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Abstract

Predicting diverse yet admissible trajectories that ad-
here to the map constraints is challenging. Graph-based
scene encoders have been proven effective for preserving
local structures of maps by defining lane-level connections.
However, such encoders do not capture more complex pat-
terns emerging from long-range heterogeneous connections
between nonadjacent interacting lanes. To this end, we
shed new light on learning common driving patterns by in-
troducing meTA ROad paTh (TAROT) to formulate com-
binations of various relations between lanes on the road
topology. Intuitively, this can be viewed as finding feasi-
ble routes. Furthermore, we propose MEta-road NeTwORk
(MENTOR) that helps trajectory prediction by providing it
with TAROT as navigation tips. More specifically, 1) we de-
fine TAROT prediction as a novel self-supervised proxy task
to identify the complex heterogeneous structure of the map.
2) For typical driving actions, we establish several TAROTs
that result in multiple Heterogeneous Structure Learning
(HSL) tasks. These tasks are used in MENTOR, which per-
forms meta-learning by simultaneously predicting trajecto-
ries along with proxy tasks, identifying an optimal combina-
tion of them, and automatically balancing them to improve
the primary task. We show that our model achieves state-of-
the-art performance on the Argoverse dataset, especially on
diversity and admissibility metrics, achieving up to 20% im-
provements in challenging scenarios. We further investigate
the contribution of proposed modules in ablation studies.

1. Introduction
Vehicle trajectory prediction is one of the main build-

ing blocks of autonomous driving. Prediction demonstrates

how the future might unfold based on the road structure and

the behavior of road users. To operate safely, self-driving

cars must accurately perceive the geometric and seman-

tic information in the driving scene and predict diverse yet

scene-compliant trajectories. High-definition maps provide

useful cues since the behaviors of agents and the interac-

tions among them are largely influenced by the road topol-

ogy and governed by the map constraints. For example, a

vehicle is unlikely to change to a lane that runs in the op-

posite direction. In this light, learning the structure of the

map efficiently is essential to predict a variety of feasible

trajectories.

Inspired by the structural nature of the road, map vec-

torization has become prevalent in recent works, in which

lanes are converted into vectors [15, 56, 18]. Consequently,

graph structures can be leveraged to learn the relationships

between vectorized entities [28, 54, 11, 16]. In this way,

connected lanes in various formations, e.g. successor, pre-

decessor, right, and left, represent admissible ways to tra-

verse the terrain. For example, two lanes positioned con-

secutively in space and connected by a sequential link can

be driven successively, whereas two lanes connected by a

lateral link enable a lane change maneuver. Hence, the HD

map lane graph has edges with different semantic meanings,

indicating its heterogeneous nature.

Although existing lane graphs are shown to be effective

in learning local structures through the adjacent lanes, they

lack the ability to model more complex patterns imposed

by long-range heterogeneous connections between nonadja-

cent yet interacting lanes. These connections are important

to capture high-level intentions, such as overtaking, merg-

ing, and double turns, and can potentially represent the con-

straints and rules of the road. To model such connections,

some methods propose adopting self-supervised tasks on

top of the lane graph [15, 4] to encourage the model to learn

the semantics associated with lane connectivities. Since

scene structure contains various semantics, having only one

proxy task at a time is insufficient to provide diverse traf-

fic patterns. Alternatively, anchor-based models incorporate

prior knowledge by identifying candidate trajectories based

on sampling or clustering of training data [6, 43]. However,

these methods are less robust and generalizable due to their

dependency on the distribution of data.

Motivated by this insight, we introduce a novel self-

supervised task for trajectory prediction, termed Heteroge-
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neous Structure Learning (HSL), to formulate traffic pat-

terns imposed by road constraints. In particular, we formu-

late the road structure by meTA ROad paTh (TAROT) as

a composite relation of heterogeneous edges in the scene

graph that can model diverse abstractions from the map

without additional data and labels. Therefore, by predict-

ing the presence of TAROT in the driving scene as an HSL

task, the model gets a sense of feasible transitions on the

map as navigation tips for traversing the road. Furthermore,

we propose MEta-road NeTwORk (MENTOR), a novel tra-

jectory prediction framework that provides insight into the

structural perspective of the map by simultaneously predict-

ing a set of HSL tasks. In detail, inspired by the meta-

learning concept, MENTOR is learning to learn road topol-

ogy by automatically selecting the HSL tasks that assist the

target trajectory prediction.

