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Abstract

Event cameras are a type of novel neuromorphic sen-
sor that has been gaining increasing attention. Existing
event-based backbones mainly rely on image-based designs
to extract spatial information within the image transformed
from events, overlooking important event properties like
time and polarity. To address this issue, we propose a novel
Group-based vision Transformer backbone for Event-based
vision, called Group Event Transformer (GET), which de-
couples temporal-polarity information from spatial infor-
mation throughout the feature extraction process. Specifi-
cally, we first propose a new event representation for GET,
named Group Token, which groups asynchronous events
based on their timestamps and polarities. Then, GET ap-
plies the Event Dual Self-Attention block, and Group Token
Aggregation module to facilitate effective feature commu-
nication and integration in both the spatial and temporal-
polarity domains. After that, GET can be integrated with
different downstream tasks by connecting it with vari-
ous heads. We evaluate our method on four event-based
classification datasets (Cifar10-DVS, N-MNIST, N-CARS,
and DVS128Gesture) and two event-based object detection
datasets (1Mpx and Gen1), and the results demonstrate that
GET outperforms other state-of-the-art methods. The code
is available at https://github.com/Peterande/
GET-Group-Event-Transformer.

1. Introduction

Event cameras are a type of bio-inspired vision sensors
that capture per-pixel illumination changes asynchronously.
Compared with traditional frame cameras, event cameras
offer many merits like high temporal resolution (>10K
fps), high dynamic range (>120 dB), and low power con-
sumption (<10 mW) [20]. Many applications, such as ob-
ject classification [39, 27] and high-speed object detection
[2, 73, 47], can take advantage of this kind of camera, espe-
cially when power consumption is limited or in the presence
of challenging motion and lighting conditions.
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Figure 1. Group Tokens are generated in Stage 1 according to
timestamps and polarities of events. In GET, these tokens are ef-
fectively communicated and integrated, making full use of impor-
tant event information while maintaining information decoupling.

The event data are stored as asynchronous arrays, con-
taining the location, polarity, and time of each illumina-
tion change. In contrast, traditional frames represent vi-
sual information as a matrix of pixel values captured at a
fixed rate. As a result, traditional image-based neural net-
works can not be directly applied to event data. To ad-
dress this issue, several works have been proposed to con-
vert events into image-like representations. These repre-
sentations, such as voxel grid [76], event histogram [46],
and time surface [30, 55, 26], are then fed to deep neural
networks [23, 18, 21, 38]. More recent works leverage the
successful Transformer architecture to extract features di-
rectly from the above event representations [72, 62, 49, 24],
or from the feature maps obtained by CNN-based back-
bones [56, 63, 75]. Although these networks have fair per-
formance, they are still limited by their reliance on image-
based feature extraction designs [16, 33, 25, 43]. These de-
signs mainly extract spatial information and can not fully
utilize the temporal and polarity information contained in
events. There are also some works trying to bridge this gap.
For example, Spiking neural networks (SNN) are utilized
to capture temporal information by representing event data
as spikes that occur over time and propagate through neu-
rons [64, 6, 40]. Graph neural networks (GNN) are also
adopted to model the dynamic interactions between nodes
in an event graph over time [34, 51]. However, these two
kinds of methods either require specialized hardware or sac-
rifice performance.

In this work, we revisit the problem of event-based fea-
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ture extraction and attempt to fully utilize temporal and
polarity information of events with a Transformer-based
backbone, while preserving its spatial modeling capabil-
ity. To this end, we first propose a novel event represen-
tation called Group Token, which groups events according
to their timestamps and polarities. Then we propose Group
Event Transformer (GET) to extract features from Group
Tokens. We design two key modules for GET: Event Dual
Self-Attention (EDSA) block and Group Token Aggrega-
tion (GTA) module. The EDSA block acts as the main self-
attention module to extract correlations between different
pixels, polarities, and times within Group Tokens. It main-
tains efficient and effective feature extraction by perform-
ing local Spatial Self-Attention and Group Self-Attention
and establishing dual residual connections. GTA is placed
between two stages to achieve reliable spatial and group-
wise token aggregation. It achieves global communication
in both the spatial and temporal- polarity domains by us-
ing a novel overlapping group convolution. Figure 1 shows
the overview of a 3-stage GET network with the initial
group number of 6. The grouped tokens are fused to pro-
duce larger groups, in which the features gradually gain
larger spatial and temporal-polarity receptive fields, helping
to better characterize objects.

