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Abstract

Event cameras provide an advantage over traditional
frame-based cameras when capturing fast-moving objects
without a motion blur. They achieve this by recording
changes in light intensity (known as events), thus allow-
ing them to operate at a much higher frequency and mak-
ing them suitable for capturing motions in a highly dy-
namic scene. Many recent studies have proposed methods
to train neural networks (NNs) for predicting optical flow
from events. However, they often rely on a spatio-temporal
representation constructed from events over a fixed interval,
such as 10 Hz used in training on the DSEC dataset. This
limitation restricts the flow prediction to the same interval
(10 Hz) whereas the fast speed of event cameras, which can
operate up to 3 kHz, has not been effectively utilized. In this
work, we show that a temporally dense flow estimation at
100 Hz can be achieved by treating the flow estimation as a
sequential problem using two different variants of recurrent
networks – Long-short term memory (LSTM) and spiking
neural network (SNN). First, We utilize the NN model con-
structed similar to the popular EV-FlowNet but with LSTM
layers to demonstrate the efficiency of our training method.
The model not only produces 10× more frequent optical
flow than the existing ones, but the estimated flows also
have 13% lower errors than predictions from the baseline
EV-FlowNet. Second, we construct an EV-FlowNet SNN
but with leaky integrate and fire neurons to efficiently cap-
ture the temporal dynamics. We found that simple inherent
recurrent dynamics of SNN lead to significant parameter re-
duction compared to the LSTM model. In addition, because
of its event-driven computation, the spiking model is esti-
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mated to consume only 1.5% energy of the LSTM model,
highlighting the efficiency of SNN in processing events and
the potential for achieving temporally dense flow.

1. Introduction

Optical flow estimation is a core problem in computer
vision that evaluates the motion of each pixel between any
two consecutive images captured by a frame-based cam-
era. Optical flow information enables an observer to visu-
alize a motion field which is useful for numerous applica-
tions such as object trajectory prediction [21], robotic con-
trol [25], and autonomous driving [16]. The problem has
been traditionally addressed using various classical com-
puter vision techniques like correlation-based [27], block-
matching [1] and energy minimization-based [14] tech-
niques, but their computational costs have shown to be
prohibitively expensive for real-time applications. Neural
network (NN) based techniques for optical flow prediction
[6, 22, 28] have been proposed and remain a popular low-
cost computing method. Generally, NN models receive two
consecutive images taken by a frame-based camera as in-
put and predict the optical flow that best warps pixels from
one image to another. However, due to the limited dynamic
range of such frame-based cameras, the performance of the
aforementioned techniques may be affected by motion blur
or temporal aliasing.

Methods to estimate optical flow from event camera out-
puts offer a promising alternative to the frame-based ap-
proaches [12, 18, 19, 31, 33, 34]. An event camera logs light
intensity change at each pixel (so-called events) rather than
measuring actual light intensity for a fixed duration. Thus,
an event camera can generate a stream of events at high
temporal resolution as illustrated in Fig. 1(a). The reso-
lution may be as small as 300 µs [7], making event-based
optical flow estimation less susceptible to motion blur and
more suitable for a highly dynamic scene. Nonetheless,
being able to effectively extract information from a high-
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Figure 1. (a) Comparison between outputs of a traditional frame-
based and event camera. (b) Existing NN models typically rely
on a collection of events for optical flow prediction. (c) We train
NN models with memory elements to process each event count so
that they can perform more frequent optical flow estimation. Red
arrows indicate information flow from a past to a future time-step.

frequency event stream is a challenging task. An event cam-
era outputs events at a fast rate but in an asynchronous and
noisy manner. To ensure high fidelity of the inputs to the
NN models, existing works collect events over a fixed pe-
riod (often a duration between two consecutive optical flow
ground truths) and construct a spatio-temporal representa-
tion for optical flow estimation. Hence, optical flow is eval-
uated at a speed slower than the rate that events are pro-
duced by an event camera as illustrated in Fig. 1(b). Eval-
uating optical flow at a faster rate can be crucial for cer-
tain applications, such as dodging an obstacle during navi-
gation [24], where fast reaction time is essential.

