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Abstract

In this paper, we presentTMR, a simple yet effective approach

for text to 3D human motion retrieval. While previous work has

only treated retrieval as a proxy evaluation metric, we tackle

it as a standalone task. Our method extends the state-of-the-

art text-to-motion synthesis model TEMOS, and incorporates a

contrastive loss to better structure the cross-modal latent space.

We show that maintaining the motion generation loss, along

with the contrastive training, is crucial to obtain good perfor-

mance. We introduce a benchmark for evaluation and provide

an in-depth analysis by reporting results on several protocols.

Our extensive experiments on the KIT-ML and HumanML3D

datasets show that TMR outperforms the prior work by a signif-

icant margin, for example reducing the median rank from 54

to 19. Finally, we showcase the potential of our approach on

moment retrieval. Our code and models are publicly available

at https://mathis.petrovich.fr/tmr.

1. Introduction

The language of movement cannot be translated into words.

Barbara Mettler

We ask the question whether a cross-modal space exists

between 3D human motions and language. Our goal is to

retrieve the most relevant 3D human motion from a gallery,

given a natural language query that describes the desired motion

(as illustrated in Figure 1). While text-to-image retrieval is a

well-established problem within the broader vision & language

field [39], there has been less focus on the related task of text-to-

motion retrieval. Searching an existing motion capture dataset

based on text input can often serve as a viable alternative to text-

to-human-motion synthesis in many applications, while also

providing the added benefit that the retrieved motion is guaran-

teed to be realistic. Additionally, once a cross-modal embedding

is built to map text and motions into a joint representation space,

both of the symmetrical text-to-motion and motion-to-text tasks

e
A person is stretching legs

rank 1 rank 2 rank 3 rank 4

rank 5 rank 6 rank 7 rank 8

Figure 1. Text-to-motion retrieval: We illustrate the task of text-based

motion retrieval where the goal is to rank a gallery of motions

according to their similarity to the given query in the form of a natural

language description.

can be performed. Such a retrieval-based solution has a range of

applications, including automatically indexing large motion cap-

ture collections, and helping to initialize the cumbersome text

labeling process, by assigning the nearest text to each motion.

Let us first differentiate text-to-motion retrieval from text-

to-motion synthesis. Motion synthesis [5, 9, 36, 49] involves

generating new data samples that go beyond the existing training

set, while motion retrieval searches through existing motion

capture collections. For certain applications, reusing motions

from a collection may be sufficient, provided the collection is

large enough to contain what the user is searching for. Unlike

generative models for motion synthesis, which struggle to

produce physically plausible, realistic sequences [5, 35, 36], a

retrieval model has the advantage that it always returns a realistic

motion. With this motivation, we pose the problem as a nearest

neighbor search through a cross-modal text-motion space.

Early work performs search through motion databases to

build motion graphs [4, 23] by finding paths between existing

motions and synthesizing new motions by stitching motions

together with generated transitions. If the motion database is

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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labeled with actions, the user can specify a series of actions

to combine [4]. In contrast, our search database is not labeled

with text. Motion matching [8], on the other hand, seeks to find

the animation that best fits the current motion by searching a

database of animations, doing motion-to-motion retrieval [45].

Our framework fundamentally differs from these lines of work

in that our task is multi-modal, i.e., user query is text, which

is compared against motions. The most similar work to ours

is the very recent model from Guo et al. [15], which trains for a

joint embedding space between the two modalities. This model

is only used to provide a performance measure for motion syn-

thesis tasks, by querying a generated motion within a gallery of

32 descriptions (i.e., motion-to-text retrieval), and counting how

many times the correct text is retrieved1. While this can be con-

sidered as the first text-motion retrieval model in the literature,

its main limitation is the low performance, in particular when

the gallery contains fine-grained descriptions. We substantially

improve over [15], by incorporating a joint synthesis & retrieval

framework, as well as a more powerful contrastive training [34].

We get inspiration from image-text models such as BLIP [26]

and CoCa [54], which formulate a multi-task objective. Besides

the standard dual-encoder matching (such as CLIP [39] with two

unimodal encoders for image and text), [26, 54] also employ

a text synthesis branch, performing image captioning. Such

a generative capability potentially helps the model go beyond

‘bag-of-words’ understanding of vision-language concepts, ob-

served for the naive contrastive models [11, 55]. In our case, we

depart from TEMOS [36] which already has a synthesis branch

to generate motions from text. We incorporate a cross-modal

contrastive loss (i.e., InfoNCE [34]) in this framework to jointly

train text-to-motion synthesis and text-to-motion retrieval tasks.

We empirically demonstrate significant improvements with this

approach when ablating the importance of each task.

