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Abstract

We present a method to estimate the depth of field effect

from a single image. Most existing methods related to this

task provide either a per-pixel estimation of blur and/or

depth. Instead, we go further and propose to use a lens-

based representation that models the depth of field using two

parameters: the blur factor and focus disparity. Those two

parameters, along with the signed defocus representation,

result in a more intuitive and linear representation which we

solve using a novel weighting network. Furthermore, our

method explicitly enforces consistency between the estimated

defocus blur, the lens parameters, and the depth map. Fi-

nally, we train our deep-learning-based model on a mix of

real images with synthetic depth of field and fully synthetic

images. These improvements result in a more robust and

accurate method, as demonstrated by our state-of-the-art re-

sults. In particular, our lens parametrization enables several

applications, such as 3D staging for AR environments and

seamless object compositing.

1. Introduction

Modern cameras are equipped with sophisticated com-

pound lenses whose task is to focus light on the sensor. The

lens aperture (or f-number) determines, along with the expo-

sure time, the amount of light captured in a photograph. Ad-

justing the aperture however has another side effect: a larger

aperture (lower f-number) induces a depth-dependent blur,

leaving only parts of the image in focus. This depth of field

(DoF) effect is often sought by photographers to guide the

viewers attention to the subject (e.g., macro shots), or create

an artistic look (e.g., tilt-shift photography). Even when not

exacerbated by an experienced photographer, some amount

of depth-dependent defocus blur is bound to be present in

images due to non-zero apertures.

The vast majority of computer vision algorithms ignore

this DoF blur and make the simplifying (pinhole) assump-

tion that the image is entirely in focus. While this may be

acceptable in some cases, this may create unwanted effects.

Consider for example the case of virtual 3D object insertion

Lens-aware object insertion

Lens parameters

Naive object insertion

Estimated
disparity

Estimated
defocus

Input image

Estimated
weight

Figure 1: Naively inserting 3D objects in images results

in unreasonable compositions in the presence of depth of

field blur (bottom-left). Our technique (top-right) estimates

physically-based lens parameters that enable lens-aware in-

sertion (bottom-right), where objects appear more realistic.

(fig. 1). It is of paramount importance that the inserted ob-

jects be rendered by a virtual camera and lens sharing the

same properties as the real ones (fig. 1, bottom-right), as not

doing so results in an improbable result (fig. 1, bottom-left).

Blur estimation is a longstanding problem in computer

vision, and many techniques estimating defocus blur specif-

ically [43, 30, 23, 52, 28] have been proposed in the liter-

ature. However, these non-parametric approaches produce

per-pixel estimates, which do not allow advanced image

editing tasks such as 3D virtual object insertion as in fig. 1.

In this paper, we propose to go beyond per-pixel defocus

blur and argue that reasoning about the camera lens param-

eters is a more principled approach to understanding the

DoF effect in images. We propose what is, to the best of

our knowledge, the first method for estimating the camera

lens parameters that control the depth of field from a single

image. Specifically, we estimate two key lens parameters:

the focus disparity and the blur factor (scaled aperture). Our

approach first relies on pixel-wise depth and disparity es-
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timation networks. Then, we use a signed disparity blur

model, allowing for a more intuitive and linear representa-

tion that can recover the desired lens parameters via linear

least-squares. Our work goes one step further and proposes

a weighting network to guide the attention of the method

during the least-squares fitting to increase the accuracy and

robustness. We obtain a corrected defocus map by making it

explicitly consistent with the estimated lens parameters, con-

trary to currently available methods which can technically

produce any defocus at any depth, yielding globally inconsis-

tent results. Finally, we use the recovered lens parameters to

enable novel applications such as 3D virtual object insertion,

where objects are automatically blurred by the rendering

engine without having to rely on any 2D post-processing. In

short, we make the following contributions:

• We present the first method for estimating the lens param-

eters that control the DoF from a single image: the focus

disparity and blur factor. Our method produces globally

consistent defocus maps and employs a weighting module

to focus its attention on relevant parts of the image;

• We present a comparative analysis of lens parameter es-

timation from per-pixel maps, favorably comparing our

proposed approach to several strong baselines;

• We demonstrate state-of-the-art performance on pixel-

wise disparity and defocus blur estimation on images with

strong DoF effects compared to recent techniques;

• Recovering lens parameters from a single image enables,

for the first time, the realistic insertion of 3D objects in

shallow DoF images.