To predict temporally dense optical flow, we cast the
event-based optical flow estimation as a sequential learn-
ing problem. We consider the event stream as a long
correlated sequence over time rather than multiple inde-

pendent sequences of inputs like in the existing works
[9, 18, 19, 31, 33, 34]. This approach allows us to reduce the
time needed to collect events as depicted in Fig. 1(c). We
train the NN models to learn the trajectory from each event
count and use the collected information to estimate optical
flows. NN models are hence, required to have internal states
that are capable of retaining history. For demonstrating the
efficiency of our training method, we first construct an NN
model similar to the commonly used model in event-based
optical flow estimation, EV-FlowNet [33], but replace each
convolutional layer with a layer of convolutional long-short
term memory (LSTM) [26]. The use of LSTM allows pre-
vious event information to be stored and evolved through
time. To demonstrate the possibility of implementing tem-
porally dense optical flow estimation for real-time applica-
tion, we construct another NN model similar to EV-FlowNet
but replace stateless neurons (like ReLU) with stateful spik-
ing neurons [10]. Spiking neural networks (SNNs) have
been previously proposed to address the inefficiency of typ-
ical neural networks in handling events which are sparse
in nature [18, 19]. Note that neurons communicate with
other neurons through binary values, and hence, SNNs of-
fer power savings on event-driven hardware by process-
ing only non-zero inputs. In addition, SNNs have internal
states (membrane potentials) which enable them to retain
information over time. This inherent recurrence in SNNs
can be advantageous for sequential learning tasks such as
temporally dense optical flow estimation. We demonstrate
that our training methodology can be applied to the spik-
ing models, resulting in a model with significantly fewer
parameters than the corresponding LSTM model. Our esti-
mation reveals that the spiking model consumes only 58%
energy compared to the baseline EV-FlowNet while predict-
ing 10× more frequent optical flow. Successful training of
the spiking model serves as the first step to realize tempo-
rally dense flow estimation on a neuromorphic chip like In-
tel Loihi [3] which recently achieved a throughput of 1000+
fps for multi-layer convolutional SNN computation [30].

Throughout this work, we refer to the two proposed mod-
els as LSTM-FlowNet and EfficientSpike-FlowNet, respec-
tively, for short. Steps to train both models for temporally
dense optical flow estimation are, nonetheless, not straight-
forward. A proper encoding scheme must be adapted to
deliver event information during every small duration to the
models. For this purpose, we use per-pixel event count ob-
tained through simple aggregation over a small time period.
Temporal information of the events is implicitly encoded in
the order that the event counts are fed to the models. De-
spite its simplicity, we show that the event count is sufficient
for optical flow estimation and in fact leads to better predic-
tion with a sequential learning methodology. Another chal-
lenge comes from a typical assumption in sequential learn-
ing that an input has a limited length. However, an input in
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our case (i.e., event stream) is a long indefinite-length se-
quence of information, as the optical flow estimation may
be performed for an extended time. This raises the issue of
how to estimate optical flow from an event stream without
resetting the NN models. Resetting the models would result
in losing valuable event information processed in the past.
We find that typical sequential learning approaches do not
train the models to perform well on continuous inference
(i.e., without a regular reset) and propose modifications to
address this problem. Our proposed modification allows the
models to learn and ignore information from older events
while considering more recent relevant events for optical
flow estimation.

Overall, our contributions can be summarized as follows:

1. We cast event-based optical flow estimation as a se-
quential learning problem to achieve temporally dense
optical flow prediction. We introduce two NN mod-
els with internal states, namely LSTM-FlowNet and
EfficientSpike-FlowNet, and train them on the DSEC
dataset [8] to estimate 10× more frequent optical flow
than models crafted from the existing approaches.

2. We present a technique to train the proposed models
for optical flow estimation without any network reset,
so that information from past relevant events is car-
ried over time for a more reliable and frequent predic-
tion. We show that an ability to draw longer tempo-
ral correlations from an event stream leads to 13% im-
provement in the flow prediction accuracy of LSTM-
FlowNet over the baseline EVFlowNet.

3. We demonstrate the potential of efficiently estimat-
ing more frequent flow (temporally dense flow) by ap-
plying the proposed method to train EfficientSpike-
FlowNet. Compared to LSTM-FlowNet, we found
that the spiking model has a higher prediction error
due to its simpler recurrence dynamic. However, it
comes with 3.23× lower number of parameters and
offers substantial power savings (1.5% of the LSTM-
FlowNet).