Text-motion data differs from its text-image counterparts

particularly due to the nature of motion descriptions. In fact,

for an off-the-shelf large language model, sentences describing

different motions tend to be similar, since they fall within the

same topic of human motions. For example, the text-text cosine

similarities [46] after encoding motion descriptions from the

KIT training set [37] are on average 0.71 on a scale between [0,

1], while this value is 0.56 (almost orthogonal) on a random sub-

set of LAION [44] image descriptions with the same size. This

poses several challenges. Typical motion datasets [15, 37, 38]

contain similar motions with different accompanying texts, e.g.,

‘person walks’, ‘human walks’, as well as similar texts with dif-

ferent motions, e.g., ‘walk backwards’, ‘walk forwards’. With

naive contrastive training [34], one would make all samples

within a batch as negatives, except the corresponding label for

a given anchor. In this work, we take into account the fact that

there are potentially significant similarities between pairs within

a batch. Specifically, we discard pairs that have a text-text

1While the paper [15] describes a motion-to-text retrieval metric, we notice

that the provided code performs text-to-motion retrieval.

similarity in their labels that is above a certain threshold. Such

careful negative sampling leads to performance improvements.

In this paper, we illustrate an additional use case for our

retrieval model – zero-shot temporal localization – and high-

light this task as a potential future avenue for research. Sim-

ilar to temporal localization in videos with natural language

queries [12, 13, 19, 25, 41], also referred to as “moment re-

trieval”, we showcase the grounding capability of our model by

directly applying it on long motion sequences to retrieve corre-

sponding moments. We illustrate results on the BABEL dataset

[38], which typically contains a series of text annotations for

each motion sequence. Note that the task is zero-shot, because

the model has not been trained for localization, and at the same

time has not seen BABEL labels, which come from a different

domain (e.g., typically action-like descriptions instead of full

sentences).

Our contributions are the following: (i) We address the

little-studied problem of text-to-motion retrieval, and introduce

a series of evaluation benchmarks with varying difficulty. (ii)

We propose a joint synthesis and retrieval framework, as well

as negative filtering, and obtain state-of-the-art performance

on text-motion retrieval. (iii) We provide extensive experiments

to analyze the effects of each component in controlled settings.

Our code and models are publicly available2.

2. Related work

We present an overview of the most closely related work

on text-to-motion synthesis and retrieval, as well as a brief

discussion on cross-modal retrieval works.

Text and human motion. The research on human motion

modeling has recently witnessed an increasing interest

in bridging the gap between semantics and 3D human

body motions, in particular for text-conditioned motion

synthesis. Unlike unconstrained 3D human motion synthesis

[53, 58, 59], action-conditioned [16, 35], or text-conditioned

[5, 9, 14, 22, 24, 36, 49, 56] models add semantic controls to the

generation process. The goal of these works is to generate either

deterministically [2, 14, 27] or probabilistically [36], motion

sequences that are faithful to the textual description inputs.

Note that this is different than gesture synthesis from speech

[17], in that the text describes the motion content. However,

despite remarkable progress in text-to-image synthesis [40, 42],

text-to-motion synthesis remains at a very nascent stage. The

realism of the synthesized motions is limited, e.g., foot sliding

artifacts [36]. We turn to text-to-motion retrieval as another

alternative, and perhaps complementary approach to obtain

motions for a given textual description. Our focus is therefore

different from the work on synthesis. However, we do make

use of a motion synthesis branch to aid the retrieval task.

2https://mathis.petrovich.fr/tmr
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Motion retrieval is relatively less explored. As briefly

mentioned in Section 1, motion-to-motion retrieval (e.g.,

motion matching [8, 20, 45]) methods exist. However, the

text-to-motion retrieval task is more challenging due to being

cross-modal, i.e., nearest neighbor search across text and

motion modalities. Within this category, the very recent work

of Guo et al. [15] trains a retrieval model purely for evaluation

purposes, and applies a margin-based contrastive loss [18],

using Euclidean distance between all pairs within a batch.

Two works are particularly relevant to ours. Firstly, we build

on the TEMOS [36] text-to-motion synthesis model, which also

has a cross-modal embedding space. However, text and motion

embeddings are encouraged to be similar only across positive

pairs. We therefore add a contrastive training strategy to incor-

porate negatives, consequently improving its retrieval capability

from a large gallery of fine-grained motions. Secondly, we com-

pare to the aforementioned method of [15], whose motion-to-

text retrieval model is adopted for measuring text-to-motion gen-

eration performance automatically by other works [10, 49, 57].

Cross-modal retrieval. Among widely adopted vision &

language retrieval models, some successful examples include

CLIP [39], BLIP [26], and CoCa [54] for images, and MIL-

NCE [33], Frozen [7], and CLIP4Clip [30] for videos. They

all use variants of cross-modal contrastive learning techniques,

such as InfoNCE [34], which we also employ in this work. As

discussed in Section 1, we draw inspiration from BLIP [26] and

CoCa [54], which add synthesis branches to standard retrieval

frameworks. Our approach is similar in spirit to these works in

that we perform a cross-modal vision & language retrieval task,

but differ in focusing on 3D human motion retrieval, which, to

the best of our knowledge, has not been benchmarked.

