, Berkeley
{pesiter-swift,wangguangming,kaylex.lo,916806487,wanghesheng}@sjtu.edu.cn

{xuchenfeng,tomizuka,wzhan}@berkeley.edu

Abstract

Point clouds are naturally sparse, while image pixels
are dense. The inconsistency limits feature fusion from
both modalities for point-wise scene flow estimation. Previ-
ous methods rarely predict scene flow from the entire point
clouds of the scene with one-time inference due to the mem-
ory inefficiency and heavy overhead from distance calcula-
tion and sorting involved in commonly used farthest point
sampling, KNN, and ball query algorithms for local fea-
ture aggregation. To mitigate these issues in scene flow
learning, we regularize raw points to a dense format by
storing 3D coordinates in 2D grids. Unlike the sampling
operation commonly used in existing works, the dense 2D
representation 1) preserves most points in the given scene,
2) brings in a significant boost of efficiency, and 3) elimi-
nates the density gap between points and pixels, allowing
us to perform effective feature fusion. We also present a
novel warping projection technique to alleviate the informa-
tion loss problem resulting from the fact that multiple points
could be mapped into one grid during projection when com-
puting cost volume. Sufficient experiments demonstrate the
efficiency and effectiveness of our method, outperforming
the prior-arts on the FlyingThings3D and KITTI dataset.
Our source codes will be released on https://github.
com/IRMVLab/DELFlow .

1. Introduction
Scene flow represents the point-wise motion between a

pair of frames, specifically the magnitude and direction of
the 3D motion. As a low-level task, 3D scene flow estima-
tion is beneficial to numerous high-level scene understand-
ing tasks in autonomous driving, such as LiDAR odometry
[46], object tracking [47], and semantic segmentation [18].

*Corresponding Authors. The first two authors contributed equally.

Figure 1. Comparison of current point cloud processing frame-
works. (a) 3D grid-based methods. (b) 3D point-based meth-
ods. (c) 2D perspective grid-based methods. (d) Our outlier-aware
point-based methods, where outliers are filtered out.

Early works [7, 31] convert point cloud into 3D voxel
grids and process them with 3D Convolutional Neural Net-
works (CNNs). However, the computational costs of such
voxel-based methods grow drastically with the resolution.
Besides voxelization (Fig. 1a), recent studies [9, 17, 51, 43]
resort to learning scene flow directly from the raw coordi-
nates of point clouds in 3D space. These point-based meth-
ods [17, 51, 45, 40] (Fig. 1b) relies on feature aggregation
from neighborhood points with a PointNet [28, 29] struc-
ture. Nevertheless, the most commonly used K Nearest
Neighbors (KNN) and ball query algorithms in solutions
[9, 17, 51, 41] require frequent distance calculation and
sorting between point clouds, which are memory-inefficient
and time-consuming. Therefore, only a limited number of
points are taken as inputs because large-scale input point
clouds indicate more GPU memory consumption. The in-
efficiency led to the proposal of projection-based methods
[4, 48, 49], where 2D convolutions are applied to the pro-
jected point cloud on image plane. As shown in Fig. 1c,
a convolution kernel is used to perform feature extraction
among nine neighbors. Such 2D perspective grid-based
methods suffer from the neighboring outliers and are not
flexible since effective 3D methods cannot be applied.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16901



To deal with the heavy computational cost of 3D meth-
ods and the limited accuracy of 2D methods, we propose
a projection-based framework for scene flow learning from
dense point clouds. We store raw 3D point clouds (n × 3)
in the corresponding 2D pixels by projecting them onto im-
age plane (H × W × 3). Such representation allows us
to take the complete point clouds from input scene. For
the second stage, we propose Kernel Based Grouping to
capture 3D geometric information on 2D grid. The oper-
ations are conducted on 2D grids, but the output is in the
3D space. Different from 3D point-based methods, we are
able to process point clouds with less memory consump-
tion as more prior spatial information from the 2D format
reduces the local query complexity. By reducing the group-
ing range in search of neighboring points, our proposed
network achieves single-frame feature extraction and inter-
frame correlation for tens of thousands of LiDAR point
clouds. In addition, the far-away points can be removed us-
ing our outlier-aware method (Fig. 1d), solving the problem
of 2D methods caused by outliers.

The second challenge pertains to the feature fusion be-
tween point clouds and images, as raw point clouds in
3D space are naturally sparse, unordered and unstructured,
while pixels of images are dense and adjacent to each other.
CamLiFlow [16] projects a small number of sparse points
onto image plane to fuse features from these two modalities.
Instead, we take all points as input using the dense format
of projected point clouds, which eliminates the density gap
between sparse points and dense pixels, enabling effective
feature fusion. As a result, we explore the potential of at-
tentive feature fusion between dense points and pixels for
more accurate scene flow prediction.

In addition, we adopt a warping operation in cost vol-
ume to refine the predicted flow. During the refinement pro-
cess, multiple warped points can be projected into the same
grid on 2D plane. Previous methods merge extra points, but
cause information loss which affects the final accuracy. On
the contrary, our proposed cost volume module equipped
with a novel warping projection technique enables us to
avoid such information loss by using the warped coordi-
nates as an intermediate indexing variable.

Overall, our contributions are as follows:
• We propose an efficient scene flow learning framework

operated on projected point clouds to process points in
3D space, which takes the entire point clouds as input
and predicts flow with one-time inference.

• We present a novel cost volume module with a warping
projection technique, allowing us to compute the cost
volume without information loss caused by merging
points during the refinement process.