2. Background
2.1. Comparison with Existing Works

The primary focus of many existing works on event-
based optical flow estimation is on proposing different NN
models for predicting optical flow [9, 12, 17–19, 31, 33, 34].
Zhu et al. proposed the first encoder-decoder model known
as EV-FlowNet to process an event representation [33]. A
similar model was introduced in [31, 34] but with an abil-
ity to compute camera and depth simultaneously. The in-
efficiency of EV-FlowNet in handling events was addressed
in [18,19] by incorporating spiking neurons into the encoder
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Figure 2. (a) Diagram representing operations of LSTM or spiking
neuron layer at time t. Internal state of both NN layers is carried
over from the past time-step to the current time-step for computa-
tion. (b) Equivalent representation when operations of LSTM or
spiking neuron layer are unrolled into multiple time-steps.

part of the model. With the advancement of SNN train-
ing techniques, the fully spiking variances of EV-FlowNet
were introduced later in [12, 17]. Another line of works
proposed the use of recurrent NNs for iteratively optimiz-
ing optical flow [5, 9]. A key observation is that all models
proposed so far are still trained similar to the EV-FlowNet.
They are trained to predict a single optical flow during a
fixed interval, such as 10 Hz used in training on the DSEC
dataset. Our work distinguishes itself from prior stud-
ies by proposing a new methodology for predicting mul-
tiple optical flows within the same period. We achieve
this temporally dense optical flow estimation by leverag-
ing proper sequential training and recurrent NNs with in-
ternal states (outlined in Section 3). One may argue that
event-based flow estimation with recurrent NNs has been
proposed in [5, 9]. However, those models are designed to
process each event representation multiple times and utilize
that information to iteratively improve flow prediction. Our
proposed models, on the other hand, are trained to process
each event count only once and retain relevant information
for an optical flow estimation.

2.2. Building Blocks for Sequential Learning

Sequential learning tasks are a class of problems where
information is received through multiple episodes over
time. In sequential learning, NNs are trained to extract and
retain important information at each time step for future pre-
dictions (e.g., optical flow). This calls for NNs with mem-
ory elements to retain information from the past. In this
work, we utilize two different types of NN layer to create
a model like EV-FlowNet, namely convolution LSTM and
spiking neuron layer. The operation of convolution LSTM
and spiking neuron layer can be visualized in the form of a
computational graph as shown in Fig. 2(a).

2.2.1 Convolutional LSTM

LSTM is a type of NNs with internalized memory that have
demonstrated exceptional generalization capabilities across
various sequential learning problems [11, 13, 29]. Its in-
ternal state typically referred to as the cell state (ct) is de-
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Figure 3. Computational graph of (a) convolutional LSTM layer
and (b) convolutional spiking neuron layer.

signed specifically to avoid the vanishing gradient problem.
The cell state runs straight through an LSTM with minimal
linear interactions as illustrated in Fig. 3(a), thus avoiding
encoded information from the past being disrupted while
sustaining gradient flow during back-propagation. LSTM
can be combined with a convolutional layer making it capa-
ble of processing 2-D inputs.

Whenever a layer of convoluation LSTM receives an in-
put (xt) at time t, it computes an output known as the hid-
den state (ht) and the internal state (ct) through various gat-
ing mechanisms as follows. First, the forget gate (see left
dashed box in Fig. 3(a)) controls how much of the previous
cell state (ct−1) is retained by deriving a scale factor ft (val-
ued between 0 and 1) based on the input and the previous
hidden state (ht−1). Candidate and input gates (see middle
box in Fig. 3(a)) then calculate the contribution from the
input to the internal state and combine it with the output
of the forget gate to obtain the new cell state. Lastly, the
output gate controls the amount of information carried from
the new cell state to the convolutional LSTM output (hidden
state). The dynamic of the convolutional LSTM layer can
be expressed mathematically as follows:

ft = σ(Conv(ht−1) + Conv(xt) + bf )

it = σ(Conv(ht−1) + Conv(xt) + bi)

ĉt = tanh(Conv(ht−1) + Conv(xt) + bc)

ct = ft ⊙ ct−1 + it ⊙ ĉt

ot = σ(Conv(ht−1) + Conv(xt) + bf )

ht = ot ⊙ tanh(ct)

where b are a bias of each different gate. ⊙ signifies an
element-wise multiplication.