3. Text-to-motion retrieval

In this section, we introduce the task and the terminology

associated with text-to-motion retrieval (Section 3.1). Next, we

present our model, named TMR, and its training protocol (Sec-

tion 3.2). We then explain our simple approach for identifying

and filtering incorrect negatives (Section 3.3), followed by a

discussion of the implementation details (Section 3.4).

3.1. Definitions

Given a natural language query T , such as ‘A person walks

and then makes a right turn.’, the goal is to rank the motions

from a database (i.e., the gallery) according to their semantic

correspondence with the text query, and to retrieve the motion

that matches best to the textual description. In other words, the

task involves sorting the database so that the top ranked motions

are the most relevant matches, i.e., creating a search engine

to index motions. Additionally, we define the symmetric (and

complementary) task, namely motion-to-text retrieval, where

the aim is to retrieve the most suitable caption that matches a

given motion from a database of texts.

3D human motion refers to a sequence of human poses. The

task does not impose any limitations on the type of represen-

tation used, such as joint positions, rotations, or parametric

models such as SMPL [28]. As detailed in Section 4.1, we

choose to use the representation employed by Guo et al. [15]

to facilitate comparisons with previous work. While our

experiments are based on the SMPL skeleton, our method is

applicable to any skeleton topology. One could alternatively use

retargetting [1, 51, 52] to adapt to other body representations.

Text description refers to a sequence of words describing the

action performed by a human in natural language. We do not

restrict the format of the motion description. The text can be

simply an action name (e.g., ‘walk’) or a full sentence (e.g., ‘a

human is walking’). The sentences can be fine-grained (e.g.,

‘a human is walking in a circle slowly’), and may contain one or

several actions, simultaneously (e.g., ‘walking while waving’)

or sequentially (e.g., ‘walking then sitting’).

3.2. Joint training of retrieval and synthesis

We introduce TMR, which extends the Transformer-based

text-to-motion synthesis model TEMOS [36] by incorporating

additional losses to make it suitable for the retrieval task. The

architecture consists of two independent encoders for inputting

motion and text, as well as a decoder that outputs motion

(see Figure 2 for an overview). In the following, we review

TEMOS [36] components and our added contrastive training.

Dual encoders. One approach to solving cross-modal retrieval

tasks involves defining a similarity function between the two

modalities. In our case, the two modalities are text and motion.

The similarity function can be applied to compare a given query

with each element in the database, and the maximum value

would indicate the best match. In this paper, we follow the

approach taken by previous work on metric learning, such as

CLIP [39], by defining one encoder for each modality and

then computing the cosine similarity between their respective

embeddings. Such dual embedding has the advantage of fast

inference time since the gallery embeddings can be computed

and stored beforehand [32].

Our model is built upon the components of TEMOS [36],

which already provides a motion encoder and a text encoder,

mapping them to a joint space (building on the idea from

Language2Pose [2]); this serves as a strong baseline for

our work. Both motion and text encoders are Transformer

encoders [50] with additional learnable distribution parameters,

as in the VAE-based ACTOR [35]. They are probabilistic in

nature, outputting parameters of a Gaussian distribution (µ and

Σ) from which a latent vector z∈R
d can be sampled. While the

text encoder takes text features from a pre-trained and frozen

DistilBERT [43] network as input, the motion sequence is fed

directly in the motion encoder. Note that when performing

retrieval, we directly use the output embedding that corresponds

to the mean token (µM for motion, µT for text).

Motion decoder. TEMOS is trained for the task of motion
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Figure 2. Joint motion retrieval and synthesis: A simplified view of our TMR framework is presented, where we focus on the similarity matrix

defined between text-motion pairs within a batch. Here, we show a batch of 3 samples for illustration purposes. The goal of the contrastive objective

is to maximize the diagonal denoting positive pairs (green), and to minimize the off-diagonal negative pair items that have text similarity below

a threshold (red). In this example, remaining similarities S23 and S32 are discarded from the loss computation because there is high text similarity

between T2 and T3. The rest of the model remains similar to TEMOS [36], which decodes a motion from both text zTi and motion zMj latent

vectors. See text for further details.

synthesis and comes equipped with a motion decoder branch.

This decoder is identical to the one used in ACTOR [35], which

supports variable-duration generation. More specifically, it

takes a latent vector z∈R
d and a sinusoidal positional encoding

as input, and generates a motion non-autoregressively through

a single forward pass. We show in Section 4.2 that keeping this

branch helps improve the results.