2. Related work

Depth estimation has received a lot of attention in the

community over many decades. Early methods performed

depth estimation from a single image by solving a graphical

model [38, 39, 58] or through retrieval [18]. Later, deep

learning based methods were proposed to extract priors opti-

mized for this task directly from data. In their seminal paper,

Eigen et al. [7] propose a multi-resolution two-stage method

that refines an initially coarse depth estimation. [9] further

improves robustness with discrete depth and ordinal regres-

sion. Later methods exploit large-scale unannotated datasets

for self-supervision, notably utilizing geometric consistency

[12], optical flow [51], visual odometry [45], or a combi-

nation of masks and multi-scale sampling [13]. Of note,

MiDaS [35] proposes to take advantage of multiple datasets

with seemingly incompatible annotations by employing a

scale-invariant loss. The method was later extended to lever-

age visual transformers [34]. However, most monocular

depth estimation methods ignore lens effects. As a result,

they typically fail on images exhibiting strong blur.

Depth from defocus methods recover scene depth using

the lens blur effect. Typically, those methods require multi-

ple images, either leveraging a varying focus [42, 47, 8], a

structured light system [11], or aperture coding [54]. Some

methods estimate the depth from defocus from a single im-

age, using texture cues and defocus [41] extracted with hand-

crafted features, while [2] proposes to directly estimate the

per-pixel depth through defocus using a deep neural network.

Defocus map estimation has first been tackled using

handcrafted features in several ways [43, 57, 56, 17, 40, 50,

6, 25], which yielded limited robustness. Defocus maps are

often used for deblurring, hence several methods propose

to perform both simultaneously [53, 36, 28]. It is also used

for other tasks, including image quality assessment [29],

defocus magnification [3], and image refocusing [37].

Defocus map estimation has recently significantly im-

proved by taking advantage of deep learning, starting with

the work of Park et al. [30] who combines both handcrafted

multi-scale features with a deep learning model. Later, end-

to-end methods were proposed, such as DMENet [23], which

is trained on synthetic images and leverages a domain adap-

tation scheme to bridge the domain gap on real images.

Concurrently, [14] proposes to estimate the Point Spread

Function (PSF) per pixel, also enabling defocus map estima-

tion. More recently, DID-ANet [28] advances a deblurring

method guided by a defocus map estimated as an auxiliary

task. DBENet [16] estimates the defocus map by discarding

edges due to discontinuities and focusing on texture edges.

[36] exploit a light field dataset to train an image restoration

network. Joint-Depth-Defocus (JDD) [52] propose jointly

estimating depth and defocus from a single image using a

physical consistency constraint. We leverage their proposed

loss but proceed further by estimating the lens parameters.

Complementary to defocus estimation, work has also

been done in defocus synthesis [48, 10, 22]. In particular,

BokehMe [31] was recently proposed to generate a plausible

DoF effect from a single in-focus image. Here, we make use

of the latter as a processing step to obtain training data.

Camera calibration Instead of estimating the dense defo-

cus map, we argue that reasoning on the depth of field as a

global lens effect enables several applications such as virtual

3D scene setup and object insertion. Pertuz et al. [32] pro-

pose using focus sampling and PSF fitting on a focus sweep

of several images to model the camera lens with a single

parameter. Inspired by this work, we tackle this task from a

single image, using an end-to-end differentiable approach.

3. Method

3.1. Image formation model

In a lens-based optical system, only the scene points at

the focal plane (at depth zf ) appear perfectly sharp on the

imaging sensor. According to the thin lens approximation

and as illustrated in fig. 2, rays incoming from points at any

other depth will converge either in front of, or behind the

sensor. A point at depth z will therefore project as a circle of
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Figure 2: Thin lens approximation used to calculate the size

of the circle of confusion c on the sensor as a function of the

depth z. This relation depends on the focus depth zf , the

size the aperture A and the focal length f .

diameter c on the sensor, dubbed the “circle of confusion”.