2.2.2 Spiking Neurons

Spiking neurons are artificial neurons that are inspired by
biological neurons in nature. They display several unique
characteristics that make them suitable for real-time appli-
cations. Artificial spiking neurons communicate sparsely
through binary signals (so-called spikes) that resemble elec-
tric pulses transmitted by biological neurons. This com-
munication scheme simplifies hardware implementations of

SNNs and enables their computations to be done efficiently
in an event-driven manner [3,4,20]. In addition, their event-
driven nature makes them ideal for handling asynchronous
data generated by event sensors. Spiking neurons also have
internal states which are useful for sequential learning.

Dynamics of the leaky integrate-and-fire (LIF) neuron,
a popular spiking neuron model, have a couple of notable
characteristics [10]. A spiking neuron has an internal state
referred to as the membrane potential (vt). The membrane
potential is increased by an input coming into the neuron
after the input gets modulated by a synaptic weight. The
neuron then generates an output (or a spike) when the mem-
brane potential exceeds a defined threshold as shown in
Fig. 3(b). Mathematically, the dynamics of the LIF neuron
with a convolutional connection that we used in this work
can be expressed as follows:

vt = vt−1 − yt−1 + Conv(xt) + b

yt = thres(vt)

where xt and yt represent the input and output of the LIF
neuron at time t. b is a bias of the neuron.

2.3. Method to Train Sequential Networks

To understand the training methodology, we refer to the
computational graphs of the NN layer in Fig. 2. Because
internal states of the NN layer (statet) are computed based
on new inputs (inputt) and their state values from the pre-
vious time-step (statet−1), we can utilize the same com-
putational graph to derive new internal states and outputs
(outputt) recursively. Hence, the back-propagation through
time (BPTT) algorithm can be applied to compute gradients
for training these models. For this, the operations of the
NN layer are unfolded in time by creating several copies
of it and treating them as a feed-forward network with tied
weights. Fig. 2(b) shows the computation graph after an
unrolling. Given a target flow at each time, an error can be
computed in a supervised manner and the gradient can be
then propagated backward to each time-step. We overcome
the non-differentiability of the SNN threshold function by
using surrogate gradients [2, 32].

3. Proposed Method
3.1. Proposed Event Representation for Temporally

Dense Flow Estimation

Selecting a proper event representation for optical flow
estimation is a challenging task as an event camera asyn-
chronously reports changes in the light intensity (It) at ev-
ery pixel on the sensor array. For each pixel, an event
camera can generate a negative event or a positive event.
The positive event is generated whenever the brightness in-
creases beyond a predefined threshold (θ+) as described by
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the following equation:

log(It/It−1) ≥ θ+

Likewise, the negative event is generated when the bright-
ness decreases beyond a different threshold θ−. Hence,
each event corresponds to a time (t), pixel location (x, y)
and polarity of change (p). Since the goal of optical flow
estimation is to produce image-like output that indicates the
flow magnitude in x-and y-directions, existing approaches
utilize a convolutional layer to draw spatial correlations be-
tween nearby pixels. A common practice is to structure
event information as frames with a fixed number of chan-
nels before convolution operation is applied.

Prior works proposed different methods to construct this
spatio-temporal representation from a collection of events.
One common approach encodes the average timing or the
most recent timing of events at every pixel into one of the
channels to capture temporal information [31, 33]. Another
common approach divides events into multiple partitions
with the same number of events. Then, per-pixel event
count from each partition is calculated to form a multi-
channel input [12, 18, 19]. The issue with such input en-
coding schemes is that an inference can only be made once
the entire sequence of event data is available. For instance,
suppose that we want to represent events received over a
duration between t=16 and t=20 from an event stream as
depicted in Fig. 1(c). At t=18, events cannot be divided into
equivolume partitions and translated to a spatio-temporal
representation since the total number of events that arrive
during the whole duration is not yet known.