TEMOS losses. We keep the same base set of losses of [36], de-

fined as the weighted sum LTEMOS=LR+λKLLKL+λELE. In

summary, a reconstruction loss term LR measures the motion re-

construction given text or motion input (via a smooth L1 loss). A

Kullback-Leibler (KL) divergence loss termLKL is composed of

four losses: two of them to regularize each encoded distributions

– N (µM ,ΣM) for motion and N (µT ,ΣT ) for text – to come

from a normal distribution N (0,I). The other two enforce dis-

tribution similarity between the two modalities. A cross-modal

embedding similarity loss LE enforces both text zT and motion

zM latent codes to be similar to each other (with a smooth L1

loss). We set λKL and λE to 10−5 in our experiments as in [36].

Contrastive training. While TEMOS has a cross-modal

embedding space, its major drawback to be usable as an

effective retrieval model is that it is never trained with negatives,

but only positive motion-text pairs. To overcome this limitation,

we incorporate a contrastive training with the usage of negative

samples to better structure the latent space. Given a batch of N

(positive) pairs of latent codes (zT
1
,zM
1
),···,(zTN ,zMN ), we define

any pair (zTi ,z
M
j ) with i≠j as negative. The similarity matrix

S computes the pairwise cosine similarities for all pairs in the

batch Sij = cos(zTi ,z
M
j ). In contrast to Guo et al. [15], who

consider one random negative per batch (and use a margin loss),

we adopt the more recent formulation of InfoNCE [34], which

was proven effective in other work [7, 26, 39]. This loss term

can be defined as follows:

LNCE=−
1

2N

∑

i

(

log
expSii/τ
∑

j
expSij/τ

+log
expSii/τ
∑

j
expSji/τ

)

, (1)

where τ is the temperature hyperparameter.

Training loss. The total loss we use to train TMR is the

weighted sum LTEMOS +λNCELNCE where λNCE controls the

importance of the contrastive loss.

3.3. Filtering negatives

As mentioned in Section 1, the descriptions accompanying

motion capture collections can be repetitive or similar across

the training motions. We wish to prevent defining negatives

between text-motion pairs that contain similar descriptions.

Consider for example the two text descriptions, “A human

making a counterclockwise turn” and “A person walks quarter

a circle to the left”. In the KIT-ML benchmark [37], these

two descriptions appear as two different annotations for the

same motion. Due to the flexibility and ambiguity of natural

language, different words may describe the same concepts (e.g.,

‘counterclockwise’, ‘circle to the left’).

During training, the random selection of batches can

adversely affect the results because the model may have to push

away two latent vectors that correspond to similar meanings.

This can force the network to focus on unimportant details

(e.g., ‘someone’ vs ‘human’), ultimately resulting in decreased

performance due to unstable behavior and reduced robustness

to text variations.

To alleviate this issue, we leverage an external large language

model to provide sentence similarity scores. In particular, we

use MPNet [47] to encode sentences and compute similarities

between two text descriptions. We then determine whether

to filter a pair of text descriptions (t1, t2) if their similarity
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is higher than a certain threshold, referring them as ‘wrong

negatives’. During training, we filter wrong negative pairs from

the loss computation. Note that we refrain from defining them

as positives, as the language model may also incorrectly say

two descriptions are similar when they are not.

3.4. Implementation details

We use the AdamW optimizer [29] with a learning rate

of 10−4 and a batch size of 32. Since the batch size can be

an important hyperparameter for the InfoNCE loss, due to

determining the number of negatives, we report experimental

results with different values. The latent dimensionality of the

embeddings is d=256. We set the temperature τ to 0.1, and the

weight of the contrastive loss term λNCE to 0.1. The threshold to

filter negatives is set to 0.8. We provide experimental analyses

to measure the sensitivity to these added hyperparameters.

4. Experiments

We start by describing the datasets and evaluation protocol

used in the experiments (Section 4.1). We then report the perfor-

mance of our model on our new retrieval benchmark along with

comparison to prior work (Section 4.2). Next, we present our

ablation study measuring the effects of the additional contrastive

loss, the negative filtering, and the hyperparameters (Section 4.3).

Finally, we provide qualitative results for retrieval (Section 4.4),

and our use case of moment retrieval (Section 4.5).

4.1. Datasets and evaluation

HumanML3D dataset (H3D) [15] provides natural lan-

guage labels to describe the motions in AMASS [31] and

HumanAct12 [16] motion capture collections. We follow the

motion pre-processing procedure of [15], and apply the SMPL

layer [28] to extract joint positions, canonicalize the skeletons

to share the same topology (i.e., same bone lengths), then

compute motion features (extracting local positions, velocities

and foot contacts similar to Holden et al. [21]). The data is then

augmented by mirroring left and right (both in motions and

their corresponding texts). After this procedure, and following

the official split, we obtain 23384, 1460, 4380 motions for

the training, validation, and test sets, respectively. On average,

each motion is annotated 3.0 times with different text. During

training we randomly select one as the matching text, for testing

we use the first text.

KIT Motion-Language dataset (KIT) [37] also come from

motion capture data, with an emphasis on locomotion motions.