The relationship between these quantities, the lens aperture

A and the focal length f has been thoroughly studied in the

literature (e.g., [44, 33, 4]) and can be summarized as

c = Af

∣

∣

∣

∣

z − zf
z(zf − f)

∣

∣

∣

∣

≈ Af

∣

∣

∣

∣

z − zf
zzf

∣

∣

∣

∣

. (1)

The approximation comes from the hypothesis that zf ≫ f .

The relationship in eq. (1) provides the amount of blur, as

measured by the circle of confusion, for every pixel in the

image with known depth z.

This non-linear relationship between camera parameters

(A, f, zf ) and pixel quantities (c, z) (fig. 3a) can be simpli-

fied by replacing the depth by disparity d = 1/z:

c ≈ Af |d− df | , (2)

making the relationship linear (fig. 3b). Eq. (2) can be further

simplified by using the signed defocus cs, where cs is nega-

tive if d < df , and positive otherwise. After substituting in

eq. (1), the diameter of the circle of confusion is now

cs ≈ κ (d− df ) , (3)

where df = 1/zf is the disparity at the focus plane, or the

focus disparity, and κ = Af is the blur factor (scaled aper-

ture) (fig. 3c). Note that resolving the scale ambiguity would

require estimating the focal length f , which is beyond the

scope of this work.

3.2. Approach

An overview of our method to estimate the focus disparity

df and the blur factor κ from a single image is illustrated in

fig. 4. We begin by relying on two networks: 1) a defocus

network which estimates the signed defocus map Ĉs, see

eq. (3); and 2) a disparity network which outputs the esti-

mated disparity map D̂ from the input image. These two

networks are trained using a combination of an L1 loss ℓ1
and a multi-scale scale-invariant gradient matching loss ℓmsg
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Figure 3: Typical defocus curves for the parametrizations

defined by (a) eq. (1), (b) eq. (2) and (c) eq. (3).

(evaluated at four different scales) [24]:

ℓdefocus = λ1ℓ1(Ĉs,Cs) + λ2ℓmsg(Ĉs,Cs) , (4)

ℓdisp = λ3ℓ1(D̂,D) + λ4ℓmsg(D̂,D) , (5)

with D and Cs denoting the ground truth disparity and

signed defocus maps, respectively. In addition, a physical

consistency loss [52] helps ensure that the estimated defocus

Ĉs and disparity D̂ are consistent which each other, follow-

ing eq. (3). Using the ground truth camera parameters, we

compute a signed defocus map from the estimated disparity

map C̃s = κ(D̂− df ), as well as a disparity map from the

estimated defocus map D̃ = Ĉs/κ+df . Physical consistency

between the two networks is then enforced by minimizing

ℓpc = λ5ℓ1(D̃,D) + λ6ℓ1(C̃s,Cs) . (6)

The networks are trained using ℓ = ℓdefocus + ℓdisp + ℓpc.

The camera parameters (d̃f , κ̃) are recovered from the

outputs of the two previous networks according to eq. (3):

(d̃f , κ̃) = argmin
df ,κ

N
∑

i=1

(

Ĉs(i)− κ(D̂(i)− df )
)2

, (7)

which can be solved via linear least squares. Here, i ∈ [1, N ]
iterates over the N image pixels. We observed that solving

this equation directly is sensitive to outliers and errors in the

maps, reducing the accuracy. Intuitively, defocus blur might

be more noticeable on heavily textured parts of the image,

and we can hypothesize that the estimated defocus map will

be more accurate in these regions. They should thus be given

more weight in the least-square parameter estimation.

For this purpose, we train an additional weight network

to estimate a per-pixel weight that can be used to refine the

global linear fit from eq. (7). We train this weighting network

while keeping the disparity and defocus networks frozen. It

estimates a per-pixel weight map Ŵ s.t.

(d̂f , κ̂) = argmin
df ,κ

N
∑

i=1

(

Ŵ(i)
(

Ĉs(i)− κ(D̂(i)− df )
))2

.