• We design a pixel-point feature fusion module, which
encodes color information from images to guide the
decoding of point-wise motion in point clouds, im-
proving the accuracy of scene flow estimation.

2. Related work

Scene Flow Learning from 3D Data. With the develop-
ment of deep learning for raw 3D point cloud processing
[28, 29], FlowNet3D [17] pioneers in directly processing
point clouds and predicts 3D scene flow in an end-to-end
fashion. A flow embedding layer is proposed to compute
the correlation between a pair of point clouds. PointPWC-
Net [51] proposes a patch-to-patch method by considering
more than just one point of the first frame during the cor-
relation process, and extends the coarse-to-fine structure
from optical flow [33] to scene flow estimation. Inspired by
permutohedral lattice [1] and Bilateral Convolutional Lay-
ers (BCL) [11], HPLFlowNet [9] proposes DownBCL, Up-
BCL, and CorrBCL to restore rich information from point
clouds. However, the interpolation from points to permuto-
hedral lattice leads to information loss. To assign different
weights to the correlated points in a patch, HALFLOW [45]
proposes a hierarchical neural network with a double atten-
tive embedding layer. Using optimal transport [25, 26, 37]
tools, FLOT [27] achieves competitive performance with
much less parameters. The rigidity assumption is widely
used in other works [38, 39, 23, 20]. HCRF-Flow [15] for-
mulates the rigidity constraint as a high order term. Built
on the architecture of RAFT [35], RAFT-3D [36] utilizes
rigid-motion embeddings to group neighbors into rigid ob-
jects and refines the 2D flow field with a recurrent structure.

Efficient Learning of Point Clouds. Previous works
[7, 31] convert point clouds into voxel grids and process
them with 3D CNNs. The information loss happens dur-
ing voxelization because multiple points can be mapped
into one grid, and only one point is kept [34]. Such voxel-
based methods are not memory-efficient due to high compu-
tational requirements with increasing voxel resolution [19].
Therefore, projection-based methods [4, 48, 49, 50, 52]
are proposed to tackle this problem. The 3D point clouds
are first projected onto a 2D plane, and then 2D CNNs
are applied. DarkNet53 [3] applies a fully convolutional
neural network on the projected points after spherical pro-
jection. However, projection-based methods usually come
with loss of geometry information [34]. Recent point-based
methods operate on raw point clouds without a voxeliza-
tion process. For example, PointNet [28] uses Multi-Layer
Perception (MLP) to extract global features directly from
raw point clouds. PointNet++ [29] explored the ability to
learn local features from neighborhood points. Methods
[17, 45, 51] based on PointNet++ are efficient and effective
for small-scale point clouds, but the computational cost in-
creases greatly when it comes to large-scale points. YOGO
[53] accelerates KNN and ball query algorithms by dividing
points into several sub-regions and operating on the tokens
extracted from sub-regions. Wang et al. [44] proposes a
cylindrical projection method in LiDAR odometry.

16902



Figure 2. Structure overview of our proposed network. Given a pair of consecutive point clouds and images, down-sampling, correlation,
and up-sampling is performed in order. The network predicts flow in a coarse-to-fine manner with the refinement module. Feature fusion
between image and point cloud is performed before the refinement process. We adopt the residual scene flow prediction manner, by
predicting a residual flow from the flow embeddings, and then adding the residual flow to the coarse flow, generating a refined flow.

3. Efficient Learning of Dense Point Clouds

Let PC1 = {xi|xi ∈ R3}N1
i=1 and PC2 = {yj |yj ∈

R3}N2
j=1 represent the point clouds from a pair of consecu-

tive frames, the goal of scene flow estimation is to predict
the motion F = {∆xi|∆xi ∈ R3}N1

i=1 of every point in
PC1. Local feature aggregation from neighboring points is
widely used to extract high-level point features. To achieve
efficient learning of dense point clouds, we introduce a
dense format of point clouds, which brings in more prior
spatial information and reduces computational complexity.
Moreover, an efficient network with a new cost volume
module is constructed to further improve the performance.

3.1. 2D Representation of Dense Point Clouds

The original 3D point clouds (n × 3) are unordered,
where n is the number of points. Such representation pro-
vides no prior knowledge and requires much effort to struc-
ture the irregular data [34]. To avoid unnecessary calcula-
tions, a representation of point clouds with more prior spa-
tial information is essential for efficient processing of large-
scale point clouds. Inspired by a cylindrical projection tech-
nique from [44], we introduce a dense representation of 3D
point clouds to scene flow prediction. We conduct pixeliza-
tion by projecting the raw point clouds (x, y, z) onto the 2D
plane (u, v) with a calibration matrix.

Different from previous projection-based methods which
contain RGB and depth information in the pixel grids, we

Figure 3. Kernel Based Grouping. Purple pixel denotes the central
point x

′
i, and the black rectangle is the given kernel. Red pixels in

the third column are the selected neighbors and far-away outliers
are removed during the filtering process.

fill (u, v) with the 3D coordinates (x, y, z) of each point,
generating a H×W ×3 matrix, where H and W are height
and width of the projected image plane. Not every pixel
has its corresponding point in 3D space, therefore, we fill
empty pixels with (0, 0, 0). Our pixelization technique en-
ables us to preserve complete information from raw point
clouds compared to the interpolation in [9] and sampling
operation in [17, 51, 45]. It allows us to process the entire
LiDAR scans of the scene at once. Our scene flow predic-
tion network takes the entire point clouds as input like an
image, but with 3D coordinates instead of RGB value in the
corresponding pixels.