To enable instantaneous computing from events in a
smaller interval, we feed per-pixel event count as an input
to NNs. This representation can be obtained through simple
aggregation over each time period. Since our proposed NNs
process input sequentially, temporal information of events
is implicitly encoded in the order that the event counts are
fed to the NNs. We sample event count at regular intervals
to keep the notion of time consistent and allow NNs to learn
temporal correlations between events at each pixel.

3.2. Proposed Models for Temporally Dense Optical
Flow Estimation

Encoder-decoder network architecture has been widely
adopted by prior works for event-based optical flow estima-
tion [12, 18, 19, 34]. This architecture has multiple down-
sampling convolutional layers followed by upsampling con-
volutional layers. The former downsampling part of the
network aims to encode spatio-temporal inputs into inter-
mediate representations while the latter upsampling part
utilizes these representations to estimate optical flow. We
follow the same convention and construct two NN models
for temporally dense optical flow prediction. To demon-
strate the efficiency of our training method, we first create
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Figure 4. (a) Example of event count sequence generation
from an event stream. (b) Operations of LSTM-FlowNet and
EfficientSpike-FlowNet on each generated sequence. BPTT algo-
rithm is applied as usual, but the gradient is propagated backward
only to event counts that are within a window of interest.

an NN model called LSTM-FlowNet, which is similar to
EV-FlowNet - a popular encoder-decoder model for event-
based optical flow estimation [33]. However, instead of us-
ing regular convolutional layers, we replace each layer with
a layer of convolutional LSTM. The use of LSTM allows
previous event information to be stored and evolved through
time. In addition, we construct another NN model similar
to EV-FlowNet but with one major difference. Rather than
using stateless neurons like ReLU, we replace them with
stateful spiking neurons. Our aim is to demonstrate the po-
tential implementation of temporally dense flow estimation
for real-time application. SNNs have previously been pro-
posed to address the inefficiency of typical neural networks
in handling events that is sparse in nature. By communicat-
ing through binary values, SNNs can skip computation with
zero inputs when realized on event-driven hardware, result-
ing in power savings. Thus, we refer to the spiking model
as EfficientSpike-FlowNet and analyze its expected compu-
tation requirements in the following section to demonstrate
its computational efficiency.

3.3. Sequential Training for Temporally Dense Op-
tical Flow Estimation from an Event Stream

In order to achieve frequent optical flow estimation, we
treat the event stream as one long input, rather than divid-
ing it into individual sequences like in the previous works.
However, training the proposed models on such a long input
poses several challenges. Firstly, a batch computation tech-
nique cannot be used, which leads to slower training and po-
tential biases in the trained models. Additionally, there are
limited data augmentations that can be applied during each
epoch since they must be uniform across the entire input se-
quence. Moreover, traditional sequential training method-
ology assumes that sequential inputs have a finite length,
and the model’s internal states are reset with each new input
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sequence. However, we want our models to estimate opti-
cal flow without interruption as reinitializing their internal
states would result in a loss of information from past events.
The models also do not generate reliable outputs until they
process a sufficient number of event counts.

To address those issues, we can naively split a long event
stream into multiple smaller sequences consisting of 10
event counts as illustrated in Fig. 1(b) and train the pro-
posed model using a typical sequential training methodol-
ogy. Then, we utilize the trained model without a network
reset. However, our preliminary experiments show that this
approach results in unacceptably large errors with both pro-
posed models, even with the use of data augmentations and
noisy initial states during training. We observe that the pre-
diction error increases drastically after the first acceptable
optical flow estimation. This is because traditional sequen-
tial training methodologies do not train the model to effec-
tively ignore older events and focus on more recent ones.
The internal states collect residual information, making the
model progressively hard to estimate reliable flow with each
new input.

To prepare the models for inference on an event stream
without a network reset, we propose a two-step data genera-
tion approach for training. Suppose that optical flow ground
truth is available at every m event counts. The first step is
to create input sequences from an event stream consisting
of m·n consecutive event counts (see Fig. 4(a)). We make
sure that m·n is sufficiently large so that all important event
counts are included for optical flow estimation. Doing so
allows us to apply different data augmentations to each se-
quence and increases the number of data points for training.
To make the model aware of the previous event counts, we
increase the length of each sequence by including l addi-
tional event counts in front of the m·n event counts. The
next step is to train the model using the BPTT algorithm, but
propagate gradient backward only to event counts that are
within a window of interest equal to m·n (see Fig. 4(b)). In-
formation from l event counts beyond this window of inter-
est is automatically treated as noise during training. Thus,
we guarantee the models to learn temporal correlations from
m·n event counts by propagating gradient back in time.