It originally consists of 3911 motion sequences and 6278 text

sentences. We pre-process the motions with the same procedure

as in H3D. The data is split into 4888, 300, 830 motions for

training, validation, and test sets, respectively. In this dataset,

each motion is annotated 2.1 times on average.

Evaluation protocol. We report standard retrieval performance

measures: recall at several ranks, R@1, R@2, etc. for both

text-to-motion and motion-to-text tasks (identical to the R

Precision metrics adopted by Guo et al. [15]). Recall at rank

k measures the percentage of times the correct label is among

the top k results; therefore higher is better. We additionally

report median rank (MedR), where lower is better. Note that the

retrieval performance is evaluated on a gallery of unseen real

motions (i.e., test set). A study of the synthesis performance

of TMR can be found in Appendix B.

We define several evaluation protocols, mainly changing the

gallery set. (a) All the test set is used as a first protocol, without

any modification. This set is partially problematic because there

are repetitive texts across motions, or just minor differences (e.g.,

person vs human, walk vs walking). (b) All with threshold

means we search over all the test set, but, in this case, we accept

a retrieved motion as correct if its text label is similar to the

query text above a threshold. For example, retrieving the motion

corresponding to “A human walks forward” should be correct

when the input query is “Someone is walking forward”. We

set a high threshold of 0.95 (scaled between [0, 1]) to remove

very similar texts without removing too many fine-grained

details. Appendix A provides statistics on how often similar text

descriptions appear in the datasets. (c) Dissimilar subset refers

to sampling 100 motion-text pairs whose texts are maximally

far from each other (using an approximation of the quadratic

knapsack problem [3] ). This evaluation can be considered as an

easy, but clean, subset of the previous ones. (d) Small batches

is included to mimic the protocol described by Guo et al. [15],

who randomly pick batches of 32 motion-text pairs and report

the average performance. An ideal evaluation metric should

not have randomness, and a gallery size of 32 is relatively easy

compared to the previous protocols.

4.2. A new benchmark & comparison to prior work

We present the performance of our model on this new re-

trieval benchmark, on H3D (Table 1) and KIT (Table 2) datasets,

across all evaluation protocols. We also compare against prior

work TEMOS [36] and Guo et al. [15]. For TEMOS, we retrain

their model on both datasets to have a comparable benchmark

since the original model differs in motion representation and

lacks left/right data augmentation (and they only provide

a KIT-pretrained model, not H3D). For [15], we take their

publicly available models trained on these two datasets.

TEMOS in particular is not designed to perform well on

retrieval, since its cross-modal embedding space is only trained

with positive pairs. However, Guo et al. train contrastively

with negatives as well, using a margin loss [18]. For all 4

evaluation sets with varying difficulties, TMR outperforms the

prior work, suggesting our model better captures the finegrained

nature of motion descriptions. The model of [15] is adopted

as part of motion synthesis evaluation in several works. TMR

may therefore provide a better alternative. Our significant

improvements over the state of the art can be credited to (i)

jointly training for synthesis and retrieval, (ii) adopting the more

recent contrastive objective, InfoNCE [34], while (iii) carefully
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Protocol Methods
Text-motion retrieval Motion-text retrieval

R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

(a) All TEMOS [36] 2.12 4.09 5.87 8.26 13.52 173.0 3.86 4.54 6.94 9.38 14.00 183.25

Guo et al. [15] 1.80 3.42 4.79 7.12 12.47 81.00 2.92 3.74 6.00 8.36 12.95 81.50

TMR 5.68 10.59 14.04 20.34 30.94 28.00 9.95 12.44 17.95 23.56 32.69 28.50

(b) All with threshold TEMOS [36] 5.21 8.22 11.14 15.09 22.12 79.00 5.48 6.19 9.00 12.01 17.10 129.0

Guo et al. [15] 5.30 7.83 10.75 14.59 22.51 54.00 4.95 5.68 8.93 11.64 16.94 69.50

TMR 11.60 15.39 20.50 27.72 38.52 19.00 13.20 15.73 22.03 27.65 37.63 21.50

(c) Dissimilar subset TEMOS [36] 33.00 42.00 49.00 57.00 66.00 4.00 35.00 44.00 50.00 56.00 70.00 3.50

Guo et al. [15] 34.00 48.00 57.00 72.00 84.00 3.00 34.00 47.00 59.00 72.00 83.00 3.00

TMR 47.00 61.00 71.00 80.00 86.00 2.00 48.00 63.00 69.00 80.00 84.00 2.00

(d) Small batches [15] TEMOS [36] 40.49 53.52 61.14 70.96 84.15 2.33 39.96 53.49 61.79 72.40 85.89 2.33

Guo et al. [15] 52.48 71.05 80.65 89.66 96.58 1.39 52.00 71.21 81.11 89.87 96.78 1.38

TMR 67.16 81.32 86.81 91.43 95.36 1.04 67.97 81.20 86.35 91.70 95.27 1.03

Table 1. Text-to-motion retrieval benchmark on HumanML3D: We establish four evaluation protocols as described in Section 4.1, with

decreasing difficulty from (a) to (d). Our model TMR substantially outperforms the prior work of Guo et al. [15] and TEMOS [36], on the

challenging H3D dataset.