The contributions of this paper are as follows: (1) For

the first time, to the best of our knowledge, we investigate

the idea of learning to learn in trajectory prediction through

the proposed MEta-road NeTwORk (MENTOR), which de-

termines an optimal combination of Heterogeneous Struc-

ture Learning (HSL) tasks and automatically balances them

to assist the primary task of predicting diverse and ad-

missible trajectories. (2) We propose meTA ROad paTh

(TAROT) prediction as a novel HSL task capable of mod-

eling high-level semantics within the map structure. Thus,

diverse semantic aspects of road configuration can be cap-

tured by defining various TAROTs, resulting in multiple

HSL tasks that are learned simultaneously. (3) We conduct

extensive experimental evaluations to show our model’s ef-

fectiveness in predicting not only precise but also diverse

and admissible trajectories.

2. Related Work
Trajectory Prediction has been the subject of interest

in a large body of literature. Existing methods explore dif-

ferent representations and methods to learn scene context,

including rasterized images [6, 38, 16] and point-clouds

[49] with CNNs, and vectorized representations with GNNs

[15, 32, 18, 54], or transformers [21, 58, 17, 30], which are

often associated with sophisticated fusion mechanisms [28].

These models focus on finding more powerful ways of ex-

tracting features from HD maps and modeling agents’ inter-

actions. They, however, require substantial model capacity,

heavy parameterization, extensive augmentations, or a large

amount of data to produce accurate results.

Some methods investigate the ways to improve predic-

tion precision by incorporating prior knowledge as pre-

defined candidate trajectories generated using sampling or

clustering techniques [32, 55]. Nevertheless, the main lim-

itation of these methods is that their performance is highly

dependent on the quality of trajectory proposals, which be-

comes a dependency. To resolve this issue, end-to-end

solutions optimize the endpoints of candidate trajectories

[18, 16] resulting in improved accuracy while maintain-

ing a reasonable parameter budget. However, using an on-

line goal candidate optimization strategy is computationally

very expensive, therefore it is prohibitive for real-time ap-

plications, such as autonomous driving. More recently, en-

semble techniques have become more prevalent and demon-

strated good prediction performance [43, 50]. However,

their major disadvantages are high memory cost for train-

ing and computationally expensive inference.

Besides designing high-precision models, researchers

have focused on diversity, admissibility, and map confor-

mity of the predicted trajectories. To generate diverse tra-

jectories, state-of-the-art models use Generative Adversar-

ial Networks (GANs) [25, 37, 57], and Conditional Varia-

tional Autoencoders (CVAEs) [38, 42, 53, 26], sophisticated

sampling functions, such as diversity sampling [52] and la-

tent semantic sampling [20]. However, most works sacri-

fice map conformity for prediction diversity. To improve

conformity, map data can be incorporated as a part of the

loss function [44, 9], or as a post-processing step [48]. To

better evaluate the diversity and admissibility of predicted

trajectories, new metrics, such as RF and DAO, have been

proposed [34]. In this paper, we use these as well as com-

mon metrics to further assess our model’s performance.

Self-Supervised Learning (SSL) is a learning method

that uses appropriately designed proxy tasks to generate ad-

ditional supervised signals to train models. In trajectory

prediction, SSL has been utilized by defining various proxy

tasks laid on top of the agent/map information [15, 4]. For

instance, a recent work, SSL-Lane [4], uses four different

tasks and shows how they can be incorporated to improve

performance. However, this model uses only one proxy

task at a time and does not explore combinations of differ-

ent tasks. Additionally, SSL-Lane employs different losses

in its formulation only in a 1:1 ratio without tuning them.

These shortcomings motivated our proposed framework for

simultaneously learning proxy tasks without letting them

compete with the target trajectory prediction task.

Meta-learning originates from the concept of learning

to learn, a topic of continued interest in machine-learning

research. Meta-learning has been used for finding optimal

hyper-parameters and good initialization [27, 13], metric-

learning, and non-parametric methods for few-shot learning

[40, 41]. This paper uses meta-learning to learn the road

topology across several tasks by transferring the knowledge

from self-supervised tasks, defined on the map structure,

to the primary trajectory prediction task. In a closely re-

lated category of works, sample weighting, a meta-learning

mechanism is used for adaptively extracting sample weights

to guarantee robust deep learning in the presence of training

data bias [23, 39]. In practice, instead of manually setting

the form of weight functions, these methods learn an ex-
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Figure 1: Overview of the proposed approach. Given directed HIN G of the scene and N predefined TAROTs, the HSL

engine H(TAROTs) defines N HSL tasks each predicting the presence of a specific TAROT. Within each TAROT task pn,

positive samples are two arbitrary nodes from G that can be reached by pn, and negative samples are those that cannot. For

the HSL tasks and the primary task, we find learned representations Z from GNN model f . To find the loss values, samples

are fed through the task-specific transformations Φt followed by task-specific loss functions Ln. Lastly, by Providing loss

values of the primary task’s samples and the HSL tasks’ samples (as a concatenation of [task id, label(Pos/Neg), loss value]),

we train MENTOR to learn weight function V in a way to find an optimal combination of the HSL tasks in a meta-learning

manner.