16903



Instead of applying 2D solutions on the projected point
clouds as other projection-based methods [5, 8], our ap-
proach addresses the scene flow prediction problem in a 3D
manner, yet with operations on the 2D plane, ensuring the
efficiency of 2D methods and effectiveness of 3D methods.

3.2. Scene Flow Prediction Network

Following the projection technique in Section 3.1, each
point’s coordinate is stored in the corresponding projected
pixel position, and all points of the scene are taken as input.
Since the resolution of point cloud is currently much higher
than that of randomly sampling a small number of points,
an efficient algorithm to reduce the computational cost is in
need. Therefore, we construct an efficient 3D scene flow
estimation network based on the 2D representation form as
shown in Fig. 2. We adopt a hierarchical structure to predict
the scene flow in a coarse-to-fine manner.

Kernel Based Neighbors Grouping: Upon the 2D map
of 3D point clouds, a kernel based grouping technique is
adopted from [44] to select neighboring points. In most
cases, two nearby points in 3D space are also close on 2D
plane after projection, which helps filter out many inappro-
priate neighborhood points without extra calculations.

We implement a CUDA operator to search for neighbor-
ing points in 3D space around the center on 2D plane. As
shown in Fig. 3, given the central point pc with correspond-
ing 2D coordinate (uc, vc), a 2D kernel is placed around the
center. We can easily locate its neighboring points within
the kernel on 2D plane. The kernel size for grouping is de-
noted as ks = [kh × kw], so we only need to search the
points within range: [uc − kw/2 : uc + kw/2, v − kh/2 :
v + kh/2] instead of the whole point clouds. This tech-
nique enables us to reduce the searching complexity from
O(n2) to O(n · ks). Unlike traditional 2D kernels that op-
erate on projected points directly, our approach allows us to
remove far-away outliers that could be harmful to feature
extraction. Then, the features of valid neighboring pixels
are aggregated to the center. The grouping and filtering op-
erations are conducted on 2D plane, but the feature extrac-
tion process happens in 3D space. As a result, our proposed
method shares the efficiency of 2D methods and accuracy
of 3D methods. It is noteworthy that larger kernel indicates
more searching time and reducing the kernel size results in
a lower latency. However, if the kernel size is too small,
the algorithm cannot find enough appropriate neighboring
points. Through experiments, we find that an appropriate
kernel size is usually between 3K ∼ 4K where K is the
number of neighbors to select.

Point Cloud Encoder: The input point clouds are stored in
a form of image, with the size of h×w × 3. For high-level
feature learning, we attempt to aggregate local features from
neighboring points to the central point using MLP.

Figure 4. Feature fusion between image and point cloud features.
We utilize a self-attention mechanism to align 2D and 3D features.

Given the raw point sets P = {xi|xi ∈ R3}h×w
i=1 , we first

select a number of central points Pc = {x′

i|x
′

i ∈ R3}h
′
×w

′

i=1

by setting a fixed stride. The corresponding features of P
and Pc are denoted as {fi|fi ∈ RC}h×w

i=1 and {f ′

i |f
′

i ∈
RC}h

′
×w

′

i=1 . We use kernel based grouping method to se-
lect K neighbors for each point x

′

i. Then, MLP is used to
extract the neighboring points’ features {(x′

ik, f
′

ik)|x
′

ik ∈
R3, f

′

ik ∈ RC}Kk=1, generating high-level features:

h
′

i = MaxPool
k

{MLP((x
′

ik − x
′

i)⊕ f
′

ik)}. (1)

Multi-modal Feature Fusion: Given the image fea-
tures Fi ∈ RH×W×C1 and point cloud features Fp ∈
RH×W×C2 , we utilize a self-attention mechanism to per-
form feature fusion between two modalities to improve the
accuracy of scene flow prediction as shown in Fig. 4. Since
the point cloud and image share the same size of H × W ,
each image pixel corresponds to a point and vice versa.
Therefore, it is straightforward to integrate color informa-
tion from 2D images to guide the prediction of 3D point-
wise motion with the feature fusion module.

Attentive Feature Correlation of Point Clouds: After ob-
taining the high-level features of PC1 and PC2, we need to
compute their motion correlation. We use the attentive cost
volume in [45] to learn the hidden motion pattern between
two consecutive frames of point clouds.

Given point clouds PC1 = {(xi, fi)|xi ∈ R3, fi ∈
RC}N1

i=1 and PC2 = {(yj , gj)|yj ∈ R3, gj ∈ RC}N2
j=1,

the features of neighboring PC2 are first aggregated to the
centering PC1 via attention mechanism and each neighbor
is weighed differently. In the second stage, the features of
aggregated PC1 will be updated again by aggregating the
neighboring PC1, generating the attentive flow embedding
features E = {(xi, ei)|xi ∈ R3, ei ∈ RC

′

}N1
i=1. We re-

implement the double attentive flow embedding layers un-
der 2D representation to accelerate the correlation between
two frames of projected point clouds.

Scene Flow Predictor: The scene flow predictor takes three
inputs: warped PC1 features, attentive flow embedding fea-
tures and the upsampled coarse dense flow embedding fea-
tures. Following [51, 45, 9], these three inputs are concate-
nated together and then processed by a shared MLP, gener-
ating the refined flow embedding features.

16904



Figure 5. Residual refinement module. Set Upconv denotes up-
sampling layers with learnable parameters.