These novel designs make GET achieve state-of-the-
art performance on four event-based classification datasets
(84.8% on Cifar10-DVS, 99.7% on N-MNIST, 96.7% on
N-CARS, and 97.9% on DVS128Gesture) and two event-
based object detection datasets (47.9% and 48.4% mAP on
Gen1 and 1Mpx). These results all demonstrate our pro-
posed network is beneficial for event-based feature extrac-
tion. Our contributions are summarized in the following.

• We propose a new event representation, called Group
Token, that groups asynchronous events based on their
timestamps and polarities.

• We devise the Event Dual Self-Attention block, en-
abling effective feature communication in both the spa-
tial and temporal-polarity domains.

• We design the Group Token Aggregation module,
which uses the overlapping group convolution to in-
tegrate and decouple information in both domains.

• Based on the above representation and modules, we
develop a powerful Transformer backbone for event-
based vision, called GET. Experimental results on both
classification and object detection tasks demonstrate
its superiority.

2. Related Work
Event Representation. As the event streams are asyn-
chronous and sparse, it is necessary to convert them into ap-
propriate alternative representations. Image-like event rep-
resentations are widely utilized, such as voxel grid [76],

event histogram [46] and time surface [30, 55]. However,
these representations discard partial information of events,
leading to a degradation in performance. There are also
works introducing learning-based representations [5, 45],
but these approaches introduce redundancy and latency to
the network. Additionally, some recent works have accom-
plished graph-based representations [34, 51], but have yet
to yield satisfactory performance.
Self-Attention Mechanism. Self-attention mechanism [60,
15] is an integral part of deep neural networks, which was
first widely used in the field of natural language processing
(NLP). In the computer vision community, Vision Trans-
former (ViT) [16] is a seminal work that contributes an art-
ful vision backbone by applying self-attention to images.
Dual attention [19] introduces a novel self-attention method
that extracts channel information and saves it into the spa-
tial domain and greatly improves performance. But it is
still limited by the high computational costs of global at-
tention calculation, and its direct fusion operation of spatial
and channel feature maps also results in interference. More
recently, many variants of ViT [58, 69, 25, 33, 43] are pro-
posed to improve performance and data/computation effi-
ciency by introducing the local self-attention operation or
building hierarchical Transformer architectures.
Event-Based Transformer. Transformer networks have
gained popularity in various event-based tasks, such as clas-
sification [50], object detection [24], and video reconstruc-
tion [63]. Some of them employ self-attention operations
on feature maps obtained through CNN-based backbones
[56, 75, 63], as global attention mechanisms they adopt are
computationally heavy. Recently, some studies have fo-
cused on directly extracting features from event representa-
tions [72, 62, 49, 24]. However, their Transformer designs
are often unable to make full use of the provided event prop-
erties like time and polarity.

3. Method

3.1. Main Architecture

Our proposed GET is a 3-stage Transformer-based net-
work, the architecture of which is illustrated in Figure 2(a).
Three modules are utilized within stages: GTE module,
EDSA block, and GTA module. At Stage 1, raw events are
embedded into Group Tokens via GTE. Then the tokens are
fed to 2 sequential EDSA blocks. At Stage 2&3, one GTA
module is first deployed, followed by 2 and 8 EDSA blocks,
respectively. The structure of an EDSA block, which com-
bines an EDSA layer, followed by an MLP layer and nor-
malization layers, is shown in Figure 2(b). It partitions
Group Tokens and applies local self-attention in both spatial
and temporal-polarity dimensions. The GTA module, which
involves overlapping group convolution followed by max
pooling, is employed to integrate and decouple spatial and
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Figure 2. (a) The architecture of a 3-stage GET; (b) The EDSA block with dual residual connections, blue arrows mark the feature maps
after GSA refinement. (All figures omit the normalization and activation layers.)

temporal-polarity information between two stages. Resid-
ual connections of feature maps after Group Self-Attention
refinement are marked by blue arrows, and there are no
cross-stage residual connections. The output feature maps
are sent to heads of different downstream tasks like classifi-
cation and object detection.