Protocol Methods
Text-motion retrieval Motion-text retrieval

R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

(a) All TEMOS [36] 7.11 13.25 17.59 24.10 35.66 24.00 11.69 15.30 20.12 26.63 36.39 26.50

Guo et al. [15] 3.37 6.99 10.84 16.87 27.71 28.00 4.94 6.51 10.72 16.14 25.30 28.50

TMR 7.23 13.98 20.36 28.31 40.12 17.00 11.20 13.86 20.12 28.07 38.55 18.00

(b) All with threshold TEMOS [36] 18.55 24.34 30.84 42.29 56.39 7.00 17.71 22.41 28.80 35.42 47.11 13.25

Guo et al. [15] 13.25 22.65 29.76 39.04 49.52 11.00 10.48 13.98 20.48 27.95 38.55 17.25

TMR 24.58 30.24 41.93 50.48 60.36 5.00 19.64 23.73 32.53 41.20 53.01 9.50

(c) Dissimilar subset TEMOS [36] 24.00 40.00 46.00 54.00 70.00 5.00 33.00 39.00 45.00 49.00 64.00 6.50

Guo et al. [15] 16.00 29.00 36.00 48.00 66.00 6.00 24.00 29.00 36.00 46.00 66.00 7.00

TMR 26.00 46.00 60.00 70.00 83.00 3.00 34.00 45.00 60.00 69.00 82.00 3.50

(d) Small batches [15] TEMOS [36] 43.88 58.25 67.00 74.00 84.75 2.06 41.88 55.88 65.62 75.25 85.75 2.25

Guo et al. [15] 42.25 62.62 75.12 87.50 96.12 1.88 39.75 62.75 73.62 86.88 95.88 1.95

TMR 49.25 69.75 78.25 87.88 95.00 1.50 50.12 67.12 76.88 88.88 94.75 1.53

Table 2. Text-to-motion retrieval benchmark on KIT-ML: As in Table 1, we report the four evaluation protocols, this time on the KIT dataset.

Again, TMR significantly improves over Guo et al. [15] and TEMOS [36] across all protocols and metrics.

Motion
InfoNCE Margin

Text-motion retrieval Motion-text retrieval

Recons. R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓

✗ ✗ ✓ 15.06 22.17 25.78 12.00 8.19 11.57 16.39 19.50

✗ ✓ ✗ 19.76 25.30 36.87 6.00 17.47 19.76 30.60 9.50

✓ ✗ ✗ 18.55 24.34 30.84 7.00 17.71 22.41 28.80 13.25

✓ ✗ ✓ 19.88 24.46 34.46 7.00 14.70 19.76 28.19 12.50

✓ ✓ ✗ 24.58 30.24 41.93 5.00 19.64 23.73 32.53 9.50

Table 3. Losses: We experiment with various loss definitions (i)

with/without the motion reconstruction, and (ii) the choice of the

contrastive loss between InfoNCE and margin-based. We see that In-

foNCE [34] is a better alternative to the contrastive loss with Euclidean

margin [18] (employed by Guo et al. [15]). The reconstruction loss

through the motion decoder branch further boosts the results.

eliminating wrong negatives. In the following, we ablate these

components in controlled experiments.

4.3. Ablation study

The rest of the quantitative evaluation uses the ‘(b) All with

threshold’ evaluation protocol, on the KIT dataset.

Which losses matter? Table 3 compares several variants

of TMR where we check (a) whether the jointly trained motion

synthesis branch helps retrieval, and (b) how important the

form of the contrastive loss is. When removing the synthesis

branch and only using the the contrastive loss, we perform a

deterministic encoding (i.e., with a single token instead of two

tokens µ, σ). First, we see that the motion synthesis branch

certainly improves results compared with only training using a

contrastive loss (e.g., 41.93 vs 36.87 R@3). This possibly forces

the latent vector to capture the full content of the input text (i.e.,

instead of picking up on a subset of words, or bag-of-words

[11, 55] upon finding a shortcut that satisfies the contrastive

loss). Second, in the presence of a contrastive loss, the

InfoNCE formulation is significantly better than the margin loss

employed by previous work [15] (41.93 vs 34.46 R@1). Note

that for this experiment, we keep the same negative filtering

for both the margin loss and InfoNCE (we provide additional

experiments without the negative filtering in Appendix B).
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Threshold
Text-motion retrieval Motion-text retrieval