Hierarchical Flow Refinement: We adopt the pyramid
structure for supervised learning of scene flow estimation.
Both the low-level and high-level scene flow is used to com-
pute the training loss. We first predict a flow with the least
number of points from the highest-level features. Then
level by level, scene flow with higher resolution is predicted
through up-sampling and refinement modules. For up-
sampling, similar operations in equation (1) are performed
among low-resolution points for high-resolution points to
obtain neighboring features b

′

i, which are then concatenated
with the fused features s

′

i of central points. A shared MLP
is used to generate up-sampled features.

After up-sampling operation, we obtain a coarse flow
embeddings of higher-resolution points. Next, a warping
operation in Section 3.3 is adopted to generate the flow re-
embedding features. As shown in Fig. 5, residual scene
flow can be predicted by the scene flow predictor. Finally,
we obtain a refined flow of higher accuracy by adding the
estimated residual flow to the coarse flow.

3.3. A New Cost Volume with Warping Projection

Assuming that p ∈ R3 of PC1 flows to q ∈ R3 of
PC2, their corresponding 2D coordinates are (u1, v1) and
(u2, v2). When there is a large motion of p across frames,
(u1, v1) is far away from (u2, v2). This requires a large
searching kernel because we aim to correctly locate the cor-
responding (u2, v2) in the bounding kernel around (u1, v1).
However, increasing kernel size leads to longer searching
time and heavier computational cost.

To address the issue, we incorporate the warping idea by
adding the predicted coarse flow Fc to PC1, which gener-
ates PC1w = {p̂|p̂ ∈ R3}Ni=1. The warped points PC1w

are closer to PC2 than the original PC1. Next, the cost
volume is computed between PC1w and PC2 to predict a
residual flow F∆. By iteratively refining the predicted flow,
the warped points become progressively closer to PC2. We
can obtain a more accurate flow Fa by adding the residual
flow to the coarse flow level by level.

Fa = Fc +

l∑
i=1

F∆i (2)

Figure 6. Cost volume computation with warping projection tech-
nique. The searching range can be reduced significantly.

In our setting, p and q are stored in a h × w × 3 matrix,
located at their corresponding 2D grid (u1, v1) and (u2, v2)
respectively. The warped points are obtained by adding the
coarse flow Fc (h×w× 3) to PC1. In this way, p̂ = p+ fc
is stored in (u1, v1) rather than their corresponding 2D grid
(uw, vw). We present a new cost volume module equipped
with a warping projection technique to deal with this prob-
lem. As illustrated in Fig. 6, we create a h× w × 2 matrix
to store the warping index (uw, vw) of every warped point
in PC1w. (uw, vw) acts as an indexing variable between
(u1, v1) and (u2, v2) during the calculation of cost volume.
For each warped point in PC1w located at (u1, v1), a ker-
nel is placed around the corresponding indexing position
(uw, vw) on PC2. Within the kernel, the distances between
PC1w and PC2 are calculated, and distant PC2 points are
filtered out while K neighbors are retained.

During the computation of cost volume, each warped
point has a corresponding 2D position due to our warping
projection method. If we directly re-project PC1w to get
(uw, vw) and store them in the corresponding pixel, multi-
ple points in PC1w could be mapped into the same grid and
extra points would be merged. Our technique effectively
avoids the loss of points resulted from merging operations.
As a result, the complete point could be preserved. Our de-
signed cost volume module also eliminates the need for a
large kernel, thereby ensuring the processing efficiency.

4. Experiments
4.1. FlyingThings3D

Data Preprocessing: FlyingThings3D dataset is a synthetic
dataset, consisting of 19640 training samples and 3824 test-
ing samples. Following the preprocessing methods de-
scribed in [51, 9, 45], the point clouds and ground truth
scene flow are constructed from the depth map and opti-
cal flow. We remove points with depth exceeding 35m as
[51, 9, 45]. We first train the model on a quarter of Fly-
ingThings3D dataset to reduce training time, and then fine-
tune the model on the complete dataset.

16905



Method Input 2D Metrics 3D Metrics
EPE2D ACC1px EPE3D ACC0.05 ACC0.10

FlowNet2.0 [10] Image 5.05 72.8 % - - -
PWC-Net [33] Image 6.55 64.3 % - - -

RAFT [35] Image 3.12 81.1 % - - -

FlowNet3D [17] LiDAR - - 0.169 25.4 % 57.9 %
PointPWC-Net [51] LiDAR - - 0.132 44.3 % 67.4 %

FLOT [27] LiDAR - - 0.156 34.3 % 64.3 %

RAFT-3D [36] Image+Depth 2.37 87.1 % 0.094 80.6 % -
CamLiFlow [16] Image+LiDAR 2.20 87.3 % 0.061 85.6 % 91.9 %

Ours Image+LiDAR 2.02 85.9 % 0.058 86.7 % 93.2 %

Table 1. Quantitative results compared with recent methods on the FlyingThings3D dataset [21]. The performances are evaluated on all
points (including occluded points and non-occluded points).

Figure 7. Qualitative visualization results of scene flow estimation. We compare our methods with FlowNet3D [17], HPLFlowNet [9] and
PointPWC-Net [51] and FLOT [27]. Blue points represent PC1. Green points represent accurate predictions and red points represent
inaccurate predictions. (Accuracy is measured using ACC0.10.)

Evaluation Metrics: For a fair comparison, we adopt
the following evaluation metrics as [17, 51, 9, 42]: EPE3D,
ACC.05, ACC0.10 for 3D scene flow evaluation and EPE2D,
ACC1px for 2D optical flow evaluation.

Quantitative results: The quantitative results on FlyingTh-
ings3D dataset are listed in Tab. 1. We compare our method
with other baselines [10, 33, 35, 17, 51, 27, 32, 36, 16]
in terms of the evaluation metrics described above. Re-
sults show that our method demonstrates comparable per-
formance both in 2D metrics and 3D metrics.