4. Experimental Setup and Results

4.1. Dataset, Training and Evaluation Procedure

We demonstrate the effectiveness of the proposed tempo-
rally dense optical flow estimation on the DSEC dataset [8]
which contains both high-resolution events and optical flow
ground truths from daytime and nighttime outdoor driving
under various lighting conditions. There is another popu-
lar dataset, MVSEC [33]; however, the magnitudes of its
optical flows are mostly smaller than 3 pixels and only
about 20% of pixels in each flow ground truth are valid.

We choose to experiment with DSEC dataset as it has bet-
ter quality ground truths and optical flows with 5× faster
movement, allowing us to quantify the improvement with
our proposed approach. In the DSEC dataset, the events are
recorded using a stereo event camera. Optical flow ground
truths are derived from odometry ground truths and are pub-
licly available for 18 scenarios. We split events and opti-
cal flow ground truths in each recording into a training and
testing set using an 80/20 ratio. In other words, we pick
the first 80% of the events and the corresponding ground
truths in each recording to be a training set while we use
the rest as a testing set. Note that we provide results from
using a different training-testing set-splitting strategy simi-
lar to [9, 33] are included in the supplementary document.
For training, only events from the left camera (after apply-
ing optical correction) are used for tabulating event counts.
We randomly augment the events and optical flow ground
truths by flipping them along vertical and horizontal direc-
tions and cropping them down to a size of 288×384. We
train the baseline and proposed networks with Adam opti-
mizer for 10 epochs with an initial learning rate of 5×10−4

and a batch size of 16. Since the optical flow ground truths
in DSEC dataset are available at 10 Hz, we generate ad-
ditional ground truths for training our proposed models by
linear interpolation to match the input frequency. Since the
constant velocity assumption might not be applicable to all
motion scenarios, our approach of generating additional op-
tical flow ground truths using linear interpolation could po-
tentially give rise to concerns. Therefore, we also present
supplementary results based on actual ground truths in the
supplementary document. We trained all existing and pro-
posed models with L2 loss that minimizes the squared dif-
ferences between optical flow estimation and ground truth.
The loss function can be mathematically expressed as:

L =
∑
M

∑
N

∥(u, v)prediction − (u, v)gt∥2

where M is the total number of ground truths in an event
stream and N is the number of active pixels in the ground
truth. (u, v) represents optical flow magnitude along (x, y)
directions.

For evaluation, we center crop events from each record-
ing and obtain event counts of size 288×384 for optical
flow estimation. We sequentially feed event counts to the
proposed models one by one and obtain optical flow esti-
mation. Since optical flow ground truths are available at
10 Hz, we perform another augmentation to generate extra
ground truths for the test set and guarantee that the proposed
model generates reliable optical flows after every input. We
report the average of end-point errors (AEE) which is the
mean of the Euclidean distance between the predicted flow
and the ground truth. We also compute the percentage of
pixels that have predicted errors greater than k number of
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Figure 5. Qualitative comparison of the optical flow estimated by EV-FlowNet and LSTM-FlowNet on zurich city 03 a sequence.

pixels (denoted as kPE). Since not all ground truth pixels
are valid, we limit a calculation of these metrics to areas
that have odometry information available.