plicit weighting function directly from the data.

Self-supervised learning and meta-learning both con-

tribute to improving model generalization capability. To

the best of our knowledge, this is the first study in trajec-

tory prediction to exploit the benefit of scene-based self-

supervised tasks through a meta-learning paradigm.

3. Proposed Method

Traffic transitions are complex and cannot simply be

modeled by learning the local relationships. What required

is modeling patterns of traveling through the road as a com-

bination of relationships, not only in the adjacent lanes but

also between nonadjacent yet interacting lanes. This can,

for example, refer to a merge pattern in the road structure

that involves both lateral and sequential relations.

The main idea behind our proposed model is to provide

high-order combinations of basic adjacent-adjacent patterns

as the full gamut of lane interactions when predicting vehi-

cle trajectories. To this end, we first discuss the procedure

for generating a Heterogeneous Information Network (HIN)

from scenes, followed by the introduction of the Heteroge-

neous Structural Learning (HSL) tasks designed to capture

relations between lanes. Next, we describe our novel MEta-

road NeTwORk (MENTOR) that learns an explicit weight-

ing function to softly select HSL tasks and balance them

to improve the performance of the primary task via meta-

learning (see Fig. 1).

3.1. Scene Encoding

Contrary to the common approach that treats the scene

as a homogeneous graph [54], we model the scene as a Het-

erogeneous Information Network (HIN) [24].

Definition 1. Heterogeneous Information Network
(HIN) a HIN is defined as a graph G = (V, E), where V
is the set of nodes and E is the set of edges, each represent-

ing a binary relation between two nodes in V . G is asso-

ciated with two mappings: (1) node type mapping function

φ : V → T and (2) edge type mapping function ψ : E → R,

where T and R denote sets of node and edge types, respec-

tively. If |T | + |R| > 2, network G is an HIN, otherwise it

is homogeneous.

We encode the scene as a directed HIN

with node types T = {lane, agent} and R =
{left, right, successor, predecessor} as basic relations

between adjacent lanes. To initialize node features in the

HIN, we use the simplified PointNet [36] with multi-layer

perception (MLP) to process polyline features and a 1D

convolution with a feature pyramid network [29] to process

agents’ observations similar to [28]. One advantage of our

method is that any type of GNN can be used to process the

HIN. Hence, we employ Heterogeneous Graph Transformer

(HGT) as a simple yet effective model similar to [19].

3.2. Heterogeneous Structural Learning

Traffic transitions follow patterns governed by high-level

constraints stemming from long-range structural connec-

tions between lanes of the road. For learning the map

structure, heterogeneity helps interpret a series of relations,
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which our model learns with meTA ROad paTh (TAROT).

Definition 2. Meta-Path. A meta-path P = v1
r1→

v2
r2→ . . .

r�→ v�+1 expresses a composite relation R =
r1 ◦ r2 . . . ◦ r� between nodes v1 and v�+1, where ◦ denotes

the composition operator on relations. If two nodes vi and

vj are related by the composite relation R, then there ex-

ists a path that connects vi to vj in G, denoted by Pvi�vj
.

Moreover, the nodes and edges types in Pxi�xj match with

types in T and R, respectively.

The features obtained from the meta-path analysis in

HINs are notably useful in improving graph-based models

since they encode indirect semantic relations between nodes

that are not directly connected. These features also aid in

establishing new relations between vertices. As such, meta-

path analysis has been frequently used in graph domains to

enhance graph representation learning power and improve

downstream tasks, such as node classification and link pre-

diction [51, 46, 22, 8]. This means meta-paths can help find

new patterns and relations in HINs.