Qualitative results: To demonstrate the effectiveness of
our method for 3D scene flow prediction, we compare the
performance of our model with other point-based methods
[17, 9, 51, 27] on FlyingThings3D dataset. The qualitative
results shown in Fig. 7 show that our method achieves scene
flow prediction with least errors.

4.2. KITTI Scene Flow 2015

Training: KITTI Scene Flow dataset contains 200 train-
ing samples and 200 testing samples. Due to limited train-
ing samples, the model trained on FlyingThings3D are fine-

tuned on KITTI dataset. Since KITTI dataset contains im-
ages with different size, we pad the images and the pro-
jected point clouds to a uniform size of 376× 1242.

Evaluation: The dense depth maps are obtained from
LEAStereo [6] for testing. We reconstruct point clouds
from the estimated depth with the calibration parameters.
We submit our results to the official KITTI website, which
adopts the percentage of outliers as evaluation metrics.

Comparison with State-of-the-Arts: The quantitative re-
sults on KITTI Scene Flow dataset are listed in Tab. 2,
which show that our method outperforms prior-arts. The
visualization results are illustrated in Fig. 8.

4.3. Implementation Details

All experiments are conducted on NVIDIA Quadro RTX
8000 GPU with PyTorch 1.10.0. We use Adam [13] as our
optimizer with β1 = 0.9, β2 = 0.999. The initial learn-
ing rate of 0.001 decays exponentially with a decaying rate
γ = 0.8, and the decaying step is 80. Our designed network
adopts the hierarchical structure, where both low-level and
high-level flow are predicted. The optical flow and scene

16906



Method Input Disparity 1 Disparity 2 Optical Flow Scene Flow
bg fg all bg fg all bg fg all bg fg all

SSF [30] Stereo 3.55 8.75 4.42 4.94 17.48 7.02 5.63 14.71 7.14 7.18 24.58 10.07
Sense [12] Stereo 2.07 3.01 2.22 4.90 10.83 5.89 7.30 9.33 7.64 8.36 15.49 9.55
PRSM [39] Stereo 3.02 10.52 4.27 5.13 15.11 6.79 5.33 13.40 6.68 6.61 20.79 8.97
ACOSF [14] Stereo 2.79 7.56 3.58 3.82 12.74 5.31 4.56 12.00 5.79 5.61 19.38 7.90
DRISF [20] Stereo 2.16 4.49 2.55 2.90 9.73 4.04 3.59 10.40 4.73 4.39 15.94 6.31
M-FUSE [22] Stereo 1.40 2.91 1.65 2.14 8.10 3.13 2.66 7.47 3.46 3.43 11.84 4.83
OpticalExp [54] Mono + LiDAR 1.48 3.46 1.81 3.39 8.54 4.25 5.83 8.66 6.30 7.06 13.44 8.12
ISF [2] Stereo + LiDAR 4.12 6.17 4.46 4.88 11.34 5.95 5.40 10.29 6.22 6.58 15.63 8.08
RigidMask+ISF [55] Stereo + LiDAR 1.53 3.65 1.89 2.09 8.92 3.23 2.63 7.85 3.50 3.25 13.08 4.89
RAFT-3D [36] Mono + Depth 1.48 3.46 1.81 2.51 9.46 3.67 3.39 8.79 4.29 4.27 13.27 5.77
CamLiFlow [16] Mono + LiDAR 1.48 3.46 1.81 1.92 8.14 2.95 2.31 7.04 3.10 2.87 12.23 4.43

Ours Mono + LiDAR 1.40 2.91 1.65 1.90 7.50 2.84 2.27 7.10 3.07 2.87 11.69 4.34

Table 2. Quantitative results compared with recent methods on KITTI Scene Flow dataset [24] evaluated on all pixels (including occluded
pixels). In the table, bg and fg denote the background and foreground, respectively. A lower value indicates better performance.

Figure 8. Qualitative visualization results of scene flow estimation on testing KITTI dataset.

flow are predicted similarly, both in a pyramid, warping,
and cost volume (PWC) structure as Fig. 2. Therefore,
we adopt a joint multi-scale supervised manner to train the
model by adding optical flow loss and scene flow loss. Let
F l = {f l

i |f l
i ∈ R3}Nl

i=1 be the predicted flow at level l, and
F̂ l = {f̂ l

i |f̂ l
i ∈ R3}Nl

i=1 be the corresponding ground truth
flow. The training loss of optical flow and scene flow is
calculated in the same way as follows:

loss =

4∑
l=1

wl
1

Nl

Nl∑
i=1

∥∥∥f̂ l
i − f l

i

∥∥∥
2
, (3)

where Nl denotes the number of valid points or pixels at
level l. wl denotes the weighting factor of losses at different
levels, and w1 = 0.1, w2 = 0.2, w3 = 0.3, w4 = 0.8.

4.4. Ablation Study

We conduct a series of ablation studies to verify the ef-
fectiveness of each component of our proposed network on
the validation set of FlyingThings3D dataset.

Dense or Sparse Representation: We compare the per-
formances of our method with or without 2D dense repre-
sentation of point clouds. For experiments without the 2D

dense representation, following [51, 45], we randomly se-
lect 8192 points and take them as input for the neural net-
work. As 2D representation allows us to input more infor-
mation, the model using dense representation outperforms
the sparse 3D representation as shown in Tab. 3 (a).