(8)

Since we do not have ground truth for the per-pixel weights,

we define the parameter loss:

ℓparam = λ7ℓ1(κ̂, κ) + λ8ℓ1(d̂f , df ) . (9)
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Figure 4: Overview of our approach. From a single input image, two networks first estimate pixel-wise disparity and defocus

values D̂ and Ĉs respectively. From these two estimates, we then perform a weighted least squares linear fit, where the weights

are given by a third network, to recover the lens parameters (blur factor κ̂ and focus disparity d̂f ) that model the depth of field.

We finally use these parameters, along with the disparity map, to get a more accurate reconstructed defocus map estimation.

We also reconstruct a signed defocus map from the estimated

disparity and lens parameters Ĉr = κ̂
(

D̂− d̂f

)

, and con-

sider a loss between this weighted reconstructed defocus

map and the ground truth signed defocus:

ℓrecon = λ9ℓ1(Ĉr,Cs) + λ10ℓmsg(Ĉr,Cs) , (10)

We train the weight network using ℓweight = ℓparam+ℓrecon.

3.3. Architecture and training details

We use the same architecture for all three networks, con-

sisting of a Pyramid Vision Transfomer v2 [46] encoder, and

a modified SegFormer [49] decoder head (refer to the supple-

mentary material for more details). For the linear regressions,

we find the least-squares solution for the camera parameters

by computing the pseudo-inverse. To avoid numerical insta-

bility issues and reduce the memory footprint of this step,

we fit 100 random subsets of defocus and disparity maps and

consider the mean of the obtained estimated parameters.

We use an input resolution of 640 × 640. To make the

defocus estimation independent of the input resolution, the

defocus network estimates the size of the circle of confusion

in relative pixels (pixels normalized by the input width).

Finally, because the scale of the disparity is absorbed in the

blur factor κ, we normalize the disparity between 0 and 1.

We use the AdamW [27] optimizer to train the network,

with a learning rate of 10−6, exponential decay rates of

β1 = 0.9, β2 = 0.999, and a weight decay of 0.01. We set

λ1...6 = 1, λ7 = 100, λ8 = 10, λ9,10 = 1000. We use a

batch size of 8, and train the disparity and defocus modules

by alternating between 1000 and 500 iterations resp. on the

BokehMe (proprietary) and SynthWorld datasets (see sec. 4)

4. Datasets

To palliate the lack of paired images, depth, and defocus

maps, we use a mix of synthetic and semi-synthetic datasets.

Synthetic Synthworld To get synthetic defocused im-

ages with exact defocus blur, we generate renders from 3D

scenes, using the Blender Cycles physically-based renderer

[5]. We use 67 realistic 3D scenes from Evermotion [1],

from which we use 56 for training, 19 for validation, and

10 for testing. For each scene, we manually identify several

possible camera positions, and randomly sample deviations

from these to obtain camera intrinsics and extrinsics. We

render 200 images per scene, yielding a total of 18k images.

Fig. 5a shows samples from this dataset. Please refer to the

supplementary material for more details about the rendering

process. This results in sets of 12k, 4k and 2k images for

training, validation, and testing, respectively.

Semi-synthetic BokehMe We obtain our second dataset

by applying a synthetic defocus blur on real all-in-focus

RGBD images using the BokehMe [31] defocus synthesis

method. This approach uses a classical physics-based ren-

derer to generate blur, and fixes the artifacts near depth dis-

continuities using a neural renderer. We apply this method on

294k RGBD images of DIML [20, 19, 21]. We additionally

apply this method to 100k proprietary images we licensed,

from each we generate 10 defocused images with randomly

selected defocus parameters. The BokehMe (DIML) dataset

is split into sets of 240k, 53k, and 1k images for training,

validation, and testing, respectively, while the BokehMe (pro-

prietary) is split 868k/155k/10k. Fig. 5b and fig. 5c show

samples from these datasets.

Other datasets We use DED [28], a light-field-based

dataset, to evaluate our methods. We also consider SYN-

DOF [23], a semi-synthetic dataset generated from RGBD

images. Both these datasets tend to have artifacts due to

their depth processing. Please refer to the supp. material for

visual comparison and additional description of the datasets.