By focusing on the long-range relations that impose tran-

sitions on the road, we define TAROT p though the HIN

as a path instance of pvi�vj
� P where node types are

the same. Thus, the TAROT can formulate a combination

of basic road relations corresponding to transition patterns

imposed by map constraints. Predicting the presence of a

TAROT between two nodes vi and vj is similar to link pre-

diction. Here, the link means heterogeneous composite re-

lations between nodes. Contrary to link prediction prob-

lems, the proposed TAROT prediction can be treated as a

self-supervised task. In detail, we follow a simple rule to

provide the additional supervised signals for proxy tasks: If
node v is reachable from node u by TAROT p, then yp

u,v = 1,
otherwise yp

u,v = 0. This means the HSL task, associated

with the TAROT will be formed as a simple link predic-

tion task without the need for any additional data or manual

labeling. Hence, by obtaining the hidden representations

of two arbitrary nodes learned by a GNN and using a sim-

ple operator ŷpu,v = σ
(
Φt (zu)

�
Φt (zv)

)
we can predict

whether a TAROT between two nodes is present or absent.

Here, Φt is a type-specific transformation t ∈ T and zu and

zv are the node embeddings of nodes u and v.

Using the proposed TAROT as a type of meta-path we

can model a common pattern of driving that adhere to the

map constraints. Hence, we define several TAROTs to for-

mulate diverse traffic patterns within the driving scene, re-

sulting in several HSL tasks that can be used to predict

diverse and admissible trajectories. We provided a com-

plimentary figure in the supplementary material to further

show TAROT’s motivation.

3.3. Meta Road Network

The proposed HSL task is designed to identify diverse

patterns within the road structure, for which we explore the

idea of defining various TAROTs resulting in several self-

supervised HSL tasks to be learned simultaneously with the

primary trajectory prediction task. However, as with any

multi-task learning method, the HSL tasks should be care-

fully chosen and properly weighted so that learning the map

structure does not compete with the primary task, especially

when the capacity of graph neural networks (GNNs) is lim-

ited. To this end, we propose MEta-road NeTwORk (MEN-

TOR), a learning framework for trajectory prediction that

offers the possibility of learning to learn the road configura-

tion while learning the main task. Below, we discuss a naive

multi-task combination of self-supervision tasks to explain

the motivation behind the design of MENTOR, followed

by describing the meta-learning objective using MENTOR,

and a detailed look at the learning procedure.

3.3.1 Naive Multi-task Combination of HSL Tasks

Self-supervised learning has already been explored in tra-

jectory prediction for autonomous driving and has proven

beneficial [15, 4]. Adopting a combination of Self-

Supervised Learning (SSL) tasks, namely proxy tasks, to

improve the primary task has not yet been addressed, even

though it has been shown to be effective in visual learning

[12]. Here, we formulate a naive multi-task combination

of HSL tasks, as SSL tasks, with a shared backbone net-

work with parameters w, between the primary and all proxy

tasks. Each task has a specific loss function Ln incorporated

by a task-specific parameter λn. So the optimal parameter

w∗ can be extracted by the following objective function:

min
w

E

[
λ0L0 (.;w) +

N∑
n=1

λnLn (.;w)

]
(1)

where index zero stands for the primary task n = 0, and

index n|N1 denotes nth task of N proxy tasks.

3.3.2 Meta-learning Objective

Learning road topology should enhance rather than compete

with trajectory prediction, hence determining an effective

combination of λ parameters is crucial. To achieve this, we

adopt MENTOR to parameterize model w(Θ) to determine

an optimal combination of HSL tasks and automatically bal-

ance them for improved prediction as shown below,

min
w,Θ

E
[
L0 (w∗(Θ))

]
s.t. w∗(Θ) = argmin

w
E

[
Ln|N0 (w;Θ)

]
.

(2)

Specifically, to parametrize the model parameters w, we can

impose a learnable weighting function V(·,Θ) to the objec-

tive function in (2) as MENTOR similar to [39]. Thus, the
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Algorithm 1: MEta-road NeTwORk (MENTOR)

Input : primary data Dpr, HSL proxy tasks data

Dhsl, batch size n, m, max iteration T ,

folds for cross-validation K, model

parameters w, MENTOR parameters Θ
Output : model parameter ŵT

1 Initialize w,Θ
2 for t = 0 to T − 1 do
3

{
x(pr), y(pr)

}
← SampleMiniBatch (Dpr, n);

4
{
x(hsl), y(hsl)

}
← SampleMiniBatch

(
Dhsl,m

)
;

// cross validation

5 for k = 1 to K do
6

{
x(meta), y(meta)

}
,
{
x(train), y(train)