Warping Projection in Cost Volume: For experiments
without our proposed warping projection technique, we
project directly the PC1w onto 2D plane and merge mul-
tiple projected points in the same grid. The flow embedding
features for merged points are obtained from interpolation.
Results in Tab. 3 (b) demonstrate that the warping projec-
tion technique is useful in avoiding information loss and
thus improve the model’s performance.

Attentive Feature Fusion: For experiments without fea-
ture fusion, the network takes only point clouds as input.
Non-attentive feature fusion simply concatenates the im-
age features and point cloud features. Our feature fusion
approach utilizes an attention mechanism to aggregate fea-
tures in a pixel-point manner. We find that feature fusion
improves prediction accuracy, and the attention-based fu-
sion reports the best performance, as shown in Tab. 3 (c).

Kernel Based Grouping: For experiments without kernel
based grouping, the network use KNN algorithm to group

16907



2D Metrics 3D MetricsMethod EPE2D ACC1px EPE3D ACC0.05 ACC0.10 Outliers

(a) Ours (w/o projection, only 8192 input points) 2.23 82.2 % 0.061 84.3 % 92.7 % 25.0 %
Ours (full, with projection, all points) 2.02 85.9 % 0.058 86.7 % 93.2 % 20.8 %

(b) Ours (w/o warping operation) 12.36 32.4 % 0.433 5.8 % 20.0 % 97.6 %
Ours (w/o warping projection in cost volume) 4.53 74.9 % 0.105 49.9 % 80.9 % 57.5 %
Ours (full, with warping projection) 2.02 85.9 % 0.058 86.7 % 93.2 % 20.8 %

(c) Ours (w/o feature fusion) 4.32 76.8 % 0.081 69.5 % 87.6 % 40.1 %
Ours (with concatenation feature fusion) 3.26 81.9 % 0.064 85.4 % 92.6 % 21.5 %
Ours (full, with attentive feature fusion) 2.02 85.9 % 0.058 86.7 % 93.2 % 20.8 %

(d) Ours (w/o kernel-based grouping) 2.09 84.2 % 0.056 85.9 % 93.5 % 19.9 %
Ours (full, with kernel-based grouping) 2.02 85.9 % 0.058 86.7 % 93.2 % 20.8 %

Table 3. The ablation study results of 3D scene flow learning on FlyingThings3D dataset [21].

neighbors among all points. As shown in Tab. 3 (d), similar
or even better performance is obtained because the search-
ing range includes all points. However, the searching pro-
cess becomes computationally expensive. Therefore, we
compare the latency of our model with and without the ker-
nel based grouping technique. The results in Tab. 4 show
that the efficiency drops by a factor of 20.

4.5. Analysis

The experimental results demonstrate that our proposed
method achieves comparable performance on both Fly-
ingThings3D and KITTI dataset. We attribute this improve-
ment to three key components of our approach: First, our
approach benefits from the dense representation. Previous
methods often take a sparse set of points as input, typically
8192 points, which is much less than the total points in a
scene. This downsampling operation leads to a loss of de-
tails and may result in an incomplete representation of the
scene. In contrast, we store unordered 3D points in regular
2D grids. The dense representation provides a more precise
structure of the scene, allowing us to preserve complete in-
formation without losing points. Second, the proposed cost
volume with the warping projection technique significantly
reduces the size of the search kernel, thus improving the
computational efficiency. Unlike previous warping meth-
ods that directly project the warped points onto 2D plane
and merge extra points projected into the same grid, our
new warping projection technique enables us to avoid such
information loss by storing the corresponding warped 2D
coordinates as intermediate indexes. Third, the multi-modal
feature fusion further improves the motion prediction. The
integration of image and point cloud is advantageous as they
are complementary to each other. Images contain rich color
information, while point clouds provide abundant 3D geo-
metrical information. Our attentive feature fusion between
these modalities contributes to a more precise and distinc-
tive representation of points. Overall, our approach lever-
ages more input data and reduces information loss to im-
prove the prediction accuracy of point-wise motion.

Methods Input point number Size (MB) Time (ms)

HPLFlowNet [9] 8192 231.8 93.67
HPLFlowNet [9] 49152 231.8 132.58
PointPWC-Net [51] 8192 30.1 100.05
PointPWC-Net [51] 49152 30.1 2643.61
Ours (w/o KBG) 56269 (480 × 270) 20.1 1324.29
Ours 56269 (480 × 270) 20.1 52.91

Table 4. Comparison of model size and running time. KBG de-
notes the Kernel Based Grouping technique.

Latency: We further evaluate the performance of our model
by comparing the running time and size with other meth-
ods. As shown in Tab. 4, our framework outperforms oth-
ers in terms of efficiency. Since the number of valid points
may vary across frames, we calculate the average number
of valid points in the validation split of the dataset.

Limitations: The projection-based framework requires the
input point cloud to be 2.5D format, otherwise multiple
points could be mapped into the same grid. In the future,
we plan to introduce hash map to store multiple points to
address this issue. Currently, our method is applicable to
FlyingThings3D and KITTI dataset since the point clouds
are converted from depth map. Considering the surface-
scanning characteristic of LiDAR sensor, our method is still
practical in autonomous driving.

5. Conclusion
In this paper, we propose DELFlow, allowing us to take

the entire point clouds of a scene as input and efficiently
estimate scene flow at once. To preserve the complete in-
formation of raw point clouds without losing details, we in-
troduce a cost volume module based on warping projection.
Besides, the attentive feature fusion from images and point
clouds further improves the accuracy. By leveraging more
data input and reducing information loss, our approach out-
performs prior-arts in efficiency and effectiveness.