3.2. Group Token Embedding

The Group Token Embedding (GTE) module is designed
to convert an event stream to group tokens. The event
streams from an event camera with the H ×W resolution,
are described as (⃗t, p⃗, x⃗, y⃗), where t⃗, p⃗ and (x⃗, y⃗) are the
time, polarity and location coordinates. We first discretize
the time of asynchronous events to K intervals and encode
location coordinates into the rank of P ×P patches and po-
sitions of patches. We also define discretized time d⃗t, patch
rank p⃗r, and patch position p⃗os as: d⃗t = ⌊K × (⃗t− t0) / (tend − t0 + 1)⌋

p⃗r = ⌊x⃗ mod P ⌋+ ⌊y⃗ mod P ⌋ × P
p⃗os = ⌊x⃗ / P ⌋+ ⌊y⃗ / P ⌋ × (W/P ) .

(1)

Then, we map the polarity array and the above three arrays
to a single 1D array, which can be described as:

l⃗ = (K ·H ·W ) · p⃗+(H ·W ) · d⃗t+(
H ·W
P 2

) · p⃗r+ p⃗os. (2)

Using 1D bin count operation with weights of 1⃗ and relative
time (⃗t − t0)/(tend − t0), two 1D arrays with length H ·
W · 2K are generated. After concatenation and reshape
operations, we get event representations with the shape (HP ·
W
P )× (2K · 2P 2).

Early convolutions have been proven effective for Trans-
former networks [66, 9]. Thus we further embed the repre-
sentations with a 3×3 group convolution layer following an
MLP layer. Finally, we get the Group Tokens with the di-
mension

(
H
P · W

P

)
× (G · C), where C indicates the chan-

nel number of each group. The variable G is the number
of groups with different combinations of time interval and
polarity. In other words, G is equal to either 2K or 2 · K

2 ,
depending on the group division of the convolution layer.
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Figure 3. Event Dual Self-Attention process. SSA is first per-
formed on the partitioned tokens. GSA is then applied. RPB and
RGB are added to two attention maps.

3.3. Event Dual Self-Attention Block

The EDSA block is composed of an EDSA layer, an
MLP layer, and normalization layers, as shown in Figure
2(b). It is designed to effectively extract features in both
the spatial and temporal-polarity domains. However, as the
contextual information in two domains varies, the direct fu-
sion of two kinds of feature maps usually causes interfer-
ence and biases the network to a local optimum. To address
this issue, the EDSA block employs dual residual connec-
tions, as shown by black and blue arrows. These dual resid-
ual connections avoid information loss in a certain domain
by retaining information from previous layers separately in
both domains.

Figure 3 shows the structure of an EDSA layer that is
included in an EDSA block. For efficient computation, the
first step in the EDSA layer is partitioning the feature maps
into M non-overlapping windows with size S to compute
parallel self-attention, as in Swin-Transformer [43]. Then,
Spatial Self-Attention (SSA) is performed on each window
with shape S × (G · C) to capture spatial contextual infor-
mation. The SSA operation can be described as:

Q,K, V = XWQ, XWK , XWV

SSA(Q,K, V ) = Softmax(
QKT

√
G · C

+Bp)V,
(3)

where WQ,WK ,WV ∈ R(G·C)×(G·C) are linear weights
to transform input into query Q, key K, and value V along
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the channel dimension. Bp is the relative position bias
(RPB), as in [52, 48]. The attention map is generated by a
dot product between Q and K. The feature maps are yielded
by a matrix multiplication operation between the attention
map and the value V .

After performing SSA, we transpose the output feature
maps into shape (G ·C)×S to perform group self-attention
(GSA). Our proposed GSA captures temporal and polarity
contextual information of the Group Tokens to refine the
semantic features. The GSA operation can be described as:

Qg,Kg, Vg = XTWQ
g , XTWK

g , XTWV
g

GSA(Qg,Kg, Vg) = Softmax(
QgK

T
g√

S
+Bg)Vg,

(4)

where WQ
g ,WK

g ,WV
g ∈ RS×S are linear weights to trans-

form input along the spatial dimension. We include a rela-
tive group bias (RGB) Bg ∈ R(G·C)×S to guide the atten-
tion process. The indexes of relative group bias are between
−G+1 and G−1, denoting different feature groups. The at-
tention map is generated by a dot product between Qg and
Kg . A matrix multiplication operation between the atten-
tion map and Vg calculates the feature maps.

Finally, the EDSA layer outputs two feature maps: one
obtained by applying SSA only (black arrow), and the other
obtained by applying both SSA and GSA (blue arrow). The
EDSA block guarantees effective feature communication in
both the spatial and temporal-polarity domains.