}
←

CVSplit (Dpr, k);
7 Formulate model parameter wt by Eq 6

8 Keep Θt+1
k on fold = k by Eq. 7

9 end
10 Update Θt+1 with 1

K

∑K
k Θt+1

k

11 Update wt+1by Eq 8

12 end

objective function can be written as follows:

w∗(Θ) = argmin
w

N∑
n=0

Mn∑
i=1

1

Mn
V (Ψn

i ;Θ)Ln (yni , f
n (xn

i ;w))
(3)

where each task has Mn samples and fn is the model for

task n. For ith sample of task n, yni is the label, and Ψn
i

is an embedding vector expressing as the concatenation of

one-hot vector of task types, the label (positive/negative),

and the loss value of the sample. Therefore, following Eq.

(3), the model learns how to assist the primary task by op-

timizing MENTOR’s parameters Θ. These parameters can

be optimized using the meta-learning idea [47, 1, 10, 14].

Specifically, using a small amount of meta-data Dmeta, rep-

resenting the meta-knowledge of ground-truth Dgt, Dmeta ∪
Dtrain = Dgt, the optimal parameter Θ∗ can be obtained by

minimizing the following loss:

Θ∗ = argmin
Θ

Lmeta (w∗(Θ)) � 1

m

m∑
i=1

Lmeta
i (w∗(Θ))

(4)

where m and r, m � r, are the number of meta-samples

and training samples, respectively, and meta-loss is,

Lmeta
i (w) = L

(
ymeta
i , f

(
xmeta
i ,w

))
(5)

where (x, y) ∼ Dmeta.

3.3.3 Meta-road Network Learning Procedure

To overcome the complexity of the bi-level optimization,

following [13, 39], we use an online strategy to approximate

w∗ and Θ∗ with the updated parameters ŵ and Θ̂, respec-

tively through a single optimization loop. In each iteration

of training, given training data Dtrain, HSL proxy tasks data

Dhsl, and meta-data Dmeta, we follow three steps:

Formulating Model Parameter: We formulate the up-

dating equation of model parameter w by moving the cur-

rent wt along the descent direction of the loss in Eq. (3),

ŵ(t)(Θ)
Dtrain∪Dhsl

= w(t) − α
1

N

N∑
n=0

V (·;Θ)∇wLn(w)

∣∣∣∣∣
w(t)

(6)

where α is the learning rate for w and Ln denotes the loss

function for the task number n. To avoid cluttered notation,

the summation of task samples is omitted.

Updating Parameters of MENTOR: After updating

model parameter ŵ(t)(Θ), parameter Θ of MENTOR can

be updated guided by Eq. (4), i.e., moving the current pa-

rameter Θ(t) along the objective gradient of Eq. (4) calcu-

lated on the meta-data,

Θ(t+1)

Dmeta
= Θ(t) − βV(·;Θ)L0

(
ŵ(t)(Θ)

)∣∣∣
Θ(t)

(7)

where β is the learning rate for Θ. This update allows the

soft selection of useful HSL proxy tasks and balances them

with the main motion prediction task to improve the per-

formance of the main task. Without balancing tasks with

the weighting function V(·;Θ), proxy tasks can dominate

training and degrade the performance of the primary task.

Updating Model Parameters: Model parameters w for

tasks can be updated with optimized Θt+1 in Eq. (7) as,

ŵ(t+1)(Θ)
Dtrain∪Dhsl

= w(t)

− α
1

N

N∑
n=1

V
(
·;Θ(t+1)

)
∇wLn(w)

∣∣∣∣∣
w(t)

.
(8)

Lastly, to circumvent the problem of meta-overfitting,

meaning that parameters Θ overfit to the small meta-

dataset, we follow the meta-validation solution as in [2, 59].

In particular, to make Θ generalizable across meta-training

sets, we optimize it using K different meta-datasets with

k-fold cross-validation. The gradients of Θ from different

meta-datasets are then averaged to update Θ(t). The MEN-

TOR learning procedure is summarized in Algorithm 1.