R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓

0.55 19.40 23.25 30.48 9.00 17.83 21.69 29.52 14.00

0.60 17.95 26.87 36.87 6.00 20.60 24.70 31.81 11.25

0.65 23.01 28.67 36.39 7.00 19.04 21.69 29.76 11.50

0.70 22.29 29.64 38.80 6.00 18.19 22.77 32.05 9.00

0.75 20.00 27.11 37.83 6.00 20.24 24.46 34.22 9.50

0.80 24.58 30.24 41.93 5.00 19.64 23.73 32.53 9.50

0.85 21.45 25.78 38.43 6.50 20.84 24.10 33.37 9.50

0.90 23.25 30.12 40.48 6.00 20.00 25.18 33.13 9.50

0.95 20.48 26.99 38.43 6.00 19.28 23.37 31.93 10.25

✗ 22.17 27.83 36.02 7.00 16.75 21.33 32.17 11.50

Table 4. Filtering negatives: We compare several threshold values for

filtering negatives from the loss comparison due to having similar texts.

We observe that removing negatives based on text similarity above

0.8 (from a scale between [0,1]) performs well overall.

The effect of filtering negatives. As explained in Section 3.3,

during training we filter out pairs whose texts are closer than

a threshold in an embedding space, and do not count them in

the contrastive loss computation. Note that we still keep each

item in the batch for the motion synthesis objective. In Table 4,

we perform experiments with a range of different values for this

threshold selection. On a scale between [0, 1], a threshold of

0.8 has the best results, balancing keeping a sufficient number

of negatives and removing the wrong ones. Without filtering

at all, the performance remains at 36.02 R@3 (compared to

41.93). We provide statistics on the percentage of filtered pairs

in Appendix A.

Hyperparameters of the contrastive training. We show the

sensitivity of our model to several hyperparameters added when

extending TEMOS: (i) temperature τ of the cross entropy of

InfoNCE [34] in Eq.1, (ii) the λNCE weighting parameter, and

(iii) the batch size, which determines the number of negatives.

We see in Table 5 that the model is indeed sensitive to the

temperature, which is a common observation in other settings.

The weight parameter and the batch size are relatively less

important while also influencing the results to a certain extent.

An experiment with the latent dimensionality hyperparameter

can be found in Appendix B.

4.4. Qualitative results

In Figure 3, we provide sample qualitative results for

text-to-motion retrieval on the full test set of H3D. For each

query text displayed on the left, top-5 retrieved motions are

shown on the right along with their similarity scores. Note that

the ground-truth text labels (at the bottom of each motion) for

the retrieved motions are not used, and the gallery motions are

unseen at training. For the first two examples with ‘playing

violin’ and ‘handstand’, we retrieve the ground-truth motion at

rank 1. We observe that the next ranked motions depict visually

similar motions as well (e.g., ‘cartwheel’ involves standing on

the hands). For the free-from prompt example ‘Someone is

swimming’ (i.e., the exact text does not appear in the gallery),

the three first motions resemble or involve the swimming action,

whereas motions at ranks 4 and 5 are incorrect. We notice that

Temp. Text-motion retrieval Motion-text retrieval

τ R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓

0.001 9.52 21.81 27.23 12.00 7.47 9.76 16.51 15.50

0.01 21.45 29.04 38.80 6.00 21.08 27.11 33.61 9.50

0.1 24.58 30.24 41.93 5.00 19.64 23.73 32.53 9.50

1.0 1.08 1.93 3.61 306.5 1.81 1.93 2.41 372.0

(a)

Weight Text-motion retrieval Motion-text retrieval

λNCE R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓

0.001 18.55 23.25 36.75 7.00 18.19 24.34 31.45 11.50

0.01 20.84 26.99 37.23 7.00 18.92 23.13 32.17 10.25

0.1 24.58 30.24 41.93 5.00 19.64 23.73 32.53 9.50

1.0 19.52 24.46 34.46 7.00 19.04 24.34 35.06 9.50

(b)

Batch Text-motion retrieval Motion-text retrieval

size R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓ R@1 ↑ R@2 ↑ R@3 ↑ MedR ↓

16 25.42 31.57 40.12 6.00 20.36 24.10 33.73 8.00

32 24.58 30.24 41.93 5.00 19.64 23.73 32.53 9.50

64 20.24 26.51 38.19 6.00 19.52 24.22 32.05 9.50

128 18.55 28.80 36.75 7.00 14.94 18.43 26.14 11.50

(c)

Table 5. Hyperparameters of the contrastive training: We measure

the sensitivity to the parameters τ (temperature), λc the weight of

the contrastive loss, and the batch size. Note that the learning rate

is proportionally altered when changing the batch size. We display

a wide range of values to show the full trends.

the incorrect motions have a low similarity (< 0.6), and the

human bodies are rotated similarly as in swimming. More

qualitative results can be seen in Appendix C, as well as our

supplementary video on the project page.