Acknowledgement. This work was supported in part
by the Natural Science Foundation of China under Grant
62225309, 62073222, U21A20480 and U1913204.

16908



References
[1] Andrew Adams, Jongmin Baek, and Myers Abraham Davis.

Fast high-dimensional filtering using the permutohedral lat-
tice. In Computer graphics forum, volume 29, pages 753–
762. Wiley Online Library, 2010. 2

[2] Aseem Behl, Omid Hosseini Jafari, Siva
Karthik Mustikovela, Hassan Abu Alhaija, Carsten Rother,
and Andreas Geiger. Bounding boxes, segmentations and
object coordinates: How important is recognition for 3d
scene flow estimation in autonomous driving scenarios? In
ICCV, pages 2574–2583, 2017. 7

[3] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In ICCV, pages 9297–9307, 2019. 2

[4] A. Boulch, B. Le Saux, and N. Audebert. Unstructured point
cloud semantic labeling using deep segmentation networks.
In Proceedings of the Workshop on 3D Object Retrieval,
page 17–24. Eurographics Association, 2017. 1, 2

[5] Yuning Chai, Pei Sun, Jiquan Ngiam, Weiyue Wang, Ben-
jamin Caine, Vijay Vasudevan, Xiao Zhang, and Dragomir
Anguelov. To the point: Efficient 3d object detection in the
range image with graph convolution kernels. In Proc. IEEE
Conf. Comput. Vis. Pattern Recognit, pages 16000–16009,
2021. 4

[6] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yuchao
Dai, Xiaojun Chang, Hongdong Li, Tom Drummond, and
Zongyuan Ge. Hierarchical neural architecture search for
deep stereo matching. In Proc. Adv. Neural Inform. Process.
Syst., pages 22158–22169, 2020. 6

[7] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In European
conference on computer vision, pages 628–644. Springer,
2016. 1, 2

[8] Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and
Zhaoxiang Zhang. Rangedet: In defense of range view for
lidar-based 3d object detection. In Proc. Conf. Comput. Vis.,
pages 2918–2927, 2021. 4

[9] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and
Panqu Wang. Hplflownet: Hierarchical permutohedral lattice
flownet for scene flow estimation on large-scale point clouds.
In Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pages
3254–3263, 2019. 1, 2, 3, 4, 5, 6, 8

[10] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit, July 2017. 6

[11] Varun Jampani, Martin Kiefel, and Peter V Gehler. Learning
sparse high dimensional filters: Image filtering, dense crfs
and bilateral neural networks. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit, pages 4452–4461, 2016. 2

[12] Huaizu Jiang, Deqing Sun, Varun Jampani, Zhaoyang Lv,
Erik Learned-Miller, and Jan Kautz. Sense: A shared en-
coder network for scene-flow estimation. In ICCV, pages
3195–3204, 2019. 7

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR, 2015. 6

[14] Congcong Li, Haoyu Ma, and Qingmin Liao. Two-stage
adaptive object scene flow using hybrid cnn-crf model. In
2020 25th International Conference on Pattern Recognition
(ICPR), pages 3876–3883. IEEE, 2021. 7

[15] Ruibo Li, Guosheng Lin, Tong He, Fayao Liu, and Chunhua
Shen. Hcrf-flow: Scene flow from point clouds with con-
tinuous high-order crfs and position-aware flow embedding.
In Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pages
364–373, 2021. 2

[16] Haisong Liu, Tao Lu, Yihui Xu, Jia Liu, Wenjie Li, and Lijun
Chen. Camliflow: bidirectional camera-lidar fusion for joint
optical flow and scene flow estimation. In Proc. IEEE Conf.
Comput. Vis. Pattern Recognit, pages 5791–5801, 2022. 2,
6, 7

[17] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit, pages 529–537,
2019. 1, 2, 3, 6

[18] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteor-
net: Deep learning on dynamic 3d point cloud sequences. In
ICCV, pages 9246–9255, 2019. 1

[19] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. Advances in Neural
Information Processing Systems, 32, 2019. 2

[20] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and
Raquel Urtasun. Deep rigid instance scene flow. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit, pages 3614–
3622, 2019. 2, 7

[21] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proc. IEEE Conf.
Comput. Vis. Pattern Recognit, pages 4040–4048, 2016. 6, 8

[22] Lukas Mehl, Azin Jahedi, Jenny Schmalfuss, and Andrés
Bruhn. M-fuse: Multi-frame fusion for scene flow estima-
tion. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 2020–2029, 2023. 7

[23] Moritz Menze and Andreas Geiger. Object scene flow for
autonomous vehicles. In Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit, pages 3061–3070, 2015. 2

[24] Moritz Menze, Christian Heipke, and Andreas Geiger. Ob-
ject scene flow. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 140:60–76, 2018. 7

[25] Hermina Petric Maretic, Mireille El Gheche, Giovanni
Chierchia, and Pascal Frossard. Got: an optimal transport
framework for graph comparison. Advances in Neural Infor-
mation Processing Systems, 32, 2019. 2

[26] Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-
wasserstein averaging of kernel and distance matrices. In In-
ternational Conference on Machine Learning, pages 2664–
2672. PMLR, 2016. 2

[27] Gilles Puy, Alexandre Boulch, and Renaud Marlet. Flot:
Scene flow on point clouds guided by optimal transport. In
European conference on computer vision, pages 527–544.
Springer, 2020. 2, 6

16909



[28] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 652–660, 2017. 1, 2

[29] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Proc. Adv. Neural Inf. Pro-
cess. Syst., pages 5099–5108, 2017. 1, 2