4. Experiments
Our goal is to investigate ways for improving map repre-

sentational learning power to predict diverse and admissible

trajectories. For this purpose, we seek to answer the follow-

ing questions: Q1: Are predicted trajectories diverse and

admissible? Q2: Is MEta-road NeTwORk (MENTOR) ef-

fective regardless of the type of HSL task? Q3: How much
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Table 1: Comparison to SOTA models on challenging scenarios. Arrows show lower (↓) or higher (↑) values are better.
Turns Stationary

Method minADE(↓) minFDE(↓) DAO(↑) RF(↑) MR(↓) minADE(↓) minFDE(↓) DAO(↑) RF(↑) MR(↓)

LaneGCN [28] 1.08 2.18 67.63 2.89 35.76 1.23 2.52 61.69 2.69 36.80

MMTransformer[21] 1.05 2.07 69.76 3.35 32.00 1.13 2.28 64.85 3.21 35.69

FTGN [3] 1.06 2.04 70.72 3.25 34.06 1.16 2.22 63.95 3.06 32.49
HiVT [58] 1.06 2.23 66.84 2.79 35.45 1.25 2.74 58.43 2.51 39.61

SSL-Lane [4] 1.07 2.11 69.65 3.21 33.34 1.16 2.34 62.45 3.22 34.54

MENTOR (Ours) 1.03 2.00 79.21 3.76 31.30 1.13 2.19 69.23 3.87 32.76

does our proposed HSL task contribute to diversity and ad-

missibility?

4.1. Experimental Setup

Dataset: We evaluated our method on the Argoverse

benchmark dataset [7]. Here the task is to predict 3 seconds

of future trajectories given 2 seconds of past observations.

This dataset consists of more than 300K real-world driv-

ing sequences, which are split into the train (205K), valida-

tion (39K), and test (78K) sets without geographical overlap

along with corresponding HD maps.

Metrics: We selected a set of metrics to measure the

precision, diversity, and admissibility of predictions. For

precision, we use minADE (Average Displacement Error),

minFDE (Final Displacement Error), and MR (Miss Rate).

For diversity, we use the Ratio of avgFDE to minFDE (RF)

[34], which measures the spread of predictions in Euclidean

distance. We use Drivable Area Occupancy (DAO) [34] to

determine the proportion of pixels that predicted trajectories

occupy in the drivable area. RF and DAO work in a comple-

mentary way to measure diversity along with admissibility.

Implementation Details: To normalize the data, we

translate and rotate the coordinate system of each sequence

so that the origin is at the agent’s current location at t = 0.

We use the orientation from the agent’s location at t = −1
to its location at t = 0 as the positive x axis. We use all

actors and lanes whose distance from the agent is smaller

than 100 meters as the input. As a model architecture, we

use three layers of HGT with the hidden dimension of size

128. For the HSL tasks, we define five TAROTs with vari-

able lengths of 4 to 7. The intuition behind the number

of TAROTs is to model turning right/left, lane changing

(right-to-left and left-to-right), and going straight. We for-

mulate Mentor as an MLP with two hidden layers with 100

nodes each, with ReLU activations for hidden nodes and

sigmoid output to ensure it is in range [0, 1]. For the loss

functions, we follow the widely used regression-MLP plus

classification-MLP combination [28, 24, 33] for trajectory

prediction and cross-entropy for the HSL task. For the train-

ing, we use the AdamW [31] optimizer with an initial learn-

ing rate of 5e-4, weight decay 1e-4, and batch size of 64.

4.2. Analysis on Challenging Scenarios

Existing prediction datasets are highly imbalanced in

terms of scenario diversity, with the majority of traffic ac-

tors simply driving straight [35]. Calculating metrics by

aggregating over scenarios is therefore influenced by the

most common maneuvers, where prediction models often

do well. In practice, scenarios, such as turning at intersec-

tions could be of greater interest to practitioners and accu-

rately predicting these scenarios are even more crucial for

the safe operation of autonomous vehicles. Hence, to ver-

ify the effectiveness of our model, we extracted challenging

scenarios including left/right/blind turns and stationary sce-

narios where the vehicle’s observed trajectory is very short,

thus the model has minimal motion information from the

vehicle. By blind turns, we refer to the cases where the ob-

served trajectory is straight and the turn occurs during the

unobserved portion of the trajectory.

We compare our method against several vectorized-

based SOTA models with public implementations, includ-

ing two graph-based models, LaneGCN [28] and FTGN [3],

two transformer-based models, MMTransformer [21] and

HiVT [58], and SSL-Lane [4], which extends the lane graph

by adding four different self-supervised tasks based on

agent/map information. As shown in Table 1, our method

significantly improves upon the state-of-the-art models on

most metrics in both scenarios. Particularly, our method,

MENTOR achieves notable improvements in diversity and

admissibility metrics, namely DAO and RF by up to 13%

and 20% respectively in the challenging scenarios.

Qualitative analysis. Fig. 2 depicts a number of qualita-

tive examples to better highlight our method’s performance.