Training and Evaluation Our method and experiments

employ the following datasets. First, we train our dispar-

ity and defocus modules on the Synthworld dataset and

BokehMe applied to proprietary captured data. Our weight

module is trained on BokehMe applied to the DIML dataset.
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Figure 5: Example images from our datasets: a synthetic

Synthworld, and b, c semi-synthetic BokehMe resp. on pro-

prietary and DIML RGBD images. In both cases, accurate

ground truth disparity and defocus images are available to

train our models.

To evaluate our defocus estimation, we adopt SYN-

DOF [23] (8k images), DED [28] (1k images), Synthworld,

and BokehMe (proprietary). We evaluate our parameter es-

timation on the BokehMe (DIML) dataset. We will release

the code to generate our dataset from RGBD images using

BokehMe as well as the necessary metadata to re-generate

our BokehMe (DIML) datasets upon acceptance.

5. Defocus and disparity maps

While our primary goal is to recover camera parame-

ters, our method relies on two per-pixel maps to perform its

estimation—the defocus and disparity. In the following, we

showcase the behavior of our estimated maps.

5.1. Methodology

Baselines We show our estimated defocus and disparity

maps alongside the only method that provides depth and

defocus simultaneously, Joint-Depth-Defocus (JDD) [52],

which we re-implemented since their code is unavailable.

To benchmark our defocus map estimation, we consider

DMENet [23], DBENet [16] and DID-ANet [28]. For depth

estimation, we evaluate the seminal MiDaS, both its con-

volution v2 version [35] and the transformer v3 (DPT) ex-

tension [34]. We convert all depth to disparity for com-

parison purposes. To evaluate our proposed architecture

(see sec. 3.3), we first train the disparity estimation network

on the same training set as MiDaS, which contains only

sharp, all-in-focus images. We dub this pretrained network

“Ours (pretrained)”. We then finetune it and jointly train our

Image DMENet [23] DBENet [16] JDD [28] Ours

Figure 6: Qualitative comparison with existing methods for

single image defocus map estimation. Our method produces

significantly better defocus maps than previous methods.

The estimated map is color-coded from in-focus (dark-blue)

to strongly blurry out-of-focus regions (yellow).

defocus estimation network on Synthworld and BokehMe

exclusively, which we refer to as “Ours” later.

5.2. Defocus map estimation

We first present defocus map estimation results in Tab. 1,

comparing four different methods against ours. Our method

performs significantly better on the real images with syn-

thetic blur from BokehMe and SynthWorld. While DMENet

[23] is an older method, we observe that DBENet [16] and

DID-ANet [28] obtain worse results on our tested datasets.

We show qualitative defocus map estimation results in

fig. 6. To avoid bias, input images are downloaded from the

Internet and do not belong to any defocus datasets used to

train the methods. Our method produces both sharper and

seemingly more accurate results than existing methods. We

further compare qualitatively against the ground truth of our

Synthworld and BokehMe datasets (see sec. 4) in fig. 8. Our

method also exhibits state-of-the-art results in this case.

5.3. Disparity map estimation

We quantitatively compare the accuracy of the evalu-

ated models on disparity estimation on both Synthworld and

BokehMe test sets in tab. 2. As expected, methods trained

exclusively on all-in-focus images (top part of tab. 2) do not

perform as well on images with out-of-focus blur.

We show a qualitative evaluation on disparity estimation

in fig. 7. The same data precautions were taken as in fig. 6.
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SynthWorld BokehMe Syndof [23] DED [28]

(px) (px) (σ) (sc. px)

DMENet [23] 12.98 11.13 0.739 0.143

DBENet [16] 12.97 11.79 1.090 0.136

DID-ANet [28] 13.51 13.18 1.14 (0.127)1

JDD [52] 15.85 19.05 2.827 0.791

Ours (Ĉs) 5.83 2.22 0.741 0.133

Ours (Ĉr) 6.36 2.13 0.726 0.141

Table 1: Root mean square error (RMSE) on the defo-

cus estimations2. Results are color-coded as best and

second best .