4.2. Optical Flow Estimation Rate and Accuracy

Table 1 presents a comparison of the optical flow estima-
tion rate, AEE, and kPE between the existing and proposed
models. To train the existing models, we first use their cor-
responding event representations proposed in each work as
inputs to the models. As the optical flow ground truths on
the DSEC dataset are recorded at 10Hz, we split the event
stream at times when ground truths are available and con-
struct a spatio-temporal representation based on events in
each split. Existing models are trained with the event repre-
sentations at 10 Hz, resulting in models that estimate optical
flow at the same frequency (see column 3 of the first four
rows in the table). In contrast, we train LSTM-FlowNet and
EfficientSpike-FlowNet using the proposed event represen-
tation, which enables more frequent optical flow estimation.
The proposed models receive event counts which can be
computed during a much shorter interval since normaliza-
tion or other pre-processing is not required. We arbitrarily
collect event counts at 100 Hz, which is 10 times of the op-
tical flow ground truth frequency. Other rates are possible
as discussed in the following subsection. We then utilize
sequential training method to train the proposed models for
temporally dense optical flow at the rate of 100 Hz. As a
result, the prediction rate for the proposed models is an or-
der of magnitude higher than the existing ones (see column
3 of the last four rows in the table). Note that we evaluate
both proposed models without a network reset to reproduce
a scenario where the models are used for real-time optical
flow estimation. Network reset implies an interruption in
getting reliable optical flows as a sequential model requires
processing a sufficient number of event counts similar to the
way it was trained before producing a faithful prediction.

Our results reveal that a typical sequential learning
method does not train the proposed models well for opti-
cal flow estimation without a regular state reinitialization as
discussed in Section 3.3. Both the proposed models per-
form poorly in terms of prediction accuracy (see column 4
of the middle two rows in the table). Our proposed sequen-

tial training method (with n=1 and l=10) addresses this po-
tential issue in optical flow estimation. It enables LSTM-
FlowNet and EfficientSpike-FlowNet to estimate tempo-
rally dense optical flows with a mean error smaller than
the average flow magnitude in our testing set (7.73 pix-
els). LSTM-FlowNet in particular outperforms all exist-
ing models with encoder-decoder architecture. Compared
to the baseline EV-FlowNet, LSTM-FlowNet achieves a
13% lower AEE, thanks to its ability to draw longer cor-
relations back in time. Our qualitative comparison reveals
that LSTM-FlowNet outperforms EV-FlowNet in scenar-
ios with only few reliable events such as events generated
from a tree line under low illumination as shown in Fig. 5.
Nonetheless, LSTM-FlowNet still has slightly lower accu-
racy than E-RAFT which relies on a different model ar-
chitecture and principle. 1PE measurement indicates that
their differences come from the predicted flows with errors
of 1 pixel or less [9]. While EfficientSpike-FlowNet bene-
fits from the proposed sequential learning method, its flow
estimation accuracy is slightly lower than LSTM-FlowNet,
which has more complex recurrent dynamics. However, we
show that the simple recurrent dynamics turn out to be ben-
eficial in terms of the number of parameters (see column
5 of Table 2). The spiking model has 3.23× lower num-
ber of parameters than LSTM-FlowNet, which translates to
smaller memory requirements and potentially lower power
consumption.

4.3. Computational Efficiency

We evaluate the computational efficiency of the base-
line and proposed models by measuring the expected en-
ergy consumption as shown in the last column of Table 2.
To compute the energy consumption, we adopt a similar
approach to that used in [18, 23], which calculates energy
based on the number and type of arithmetic operations.
Since spiking neurons communicate through binary values
(0 and 1), power-hungry multiplication operations in SNN
can be simplified into addition operations. For computing
weight sum, SNNs perform sparse accumulate (AC) oper-
ations instead of multiply-and-accumulate (MAC) opera-
tions used by typical NNs. The energy required for AC
and MAC operations in 32-bit floating-point computation
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Table 1. Comparison of the flow prediction rate, average end-point error (AEE), and predicted errors greater than k pixels (kPE) between
existing and proposed models trained using different learning methodologies. Bold value represents the best result of each metric.

Training method Architecture Prediction rate AEE 1PE 2PE 3PE
Using each corresponding EV-FlowNet [33] 10 Hz 0.67 17% 3% 1%
event representation Spike-FlowNet [19] 10 Hz 1.12 64% 28% 13%
constructed from events Adaptive-FlowNet [17] 10 Hz 1.26 47% 15% 6%
every 10 Hz E-RAFT [9] 10 Hz 0.52 10% 2% 1%
Typical sequential LSTM-FlowNet 100 Hz 36.91 100% 100% 100%
learning method EfficientSpike-FlowNet 100 Hz 20.99 100% 99% 99%
Proposed sequential LSTM-FlowNet 100 Hz 0.60 12% 2% 1%
learning method EfficientSpike-FlowNet 100 Hz 2.66 84% 56% 34%

Table 2. Comparison of the optical flow prediction rate, AEE, number of parameters, and normalized compute energy per second between
baseline and proposed models with different types of inputs. Bold value represents the best result of each metric.