[30] Zhile Ren, Deqing Sun, Jan Kautz, and Erik Sudderth. Cas-
caded scene flow prediction using semantic segmentation. In
2017 International Conference on 3D Vision (3DV), pages
225–233. IEEE, 2017. 7

[31] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
Octnet: Learning deep 3d representations at high resolutions.
In Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pages
3577–3586, 2017. 1, 2

[32] Rishav Rishav, Ramy Battrawy, René Schuster, Oliver
Wasenmüller, and Didier Stricker. Deeplidarflow: A deep
learning architecture for scene flow estimation using monoc-
ular camera and sparse lidar. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
10460–10467. IEEE, 2020. 6

[33] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit, pages 8934–8943, 2018. 2, 6

[34] Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin,
Hanrui Wang, and Song Han. Searching efficient 3d architec-
tures with sparse point-voxel convolution. In European con-
ference on computer vision, pages 685–702. Springer, 2020.
2, 3

[35] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020. 2, 6

[36] Zachary Teed and Jia Deng. Raft-3d: Scene flow using rigid-
motion embeddings. In Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit, pages 8375–8384, 2021. 2, 6, 7

[37] Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi
Flamary. Optimal transport for structured data with appli-
cation on graphs. In International Conference on Machine
Learning, pages 6275–6284. PMLR, 2019. 2

[38] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piece-
wise rigid scene flow. In ICCV, pages 1377–1384, 2013. 2

[39] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3d
scene flow estimation with a piecewise rigid scene model.
IJCV, 115(1):1–28, 2015. 2, 7

[40] Guangming Wang, Yunzhe Hu, Zhe Liu, Yiyang Zhou,
Masayoshi Tomizuka, Wei Zhan, and Hesheng Wang. What
matters for 3d scene flow network. In European Conference
on Computer Vision, pages 38–55. Springer, 2022. 1

[41] Guangming Wang, Yunzhe Hu, Xinrui Wu, and Hesheng
Wang. Residual 3-d scene flow learning with context-aware
feature extraction. IEEE Transactions on Instrumentation
and Measurement, 71:1–9, 2022. 1

[42] Guangming Wang, Chaokang Jiang, Zehang Shen, Yanzi
Miao, and Hesheng Wang. Sfgan: Unsupervised generative
adversarial learning of 3d scene flow from the 3d scene self.
Advanced Intelligent Systems, 4(4):2100197, 2022. 6

[43] Guangming Wang, Xiaoyu Tian, Ruiqi Ding, and Hesheng
Wang. Unsupervised learning of 3d scene flow from monoc-
ular camera. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 4325–4331. IEEE,
2021. 1

[44] Guangming Wang, Xinrui Wu, Shuyang Jiang, Zhe Liu, and
Hesheng Wang. Efficient 3d deep lidar odometry. PAMI,
2021. 2, 3, 4

[45] Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang.
Hierarchical attention learning of scene flow in 3d point
clouds. IEEE Transactions on Image Processing, 30:5168–
5181, 2021. 1, 2, 3, 4, 5, 7

[46] Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang.
Pwclo-net: Deep lidar odometry in 3d point clouds using
hierarchical embedding mask optimization. In Proc. IEEE
Conf. Comput. Vis. Pattern Recognit, pages 15910–15919,
2021. 1

[47] Sukai Wang, Yuxiang Sun, Chengju Liu, and Ming Liu.
Pointtracknet: An end-to-end network for 3-d object detec-
tion and tracking from point clouds. IEEE Robotics and Au-
tomation Letters, 5(2):3206–3212, 2020. 1

[48] Zining Wang, Wei Zhan, and Masayoshi Tomizuka. Fusing
bird’s eye view lidar point cloud and front view camera im-
age for 3d object detection. In 2018 IEEE intelligent vehicles
symposium (IV), pages 1–6. IEEE, 2018. 1, 2

[49] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer.
Squeezeseg: Convolutional neural nets with recurrent crf for
real-time road-object segmentation from 3d lidar point cloud.
In 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 1887–1893. IEEE, 2018. 1, 2

[50] Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and
Kurt Keutzer. Squeezesegv2: Improved model structure and
unsupervised domain adaptation for road-object segmenta-
tion from a lidar point cloud. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pages 4376–4382.
IEEE, 2019. 2

[51] Wenxuan Wu, Zhiyuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: A coarse-to-fine network for super-
vised and self-supervised scene flow estimation on 3d point
clouds. In ECCV, 2019. 1, 2, 3, 4, 5, 6, 7, 8

[52] Chenfeng Xu, Bichen Wu, Zining Wang, Wei Zhan, Peter
Vajda, Kurt Keutzer, and Masayoshi Tomizuka. Squeeze-
segv3: Spatially-adaptive convolution for efficient point-
cloud segmentation. In European Conference on Computer
Vision, pages 1–19. Springer, 2020. 2

[53] Chenfeng Xu, Bohan Zhai, Bichen Wu, Tian Li, Wei Zhan,
Peter Vajda, Kurt Keutzer, and Masayoshi Tomizuka. You
only group once: Efficient point-cloud processing with to-
ken representation and relation inference module. In 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4589–4596. IEEE, 2021. 2

[54] Gengshan Yang and Deva Ramanan. Upgrading optical
flow to 3d scene flow through optical expansion. In Proc.
IEEE Conf. Comput. Vis. Pattern Recognit, pages 1334–
1343, 2020. 7

[55] Gengshan Yang and Deva Ramanan. Learning to segment
rigid motions from two frames. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit, pages 1266–1275, 2021. 7

16910