Image MiDaS v3 [34] JDD [52] Ours (pretr.) Ours

Figure 7: Qualitative comparison with existing methods

for single image disparity map estimation. All images are

downloaded from the Internet and do not belong to any

training dataset. Our prediction provides higher disparity

map quality, and it also captures more accurate details in the

out-of-focus region than the other methods.

Note how methods trained exclusively on all-in-focus images

(MiDaS v3 and ours (pretrained)) have issues with overly

blurry regions (e.g., canopy, 2nd row, rock in the bottom left,

3rd row). Finetuning on rich datasets helps in resolving the

ambiguity (ours). Similarly to the defocus map estimation,

our architecture provides sharper details. Fig. 8 also shows

disparity estimation results compared to the ground truth on

our Synthworld and BokehMe datasets (see sec. 4).

1We use the DED training set for testing since ground truth defocus are

unavailable on the test set. DID-ANet has seen this dataset during training.
2Since the evaluated methods use different defocus representations (e.g.

σ vs diameter), we scale the defocus maps by the best factor (per-dataset).

Synthworld BokehMe

MiDaSv2 (conv.) [35] 0.186 0.190

MiDaSv3 (DPT) [34] 0.147 0.151

Ours (pretrained) 0.152 0.140

JDD [52] 0.303 0.324

Ours 0.087 0.043

Table 2: Root mean square error (RMSE) for the disparity

estimatons on the Synthworld and BokehMe test sets. Re-

sults are color-coded as best and second best . Methods

are trained (top) exclusively on all-in-focus images [35], and

(bottom) on our Synthworld and BokehMe training sets.

Synthworld BokehMe

d̂f κ̂ d̂f κ̂

DMENet [23]∗ 0.150 17.12 0.161 24.66

DBENet [16]∗ 0.182 15.99 0.175 26.48

DID-ANet [28]∗ 0.178 15.45 0.202 28.05

JDD [52] 0.641 44.44 0.307 51.6

Ours (linear) 0.043 4.59 0.033 3.95

Ours (weight) 0.043 4.55 0.034 4.00
∗ use “ours (pretrained)” for disparity estimation.

Table 3: Median error on lens parameter. On the first four

rows, we obtain the camera parameters by doing a least

square fit on the estimated disparity and absolute value defo-

cus maps, following eq. 2. ( best and second best )

BokehMe–DIML

d̂f κ̂ Ĉr

0) Linear fit 0.038 3.62 4.44

1) Lin. fit near focus disp 0.038 10.15 13.83

2) Median in-focus disp 0.040 7.15 6.49

3) RANSAC linear fit 0.044 4.60 4.85

4) Parameter network 0.068 11.5 4.42

5) Gradient weights 0.037 3.62 4.42

5) Weight network 0.037 3.49 4.17

Table 4: Median error on lens parameter estimation using

multiple methods, color-coded best and second best .

6. Camera parameters estimation

We now present results on the novel task of recovering

camera lens parameters, enabling us to obtain a global repre-

sentation of the depth of field effect in a given scene. Since

we are the first to tackle this task from a single image, there

exists no previous method we can directly compare against.

We therefore present two comparative analyses.

First, we compare to strong baselines on the Synthworld

and BokehMe datasets by combining existing defocus map

estimation techniques (DMENet [23], DBENet [16], DID-

ANet [28]) with the “ours (pretrained)” disparity estimation

network. All these methods employ our proposed linear

least-squares fit to recover the parameters (eq. (7)). We also
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Image GT disparity D Predicted disparity D̂ GT defocus C Predicted defocus Ĉ Recon. defocus Ĉr Weight Ŵ

Figure 8: Qualitative results on our Synthworld (top 3 rows) and BokehMe (remainder) datasets. Left to right: input image,

ground truth/estimated disparity maps, ground truth/predicted/reconstructed absolute value defocus maps, weight maps.

compare our method with linear and weight fits. As shown

in tab. 3, our proposed combination of architecture, training

datasets, and formulation allows for the most accurate esti-

mation of lens parameters. We also show that our method

performs the same within statistical significance with and

without our weight network on these two datasets.