The first two rows represent turn-right scenarios, and the

third and fourth rows show left-turn and stationary scenar-

ios. As can be seen in the last column, our method consis-

tently generates diverse predictions that are also admissible

by correctly aligning with the road topology. The behavior

of competing methods, however, varies often resulting in

the generation of infeasible trajectories. In the supplemen-

tary materials, we discuss the algorithm used to find chal-

lenging scenarios and present additional per-scenario met-

rics to further elaborate on the correlation of metrics.

4.3. Ablation Studies

4.3.1 MENTOR Acting as a Mentor

To assess the ability of MENTOR, we analyze the weighting

function V (Ψn
i ;Θ) for ith sample of task n. Particularly,

we present the learned weight function at the last epoch of
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Figure 2: Qualitative examples on Argoverse showing diversity and admissibility of the predicted trajectories by MENTOR.

Red, green, and blue trajectories represent observation, ground truth, and 6 predicted trajectories, respectively.
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Figure 3: The weighting function in MENTOR. The green

line is the primary task, and solid and dashed color lines

represent positive and negative HSL samples, respectively.

Each color corresponds to a specific HSL task.

the training. As shown in Fig. 3, MENTOR has two main

benefits. Firstly, even when the model’s loss is low, as the

model is learning less challenging scenarios, trajectory pre-

diction task (green line) samples have a higher weight than

HSL tasks. Hence, MENTOR is more focused on learning

the primary trajectory prediction task as there is no compe-

tition between HSL tasks and the primary task. Secondly,

in all tasks, hard samples with higher losses are given more

weight than easy samples with lower losses, indicating that

MENTOR is mining hard samples. Here, MENTOR acts as

a mentor by learning TAROTs and transferring that knowl-

edge to the primary task.

Effectiveness of MENTOR: To analyze the effective-

ness of MENTOR, we borrow a lane-graph-based baseline

and four self-supervised learning (SSL) tasks introduced in

[4] and use them in MENTOR to improve the baseline. The

SSL tasks are as follows: A) Lane masking, which recovers

feature information from the perturbed lane graphs; B) Pre-

dicting distance to the intersection in terms of the shortest

path length from all lane nodes to the intersection nodes; C)

Maneuver classification, which predicts the form of a ma-

neuver that the agent of interest intends to execute; And D)

success/failure classification, which trains an agent special-

ized in achieving end-points.

We report the results in Tab. 2 where the SSL tasks

are termed A-D and MENTOR∑
A, B, C, D denotes the pro-

posed model. According to the table, among the proposed

tasks, maneuver classification, task C, has the best DAO

(admissibility), indicating that predicting the form of ma-

neuver can reveal more information about the road struc-

ture. Additionally, predicting the distance to the intersec-

tion, task B, gives a better estimate of the agent to the in-

tersection, and the possibility of branching roads, hence

improving RF (diversity) metric. In summary, individual

tasks are shown to be effective by providing auxiliary infor-

mation that helps improve different aspects of prediction.

Once combined together, SSL tasks through the MENTOR

framework improve distance-based metrics, minADE and

minFDE as well as admissibility and diversity metrics, DAO

and RF. These results validate the effectiveness of MEN-

TOR as a learning framework to enhance prediction models
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Table 2: Results of the ablation studies. SSL x indicates

self-supervised tasks as in [4] and MENTOR∑
A,B,C,D indi-

cates the original model augmented with MENTOR.
Model minADE(↓) minFDE(↓) DAO(↑) RF(↑)

Baseline 0.73 1.12 65.87 3.00

SSLA 0.70 1.02 68.21 2.98

SSLB 0.71 1.04 68.65 3.87

SSLC 0.72 1.05 69.97 3.14

SSLD 0.70 1.01 68.02 3.01

MENTOR∑
A, B, C, D 0.69 0.98 77.91 4.18

Table 3: Results of the ablation studies. TAROTx indi-

cates the length of the TAROT through the HSL task and

MENTOR represents our full model, which includes sev-

eral HSL tasks.
Turns Validation

Model minFDE(↓) DAO(↑) RF(↑) minFDE(↓) DAO(↑) RF(↑)

Baseline 2.372 68.45 2.98 1.132 74.02 4.21

TAROT4 2.267 71.01 3.19 1.128 75.52 4.43

TAROT5 2.208 73.67 3.23 1.107 77.11 4.48

TAROT6 2.153 76.93 3.71 1.112 78.89 4.50

TAROT7 2.082 76.17 3.56 1.121 78.00 4.51
TAROT8 2.109 73.65 3.41 1.120 77.21 4.38

MENTOR 2.003 79.21 3.76 0.974 85.31 4.65

by providing additional information as SSL tasks.