4.5. Use case: Moment retrieval

While our focus is retrieval, once our model is trained, it

can be used for a different use case. Here, we test the limits

of our approach, by qualitatively evaluating the capability of

TMR on the task of temporally localizing a natural language

query in a long 3D motion sequence. This is similar in spirit to

moment retrieval in videos [12, 13, 19, 25, 41]. It is also related

to categorical action localization in 3D motions [48]; however,

our input is free-form text instead of symbolic action classes.

In Figure 4, we show four examples, where we apply a

model pre-trained on H3D on BABEL sequences. In each

example, the queried text is displayed on the top. The x-axis

denotes the frame number, the green rectangle represents the

ground-truth location for the given action, and the dashed

red line marks the localization with the maximum similarity.

We simply compute the motion features in a sliding window

manner. The similarity between the text label and a 20-frame

window centered at each frame is shown in the y-axis as a 1D

plot over time. Despite our model not being trained for temporal

localization, we observe its grounding potential. Moreover,

there exists a domain gap between BABEL label used at test

time and H3D used for training. Quantitative evaluation and

more qualitative examples are included in Appendix B.

9494



Doing a cartwheel then 

jumping up and down.

The person does  

2 cartwheels

A person walks forward then 

turns completely around and 

does a cartwheel

A person appears  

to be playing  

the violin

 A man steps 

forward and  

does a handstand

Someone is 
swimming 

A person appears to be  

playing the violin

S = 0.90

Moving the hands and  

work some thing

S = 0.89

The man plays  

the violin

S = 0.85

The man plays violin  

holding it in his right hand

S = 0.85

The man holds something  

above his left shoulder  

and rubs it with his right hand

S = 0.81

S = 0.82 S = 0.68

The drunk guy struggles  

to walk down the street

S = 0.61 S = 0.48 S = 0.42

The person was flying  

around like a fly

S = 0.76 S = 0.71 S = 0.62 S = 0.56 S = 0.52

A person swam  

in free style

The person is preforming a swimming stroke  

know as the butterfly stroke. the arms swing  

from behind the head and reenter  

the water propelling the person forward.

A person lays  

on the ground

A man crawls forward  

on his stomach

A man steps forward and  

does a handstand

Figure 3. Qualitative retrieval results: We demonstrate example queries on the left, and corresponding retrieved motions on the right, ranked

by text-motion similarity. The similarity values are displayed on the top. For each retrieved motion, we also show their accompanying ground-truth

text label; note that we do not use these descriptions, but only provide them for analysis purposes. The motions from the gallery are all from the

test set (unseen during training). In the first row, all top-5 retrieved motions correspond visually to ‘playing violin’ and the similarity scores are high

>0.80. In the second row, we correctly retrieve the ‘handstand’ motion at top-1, but the other motions mainly perform ‘cartwheel’ (which involves

shortly standing on hands), but with a lower similarity score <0.70. For the last example, we query a free-form text ‘Someone is swimming’,

which does not exist in the gallery (but the word ‘swim’ does). The model successfully finds swimming motions among the top-3, and the other

two motions involve the body parallel to the ground.

time

si
m
il
a
ri
ty

Figure 4. Moment retrieval: We plot the similarity between the

temporally annotated BABEL text labels and the motions in a sliding

window manner, and obtain a 1D signal over time (blue). We observe

that a localization ability emerges from our model, even though it was

not trained for temporal localization, and was not with the domain of

BABEL labels. The ground-truth temporal span is denoted in green

and the maximum similarity is marked with a dashed red line. More

examples are provided in Appendix Figure A.2.

4.6. Limitations

Our model comes with some limitations. Compared to the

vast amount of data (e.g., 400M images [44]) in image-text col-

lections used to train competitive foundation models, our motion-

text training data can be considered extremely small (e.g., 23K

motions in H3D). The generalization performance of motion re-

trieval models to in-the-wild motions is therefore limited. Data

augmentations such as altering text can potentially help to a

certain extent (cf. [6]); however, more motion capture is still

needed. Another limitation concerns the case where one wishes

to replace motion synthesis by retrieving a training motion. In

this use case, the model requires the full encoded database (i.e.,

encoded training set) to be stored in memory, which can be

memory-inefficient. Note that the encoded representation is

considerably smaller than the original motion data. This could

be dealt with using a hierarchical structuring of the motions and

language descriptions (e.g. into upper-body motions, lower-body

motions, sitting motions, standing motions, etc.).

5. Conclusion

In this paper, we focus on the relatively little-studied

problem of motion retrieval with natural language queries. We
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introduce TMR, a framework to jointly train text-to-motion

retrieval and text-to-motion synthesis, with a special attention to

the definition of negatives, taking into account the fine-grained

nature of motion-language databases. We significantly

improve over prior work, and provide a series of experiments

highlighting the importance of each component.

Future work may consider incorporating a language synthe-

sis branch, along with the motion synthesis branch, to build a

symmetrical framework, which could bring further benefits.
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