3.4. Group Token Aggregation

GTA is a novel approach that we use to address the
limitations of existing token aggregation methods in hi-
erarchical Transformers. To maintain translational equiv-
ariance, well-organized token aggregation is important, as
highlighted by previous works [59, 74]. For example, Swin-
Transformer [43] and Nested-Transformer [74] use shift-
window and conv-pool methods to integrate spatial infor-
mation into the channel domain. However, these methods
destroy the group correlations and are unable to integrate
information in the temporal-polarity domain. In contrast,
GTA utilizes a new convolution method called overlapping
group convolution, which effectively integrates and decou-
ples information in both domains.

Overlapping group convolution is designed based on the
concept of group convolution [28]. As illustrated in Figure
4, the input feature maps of overlapping group convolution
have shape (HP · WP )× (G ·C). It is then divided into ⌊G/2⌋
new overlapping groups and convolved with a set of kernels
that have been partitioned into the same number of groups
⌊G/2⌋. GTA has two parameters: The group-wise kernel
(GK) denotes the input group number of each kernel and
the group-wise stride (GS) denotes the group-wise distance

GK

padding

GS

MaxPool

G = 6

⌊G / 2⌋
⌊G / 2⌋

Conv

Conv
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Figure 4. Group Token Aggregation process. We achieve
reliable spatial and temporal-polarity information integration by
proposing overlapping group convolution.

between two inputs. In GET, GK and GS are chosen as
min(⌊G/2⌋ + 1, 3) and min(⌈G/2⌉ − 1, 2). A padding
with shape (HP · W

P )× C is added if needed.
The GTA module consists of a 3 × 3 overlapping group

convolution, followed by a normalization layer and a 3× 3
max pooling operation, where 3 × 3 denotes the kernel
size. After using overlapping group convolution, the chan-
nel number is doubled, and the group number is halved. The
features in each group gain a larger (3×) receptive field
in both the spatial and temporal-polarity domains. This
gradual inter-group integration is similar to inter-pixel in-
tegration in CNN networks, where feature maps gain a
larger receptive field as the network deepens. Moreover, the
multi-kernel design of overlapping group convolution can
reduce computational cost and model size without compro-
mising performance [28]. The max pooling further down-
samples the tokens. This results in a final output shape of
( H
2P · W

2P )×(⌊G/2⌋· 2G·C
⌊G/2⌋ ). Through ablative experiments,

it is proved that GTA achieves reliable information integra-
tion in both the spatial and temporal-polarity domains.

4. Experiments
We first demonstrate the comparison results of GET and

other state-of-the-art works on four event-based classifica-
tion datasets and two event-based object detection datasets.
Then we present ablative experimental results on both tasks
to analyze the major contributions of the proposed represen-
tation and modules. Finally, we show the visualizations of
feature maps and detection results.

4.1. Experimental Setup

Datasets. We evaluate our proposed methods on four event-
based classification datasets, which are Cifar10-DVS [31],
N-MNIST [29], N-CARS [55], and DVS128Gesture [1].
We also test the methods on two representative large-scale
object detection datasets, which are the Gen1 dataset [10]
and the 1Mpx dataset [47].

The Cifar10-DVS dataset contains 10,000 event streams
converted from the up-sampled images in the Cifar10
dataset [57]. The resolution of these streams is 128 × 128
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Cifar10-DVS N-MNIST N-CARS

Methods Input Type top-1 acc. (%) top-1 acc. (%) top-1 acc. (%) Params (M)

HATS [55] Frame 52.4 99.1 90.2 -
AMAE [14] Frame 62.0 98.3 93.6 21.8
MVF-Net [12] Frame 55.8 98.1 92.7 33.5
RG-CNNs [4] Voxel 54.0 99.0 91.4 19.5
EV-VGCNN [13] Voxel 65.1 99.4 95.3 0.8
VMV-GCN [67] Voxel 66.3 99.5 93.2 0.9

DT-SNN [65] Spike 60.5 99.5 - -
PLIF [17] Spike 74.8 99.6 - 4.7 - 17.1
EvS [35] Graph 68.0 99.1 93.1 -

Swin-T v2 [42] Token 77.2 99.3 92.8 6.9
Nested-T [74] Token 78.1 99.3 93.3 4.2
Ours Token 84.8 99.7 96.7 4.5