Second, we compare different strategies for recovering

the camera parameters using our defocus and disparity esti-

mation networks. In particular, we consider five methods: 1)

do a second linear fit (eq. (7)) only on pixels with disparities

within ± 10% of the initially estimated focus disparity, 2)

estimate the focus disparity as the median disparity of the

in-focus pixels (i.e., with estimated coc < 1px), 3) use the

RANSAC algorithm, 4) train a ConvNeXt-tiny [26] network

with the same loss as our weight network to directly regress

the parameters, 5) use the image gradients as weights, and 6)

our proposed weight network. To evaluate the robustness to

out-of-domain images—when the estimated maps have more

outliers and mistakes than on Synthworld and BokehMe

(prop.)—we perform this evaluation on a new dataset never

seen in training for the per-pixel map estimation networks,

BokehMe (DIML), the results of which are shown in tab. 4.

Our weight network yields the best performance across esti-

mated parameters and defocus map reconstruction.

To further showcase the robustness of our method to in-

the-wild images (despite the circle of confusion approxima-

tion not modeling ideally recent sensors), we show recon-

structed defocus maps on images from a wide variety of

sensors in fig. 9. Interestingly, the estimated weight maps

indicate that the network focuses on geometric edges and tex-

tures, where the defocus is most noticeable while discarding

uniform textureless regions.

7. Applications

3D objects compositing Our method is the first to enable

plausible 3D virtual object insertion from a single image with

strong depth of field effect. We convert our estimated focus

disparity κ̂ and blur factor df to Blender’s parametrization

(focus distance and f-number). We place in the 3D scene a

flat ground plane acting as a shadow catcher, and we scale

its disparity so that it matches our disparity map estimation.

We use [15] to get a focal length estimation, which allows us
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Figure 9: Reconstructed maps on in-the-wild images.

Figure 10: 3D object insertion (right) in (left) shallow DoF

images. Objects are rendered using the Blender Cycles ren-

derer, using our estimated lens parameters (κ̂, d̂f ).

to recover the metric camera aperture (and f-number) using

eq. (3). We showcase the results in fig. 10. Both the toy car

and the skateboard plausibly match the blur effect present

in the image, giving a credible insertion. Note that no 2D

image processing (e.g., pixel-wise blur) is necessary here:

since the virtual camera possesses the same properties as

the real camera, the depth of field effect is obtained directly

from the physics-based rendering engine. This can only be

done if realistic lens parameters are recovered.

2D objects compositing Our approach also allows the

realistic compositing of 2D objects in shallow depth of field

images, which we illustrate in fig. 11. Here, we simply blur

each pixel of the inserted object according to the correspond-

ing pixel in the estimated defocus map Ĉs.

Defocus magnification Using our estimated defocus map,

we can magnify the defocus effect by providing our esti-

mated disparity and focus disparity to the BokehMe defocus

generation method [31]. This is illustrated in fig. 12 where

Figure 11: 2D object compositing (right) in (left) shallow

DoF images. Inserted objects are blurred according to our

estimated defocus map Ĉs.

Figure 12: From images with depth of field effect (1st and

3rd), we leverage the estimated defocus map Ĉs to magnify

defocus (2nd and 4th), thereby enhancing the artistic effect.

blurry regions are accentuated for artistic purposes.

8. Discussion

Limitations Our method yields an estimate of the scaled

aperture: recovering metric aperture (or f-number) requires

knowledge of the focal length f as well, which could po-

tentially be solved by considering focal length estimation

methods [15, 55]. Since we impose a physical model on

the estimation, our approach does not handle images that

have undergone manual editing, for example if physically-

incorrect blur is added by an artist.

Conclusion We present a method that estimates the cam-

era lens parameters to model depth of field from a single

image. Our method is the first to enable 3D virtual ob-

ject compositing and scene staging for AR. Our method

advances several insights including the use of a linear lens

parametrization for this task, an attention-like weight net-

work, and explicitly enforcing the consistency between the

defocus and disparity to achieve global lens parameter esti-

mates. We hope our contributions pave the way to improve

future camera lens calibration methods and inspire methods

for staging virtual environments from real images.
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