Inputs Architecture Prediction rate AEE # Params Normalized energy
Event representation at 10 Hz EV-FlowNet [33] 10 Hz 0.67 16.6M 1×

Event counts at 100 Hz LSTM-FlowNet 100 Hz 0.60 53.6M 40×
EfficientSpike-FlowNet 2.66 16.6M 0.58×

Event counts at 50 Hz EfficientSpike-FlowNet 50 Hz 3.86 16.6M 0.24×

on 45nm CMOS technology are 0.9 pJ and 4.6 pJ [15],
respectively. This makes arithmetic operations for SNNs
roughly five times more energy-efficient than typical NNs.
On event-driven hardware, SNNs also provide extra power
saving by processing only non-zero inputs. To compute the
total energy of EfficientSpike-FlowNet, we then track the
percentage of non-zero inputs received by spiking neurons
in each layer and multiply the percentage with the number
of arithmetic operations to get the total energy. Our mea-
surement reveals that the input sparsity (i.e., the number of
zero inputs) of encoder blocks in EfficientSpike-FlowNet
increases with depth and reaches a maximum of 87% in the
last encoder block. The input sparsity then gradually de-
creases in the decoder blocks, possibly due to a reduction in
the number of decoder channels. We found that the compute
energy of EfficientSpike-FlowNet is only 58% of the base-
line EV-FlowNet even though it produces more frequent
optical flows. The estimated energy for EfficientSpike-
FlowNet is almost two orders of magnitude lower than
LSTM-FlowNet (see row 3-4 of Table 2) due to a smaller
number of parameters and its efficiency in handling events.
These findings serve as a verification and represent a step
towards the realization of temporally dense flow estimation
on hardware geared toward fast and efficient computing like
Intel Loihi [3] which has recently achieved a throughput
of 1000+ fps for multi-layer convolutional SNN computa-
tion [30].

4.4. Effect of Input Rate

In our framework, the proposed models are trained to es-
timate optical flow at the same frequency as the input event
counts. The frequency of event counts can be changed to
accommodate computational constraints. We demonstrate
that different input rates can be used by feeding the model
with event counts at 50 Hz. The slower input rate results
in faster training and less energy consumption (see the last
row in Table 2), as the inputs at 50 Hz require fewer com-
putations than ones at 100 Hz within a given period. How-
ever, the error in flow estimation increases due to impre-
cise temporal information (i.e., using longer time to collect
event count). Increasing the input rate is also possible but
at the expense of inference energy consumption. In our ex-
periments, we found that increasing the input rate beyond
100 Hz does not significantly improve the predicted flow
quality. Therefore, we choose the input rate of 100 Hz in
all experiments. Nonetheless, the input rate must be cho-
sen carefully to satisfy the reaction time and computational
constraints during a deployment.

5. Conclusion
In this work, we propose an approach to achieve tem-

porally dense optical flow estimation using event cameras.
We cast the problem as a sequential learning task and intro-
duce variants of the EV-FlowNet architecture that incorpo-
rate LSTMs and spiking neurons so that the models have
suitable memories for learning. Our results suggest that
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traditional training methods are not well-suited for training
the proposed models to estimate optical flows from a con-
tinuous event stream. To address this issue, we propose a
sequential training method that enables the models to fo-
cus on recent events while ignoring irrelevant older ones.
This leads to a continuous 10× temporally dense flow es-
timation (without requiring a network reset) over existing
approaches. Results from the LSTM model reveal a po-
tential accuracy improvement over the baseline model from
the ability to draw longer temporal correlations from event
streams. We demonstrate that the inherent recurrent dy-
namics of the spiking model are also useful for estimating
more frequent optical flow. Due to its simpler dynamics, the
spiking model offers substantial parameter reduction over
the LSTM model. In addition, our energy estimation indi-
cates that the spiking model is significantly more efficient
in handling events compared to the LSTM model, with an
expected energy consumption of only 1.5% of the LSTM
one. This highlights the potential use of the spiking model
for temporally dense optical flow estimation in real-time ap-
plications like flying drones with limited energy budget.
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