Table 1. Classification performance on the Cifar10-DVS, N-MNIST, and N-CARS datasets.

and there are 10 different classes. The N-MNIST dataset
includes 70,000 event streams converted from the original
MNIST dataset [11], which have 10 different classes and a
resolution of 34×34. The N-CARS dataset includes 12,336
car samples and 11,693 non-car samples. The resolutions
of samples in N-CARS are different. The highest resolu-
tion is not higher than 128 × 128. The DVS128Gesture
dataset contains 1,342 real-world event streams collected
by a 128×128 event camera. There are 11 different gesture
classes (including a class of random movements).

The Gen1 dataset is the most commonly used event-
based object detection dataset, which consists of 39 hours
of events. The Gen1 dataset is collected with a resolution
of 304 × 240 and contains 2 object classes. The labeling
frequency of the Gen1 dataset is 20 Hz. Another dataset,
the 1Mpx dataset contains 14.65 hours of events. The reso-
lution of samples in the 1Mpx dataset is 1280 × 720. The
labeling frequency of this dataset is 60 Hz, and the number
of bounding boxes exceeds 25M. There are 7 labeled object
classes. Following [32, 47], we only utilize 3 classes (car,
pedestrian, and two-wheeler) for performance comparison.

Implementation Details. For classification experiments,
we follow the official train/test split for N-MNIST, N-
CARS, and DVS128Gesture datasets for fair comparisons.
For the Cifar10-DVS dataset, we follow the split adopted
by previous studies [65, 17] to select samples for testing.
Our approach applies random horizontal flip and random
spatial-temporal crop augmentations on raw events to clas-
sification tasks. Since the DVS128Gesture dataset includes
both right and left-hand movements, target transformation
is applied after using a horizontal flip. Random horizontal
flip augmentation is not used on the N-MNIST dataset. We
also include Mixup [71] and Cutmix [70] to overcome the
over-fitting problem on certain datasets. We train our clas-
sification models from scratch for 1000 epochs.

DVS128Gesture

Methods Input Type top-1 acc. (%) Params (M)

PLIF [17] Spike 97.6 1.7
SLAYER [54] Spike 93.6 -
TORE [3] Tore 96.2 5.9
PointNet++ [61] Clouds 95.3 3.5

EvT [50] Token 96.2 0.5
Swin-T v2 [42] Token 93.2 7.1
Nested-T [74] Token 93.8 4.2
Ours Token 97.9 4.5

Table 2. Classification performance on the DVS128Gesture
dataset, which includes long time-range samples.

For object detection experiments, the train/test split of
Gen1 and 1Mpx datasets are predefined. We choose the
most commonly used 50 ms as the time interval of each
sample and follow the dataset processing of previous works
[24, 47, 32] to remove small bounding boxes and down-
sample events. We follow the same training strategy as
RVT [24]. Our detection models are trained from scratch
for 400000 steps.

We use a 3-stage GET with an embedding dimension of
48 on classification tasks. The group number G of Cifar10-
DVS, N-MNIST, N-CARS, and DVS128Gesture datasets
are chosen as 12, 12, 12, and 24, respectively. For object
detection tasks, we integrate a 4-stage GET with an em-
bedding dimension of 72 into RVT [24]. The G chosen
for Gen1 and 1Mpx datasets is 12. We utilize 8 NVIDIA
Tesla A800 GPUs for training. When comparing the run-
ning time, we only use one NVIDIA GTX 1080Ti GPU.

4.2. Experimental Results

Classification. We compare GET with other state-of-the-
art methods on Cifar10-DVS, N-MNIST, N-CARS, and
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DVS128Gesture datasets and report the results in Table 1
and Table 2. Swin-Transformer v2 (Swin-T v2) [42] and
Nested-Transformer (Nested-T) utilizing patched voxel grid
[76] as input are also included in the comparison. The em-
bedding dimension of them is also chosen as 48. The time
bin number of the voxel grid they used ranges from 4 to 48,
but we only list their optimal results. We utilize top-1 accu-
racy (top-1 acc.) to evaluate the classification performance.
We also provide parameter numbers (Params) of the models
for a fair comparison.