Impact of TAROT Prediction as an HSL Task: for

the purpose of analyzing the impact of the TAROT predic-

tion, we conduct several experiments on the entire valida-

tion set and challenging turn scenarios by designing differ-

ent models named TAROTx where x refers to the length of

TAROT through the HSL task. For example, TAROT4 could

be any of these patterns [S-S-S-R, S-L-S-S, S-L-P-P...] (S:

Successor, L: Left, R: Right, P: Predecessor as the basic

relation of adjacent lanes). We average the metrics over

all of the members in the list. A baseline model does not

have any HSL tasks, and therefore does not have MEN-

TOR. The last model is our final model which is loaded by

multiple HSL tasks through MENTOR. As shown in Tab.

3, augmenting the model with the HSL task improves the

baseline model performance. Moreover, from the experi-

ments, we found that by predicting a longer TAROT, corre-

sponding to a longer pattern in the road configuration with

a higher abstraction, we can improve the model in turns

scenarios. However, the length of TAROTs should be set

carefully, as if set too long, the model would have a ten-

dency to predict a turn maneuver even when several alterna-

tives, such as driving straight, are available. To take advan-

tage of this phenomenon, we define multiple TAROTs with

variable lengths representing both short and long patterns.

Thus, once used through MENTOR we enable the model to

identify the best combination of HSL tasks, as TAROT pre-

diction, by weighting them properly. In this way, our full

model outperforms other models significantly. Based on

the obtained results, we can conclude that 1) TAROTs are

capable of modeling patterns in the map structure, thus for-

mulating multiple TAROTs and subsequently multiple HST

Table 4: Comparisons with SOTA on Argoverse test set.
Method minADE(↓) minFDE(↓) MR(↓)

TNT [56] 0.94 1.54 13.30

DenseTNT [18] 0.88 1.28 12.58

TPCN [49] 0.87 1.36 15.80

mmTransformer [30] 0.87 1.34 15.40

LaneRCNN [54] 0.90 1.45 12.32
LTP [45] 0.83 1.29 14.72

AutoBot [17] 0.89 1.41 16.00

SceneTransformer [33] 0.80 1.23 12.55

HiVT [58] 0.77 1.16 12.67

MENTOR (Ours) 0.79 1.21 13.01

tasks, can capture diverse lane connection patterns in the

map topology. 2) MENTOR is good at adopting HSL tasks

to transfer their knowledge to the primary task, and con-

sequently resulting in significant improvement in terms of

diverse (RF) and admissible (DAO) trajectory prediction.

4.4. Comparison to SOTA

We compare our method to SOTA models on the Argo-

verse benchmark. Even though the focus of our method

was on improving diversity and admissibility of generated

trajectories in challenging scenarios, as shown in Tab. 4,

our model’s performance is comparable to best models, on

the distance-based metrics on the benchmark. Particularly,

compared to HiVT [58], our model achieves the second rank

on minADE and minFDE, while in challenging scenarios it

outperforms HiVT on the diversity and admissibility met-

rics as well as the distance-based metrics with a large mar-

gin, as is evident in Tab. 1. We further verify the effective-

ness of our approach on a smaller dataset, nuScenes [5], and

report the results in the supplementary material.

5. Conclusion
In this paper, we presented a novel trajectory prediction

model based on the concept of meta-learning. We formu-

lated various lane connection relations on the map topology

as meTA ROad paTh (TAROT), and used a model, MEta-

road NeTwORk (MENTOR), to supply TAROT tips in the

form of Heterogeneous Structural Learning (HSL) tasks to

improve trajectory prediction. Besides, focusing on enhanc-

ing the map representational learning power, MENTOR can

mentor any proxy task to further improve the primary mo-

tion forecasting task. Via extensive experimental evalua-

tions, we showed that HSL tasks are capable of modeling

high-level semantics stemming from long-range heteroge-

neous connections between lanes. Additionally, we showed

that our proposed MENTOR model acts as a mentor to gain

the maximum benefit from the existing structural informa-

tion of the map. The results also highlighted that, besides

significantly improving diversity and admissibility of pre-

dictions, our method can obtain improved or comparable

results on common distance-based metrics compared to the

past arts with a larger number of parameters.
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