On the Cifar10-DVS dataset, GET outperforms other
methods by a large margin (84.8% vs. 74.8%, PLIF). Com-
pared with the Nested-T, its top-1 accuracy also increases
by 6.7%. On the N-MNIST dataset, GET reaches the high-
est performance (99.7% vs. 99.6%, PLIF). Compared with
Nested-T, its top-1 accuracy is increased by 0.4%. On the
N-CARS dataset, there is a significant performance gain us-
ing our method (96.7% vs. 95.3%, EV-VGCNN). Its top-1
accuracy is increased by 3.4% compared with Nested-T.

On the DVS128Gesture dataset, which contains long-
time-range event streams. SNN-based methods [68, 17, 27,
54] split an event stream into T bins and feed them itera-
tively into the network. The inference process is executed
T times. As a result, many works [3, 50] refrain to compare
with the SNN-based works on this dataset. However, the
encouraging results in Table 2 indicate that GET achieves
better performance (97.9% vs. 97.6%, PLIF) with only a
single-pass inference. This means that our methods can
better learn the long-range temporal information of event
samples without introducing heavy 3D / recurrent designs.
Object Detection. We further evaluate GET on two large-
scale event-based object detection datasets, which are the
Gen1 dataset and the 1Mpx dataset. The results compared
with state-of-the-art works are reported in Table 3 and Table
4. We use the COCO mean average precision (mAP) [37]
as the main metric. We also provide the comparison on run-
ning time (runtime), which includes the event conversion
time and the network inference time.

The labeled bounding boxes of the Gen1 dataset and the
1Mpx dataset are generated by detection on frames, thus
many areas with few events may still be labeled, since
event cameras only capture moving objects and objects
with illumination changes. Therefore, some works use
LSTM or other memory mechanisms to enhance perfor-
mance [24, 47, 32, 41]. To comprehensively evaluate the
capability of the networks, we compare the performance
in two scenarios. The first scenario is that the comparison
networks don’t utilize memory modules for enhancement.
The second scenario is the opposite. For GET, we use the
YOLOX framework [22] and place the ConvLSTM layers
[53] at the backbone when comparing with the memory-
enhanced networks as in RVT [24]. The comparison results
for object detection are shown in Table 3 and Table 4.

Gen1

Methods mAP (%) runtime (ms) Params (M)

AEGNN [51] 16.3 - -
SNN-SSD [7] 18.9 - 8.2
SAM [36] 35.5 - -
FS [8] 39.6∗ 41.2 -
RED [47] - / 40.0 - / 16.7 24.1
ASTMNet [32] 38.2 / 46.7 28.6 / 35.6 39.6
RVT-B [24] 32.0 / 47.2 - / 10.2 18.5

Swin-T v2 [42] 34.3 / 45.5 25.2⋆ / 26.6⋆ 17.6 / 21.1
Nested-T [74] 35.1 / 46.3 24.8⋆ / 25.9⋆ 18.7 / 22.2
Ours 38.7 / 47.9 15.9⋆ / 16.8⋆ 18.4 / 21.9

Table 3. Detection performance on the Gen1 dataset. blue : The
memory-enhanced results. ∗ : The result is in COCO AP50. ⋆ :
The runtime includes event conversion time and inference time.

1Mpx

Methods mAP (%) runtime (ms) Params (M)

SAM [36] 23.9 - -
UDA [44] 48.0∗ - -
RED [47] 29.0 / 43.0 - / 39.3 24.1
ASTMNet [32] 40.3 / 48.3 59.8 / 72.3 >39.6
RVT-B [24] - / 47.4 - / 11.9 18.5

Swin-T v2 [42] 36.0 / 46.4 33.6⋆ / 34.5⋆ 17.6 / 21.1
Nested-T [74] 37.5 / 46.0 32.1⋆ / 33.5⋆ 18.7 / 22.2
Ours 40.6 / 48.4 17.1⋆ / 18.2⋆ 18.4 / 21.9

Table 4. Detection performance on the 1Mpx dataset. blue : The
memory-enhanced results. ∗ : The result is in COCO AP50. ⋆ :
The runtime includes event conversion time and inference time.

Table 3 shows that GET performs best on the Gen1
dataset. The state-of-the-art network without using any
memory mechanism is ASTMNet, with an mAP of 38.2%.
GET performs better at 38.7%, while the parameter number
is less than its 47%. It also maintains an optimal mAP of
47.9% when using the memory mechanism, which is 0.7%
larger than the RVT-B of 47.2%. Compared with Nested-T
(with YOLOX framework, using patched voxel grid as event
representation), the gains with and without memory mech-
anism are 3.6% and 1.6% respectively. GET also achieves
the optimal result on the 1Mpx dataset, as shown in Table
4. When the memory mechanism is not used, GET out-
performs the state-of-the-art network ASTMNet (40.6% vs.
40.3%). With the help of ConvLSTM layers, GET achieves
the highest mAP of 48.4%, compared with ASTMNet of
48.3%. Compared with Nested-T, the gains with and with-
out memory mechanism are 3.1% and 2.4%.

On both Gen1 and 1Mpx datasets, GET is the fastest end-
to-end method. Its combined runtime is even smaller than
the data preprocessing time of other methods.
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Figure 5. (a) The SSA layer. (b) The GSA layer. (c) The attention block with SSA operation only. (d) The attention block with both SSA
and GSA operations, which are implemented in parallel. (e) The serial attention block performs the GSA operation first and then the SSA
operation. (f) The serial attention block performs the SSA operation first and then the GSA operation. (g) The EDSA block contains dual
residual connections.

CIFAR10-DVS 1Mpx

Models GTE EDSA Block GTA top-1 acc. (%) Param. (M) mAP (%) runtime (ms)

Model I × × × 77.2 4.2 37.5 32.1
Model II ✓ × × 79.9 (+2.7) 4.4 39.1 (+1.6) 16.2
Model III ✓ ✓ × 81.5 (+4.3) 4.7 40.0 (+2.5) 18.2
Model IV ✓ × ✓ 79.4 (+2.2) 4.2 39.3 (+1.8) 14.9
GET ✓ ✓ ✓ 84.8 (+7.6) 4.5 40.6 (+3.1) 17.1

Table 5. Performance of GET on the CIFAR10-DVS and 1Mpx datasets with different modules. × : modules of Nested-T is used.

Representations Group Token Event Histogram [46] Voxel Grid [76] Time Surface [30] TORE [3]

top-1 acc. (%) 84.8 75.8 78.4 80.2 80.4
Time (s / 108evs) 0.052 0.374 0.390 4.235 16.027

Table 6. Classification performance on the Cifar10-DVS dataset, and the time cost of converting 108 events into various representations.

CIFAR10-DVS

Methods top-1 acc. (%) Param. (M)

SSA Block 79.4 4.2
Parallel Block 78.5 4.5
Series Block I 75.0 4.5
Series Block II 81.9 4.5
EDSA Block 84.8 4.5

Table 7. Classification performance of GET on the CIFAR10-DVS
dataset with different self-attention blocks.

4.3. Ablation Studies

To analyze the proposed methods for GET, we con-
duct a series of ablative experiments on the CIFAR10-DVS,
DVS128Gesture, and 1Mpx datasets. We construct four
variants Model I-IV, which have different combinations of
proposed modules. Table 5 reports the performance of these
variants and GET.
Group Token Embedding. Group Token enriches patch
temporal-polarity information, yielding a 2.7% increase in
top-1 accuracy and a 1.6% rise in mAP. Furthermore, the

implementation of this approach has resulted in a 51% re-
duction in runtime. Hence, Group Token is an efficient
and effective method to improve performance by enhanc-
ing temporal-polarity information.

We also conduct experiments to convert 108 events to
different representations. As shown in Group Token Em-
bedding 6, our scheme only requires only 0.052s, which
is much less than using other methods’ officially released
codes. For performance comparison, we use VIT’s [16]
patch embedding module for tokenizing other representa-
tions. It can be observed that our proposed Group Token
outperforms others by a large margin (84.8% vs. 80.4%).
Event Dual Self-Attention. EDSA is an effective approach
to extract features from both the spatial and temporal-
polarity domains while maintaining cross-pixel and cross-
group communications. In comparison with the commonly
used SSA approach, EDSA improves the top-1 accuracy
and mAP by 1.6% and 0.9%, respectively. However, there
is a slight increase in the number of parameters and running
time. To demonstrate the superiority of EDSA’s block struc-
ture, we compared it with other possible block structures,
as illustrated in Figure 5. Table 7 presents the performance
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CIFAR10-DVS

Modules / Models Swin-T v2 [42] Nested-T [74] GET

Token Embedding 78.4 78.4 84.8
Self-Attention Block 79.4 79.8 84.8
Token Aggregation 80.4 81.0 84.8
Table 8. Module substitution comparison on the CIFAR10-DVS
dataset. The number indicates the performance of a GET variant
with a specific module replaced by the corresponding module of
Swin-T v2 and Nested-T.

Datasets / #Group 4 6 12 24 48

Cifar10-DVS 79.9 81.1 84.8 82.3 77.6
DVS128Gesture 94.8 95.8 97.2 97.9 96.9

Table 9. Classification performance of GET on the Cifar10-DVS
and DVS128Gesture datasets with different group numbers.

of GET using these attention blocks, indicating that EDSA
block with dual residual connections achieves the best re-
sult (84.8% vs. 81.9%). Therefore, EDSA is a promising
approach for feature extraction in computer vision tasks.
Group Token Aggregation. GTA leverages overlapping
group convolution to decouple spatial and temporal-polarity
information at an earlier stage. The resulting model is more
parameter-efficient, with parameters reduced by 0.2 M, and
faster, with a 1.3 ms reduction in running time. However,
without EDSA to compensate for the reduced inter-channel
interaction caused by group convolution, GTA will lead to
a slight decrease in performance.
GET. When combined with the GTE module, EDSA block,
and GTA module, GET achieves the highest top-1 accuracy
and mAP of 84.8% and 40.6%.
Module Superiority. To demonstrate the superiority of
our proposed modules, we compare them with correspond-
ing modules from other networks. The results in Table 8,
show that our modules outperform the rest on the CIFAR10-
DVS dataset. Specifically, the token embedding modules
of Swin-T v2 and Nested-T both embed voxel grids into
patches and achieve an accuracy of 78.4%. The self-
attention modules of the two models (SSA Block in Figure
5, w/ and w/o shift-window operation) result in 79.4% and
79.8%. And the token aggregation modules of Swin-T v2
and Nested-T achieve 80.4% and 81.0% accuracy by using
patch merging and conv-pool methods. Our proposed mod-
ules outperform all with an accuracy of 84.8%.
Group Number. Table 9 provides the performance on the
Cifar10-DVS and DVS128Gesture datasets when choosing
different group numbers G. The Cifar10-DVS dataset con-
tains short-time-range event streams. As a result, when G
is chosen as 12 (2K = 24), GET accurately classifies most
objects and results in an 84.8% top-1 accuracy. As G in-
creases, performance deteriorates because events in each
group become sparse. The DVS128Gesture dataset con-

GET Swin v2 Nested

(a) Original Events (b) Feature Visualizations

Figure 6. (a) Visualizations of original events (right-hand coun-
terclockwise waving in DVS128Gesture dataset). (b) Feature vi-
sualizations of different Transformers utilizing EDSA and SSA.

Ground Truth Swin-Transformer v2 GET

Figure 7. Visualizations of the detection results on the 1Mpx
dataset. Compared with the Swin-T v2, GET detects most objects,
while the bounding boxes are more accurate.

tains long-time-range event streams. If G is small, the ac-
tion overlaps within a group, degrading performance. When
G is chosen as 24 (2K = 48), we get the highest accuracy
of 97.9%.

4.4. Visualizations

we present visualizations of the feature maps extracted
by GET and other Transformers in Figure 6. It can be ob-
served that only GET, through the utilization of EDSA, suc-
cessfully captures counterclockwise motion. This becomes
evident as we compare the results. The other two classifiers
that use SSA as the token mixer inaccurately categorized
the sample as right-hand clockwise waving.

We also present object detection results on the 1Mpx
dataset in Figure 7. It can be seen that GET detects the most
objects compared with Swin-T v2, especially when objects
are intertwined with the background. The bounding boxes
detected by GET are also more accurate.

5. Conclusion

In this paper, we propose a novel event-based vision
backbone, called Group Event Transformer (GET), that ef-
fectively utilizes the temporal and polarity information of
events while preserving the fair spatial modeling capability
of traditional Transformer-based backbones. The proposed
backbone incorporates the Group Token representation, the
EDSA block, and the GTA module, which enable effective
feature communication and integration in both the spatial
and temporal-polarity domains. The experimental results
on four event-based classification datasets (Cifar10-DVS,
N-MNIST, N-CARS, and DVS128Gesture) and two event-
based object detection datasets (1Mpx and Gen1) all show
that our method achieves superior performance over state-
of-the-art methods.
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