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Abstract

Accurate segmentation of topological tubular structures,
such as blood vessels and roads, is crucial in various
fields, ensuring accuracy and efficiency in downstream
tasks. However, many factors complicate the task, includ-
ing thin local structures and variable global morphologies.
In this work, we note the specificity of tubular structures
and use this knowledge to guide our DSCNet to simultane-
ously enhance perception in three stages: feature extrac-
tion, feature fusion, and loss constraint. First, we propose
a dynamic snake convolution to accurately capture the fea-
tures of tubular structures by adaptively focusing on slen-
der and tortuous local structures. Subsequently, we pro-
pose a multi-view feature fusion strategy to complement the
attention to features from multiple perspectives during fea-
ture fusion, ensuring the retention of important information
from different global morphologies. Finally, a continuity
constraint loss function, based on persistent homology, is
proposed to constrain the topological continuity of the seg-
mentation better. Experiments on 2D and 3D datasets show
that our DSCNet provides better accuracy and continuity
on the tubular structure segmentation task compared with
several methods. Our codes are publicly available1.

1. Introduction

The accurate segmentation of topological tubular struc-
tures is paramount in various fields to ensure the precision
and efficiency of downstream tasks. In clinical applications,
a well-delineated blood vessel is a crucial prerequisite for
computational hemodynamics, and it assists radiologists in

*Corresponding author
1https://github.com/YaoleiQi/DSCNet

Figure 1. Challenges. The above figure shows a 3D heart vascular
dataset and a 2D remote road dataset. Both datasets aim to extract
tubular structures, but this task faces challenges due to fragile local
structures and complex global morphology. Motivation. The stan-
dard convolutional kernel is intended to extract local features. On
this basis, deformable convolutional kernels have been designed
to enrich their application and adapt to geometric deformations of
different targets. However, due to the aforementioned challenges,
it is difficult to focus efficiently on the thin tubular structures.

locating and diagnosing lesions [13, 16]. In remote sensing
applications, complete road segmentation provides a solid
foundation for route planning. Regardless of the field, these
structures share common features of being thin and tortu-
ous, which make them challenging to capture due to their
small proportion in images. Therefore, there is an urgent
need to enhance the perception of thin tubular structures.

However, it remains challenging due to the following dif-
ficulties: (1) Thin and fragile local structure. As shown
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in Figure 1, thin structures account for only a small pro-
portion of the overall image with limited pixel composi-
tion. Moreover, these structures are susceptible to inter-
ference from complex backgrounds, rendering it difficult to
precisely discriminate subtle target variations by the model.
Consequently, the model may struggle to differentiate these
structures, resulting in the fracture of the segmentation.
(2) Complex and variable global morphology. Figure 1
shows the complex and variable morphology of thin tubu-
lar structures, even within the same image. Morphologi-
cal variations are observed in targets located in different re-
gions, depending on the number of branches, the location
of bifurcations, and the path length. The model may tend
to overfit features that have already been seen, resulting in
weak generalization when the data exhibits unprecedented
morphological structures.

Recently, many studies have proposed incorporating do-
main knowledge (e.g. geometric topology and tree struc-
ture) to guide the model better to perceive the distinctive
features of the tubular structures, thus focusing on improv-
ing the accuracy of local segmentation and maintaining the
continuity of global morphology. Existing methods can
be broadly classified into three categories: (1) Network-
based methods [7, 12, 31, 28, 14, 8] design specific net-
work architectures according to the characteristics of the
tubular structures that guide the model to focus on critical
features. However, given the small proportion of tubular
structures, the network may inevitably lose the perception
of the corresponding structures. (2) Feature-based methods
[21, 33, 15, 35, 20] enhance the comprehension of the par-
ticular geometric and topological features of tubular struc-
tures by supplementing the model with additional feature
representations. However, some redundant feature repre-
sentations exacerbate the computational burden while not
providing a positive influence on the model. (3) Loss-based
methods [24, 29, 1, 30] incorporate measurement meth-
ods to supplement constraints during the training process,
typically through loss functions. These methods reinforce
the stringent constraints on segmentation. Building on this
foundation, structured losses combined with continuity con-
straints from the topological perspective will potentially fur-
ther improve the accuracy of the tubular segmentation.

To tackle the above obstacles, we propose a novel frame-
work, DSCNet, involving a tubular-aware convolution ker-
nel, multi-view feature fusion strategy, and topological con-
tinuity constraint loss function. (1) To address the chal-
lenge of the small proportion of thin and fragile local struc-
tures that are difficult for the model to focus on, we propose
Dynamic Serpentine Convolution (DSConv) to enhance the
perception of the geometric structure by adaptively focus-
ing on the thin and curved local features of tubular struc-
tures. Unlike deformable convolution [6], which leaves
the network completely free to learn geometrical changes,

thus causing perceptual regions to wander, especially on
thin tubular structures, our DSConv considers the snake-like
morphology of tubular structures and supplements the free
learning process with constraints that allow for targeted en-
hancement of the perception of tubular structures. (2) To
address the challenge of complex and variable global mor-
phology, we propose a multi-view feature fusion strategy.
In this method, we generate multiple morphological kernel
templates based on DSConv for viewing the structural fea-
tures of the target from various perspectives and achieve
efficient feature fusion by summarizing typical vital fea-
tures. (3) To address the problem that segmentation of tubu-
lar structures is prone to fracture, we propose a Topologi-
cal Continuity Constrained Loss Function (TCLoss) based
on Persistent Homology (PH). PH[9, 19, 5] responds to the
process of topological features from emergence to disap-
pearance. It obtains adequate topological information from
noisy high-dimensional data. The related Betti numbers are
one way of describing connectivity in the topological space.
Unlike [30, 10], our TCLoss combines PH with point set
similarity to pilot the network to focus on fracture regions
with anomalous pixel/voxel distributions, achieving conti-
nuity constraints from a topological perspective.

To summarize, our work proposes a novel framework
of knowledge fusion addressing the difficulties of the thin
tubular structures, and the specific contributions are three-
fold. (1) We propose a dynamic snake convolution to adap-
tively focus on the slender and tortuous local features and
realize the accurate tubular structures segmentation on both
2D and 3D datasets. Our model is thoroughly verified us-
ing both internal and external test data. (2) We propose a
multi-perspective feature fusion strategy to supplement the
attention to the vital features from multiple perspectives. (3)
We propose a topological continuity constraint loss function
based on Persistent Homology, which better constrains the
continuity of the segmentation.

2. Related Work

2.1. Methods based on Network Design

Various methods have been proposed to achieve better
performance by designing particular network architectures
and modules according to the morphology of the tubular
structures. (1) Methods based on the convolutional kernel
design, represented by the famous dilated convolution [32]
and deformable convolution [6], are proposed to deal with
the inherent limited geometric transformation in CNNs,
showing outstanding performance on sophisticated detec-
tion and segmentation tasks. These methods [7, 34, 12, 31]
are also designed to dynamically perceive the geometric
features of the objects to adapt to the structure with change-
able morphology. For example, DUNet proposed in [12]
integrates the deformable convolution into the U-shape ar-
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chitecture and adaptively adjusts the receptive field accord-
ing to the vessels’ scales and shapes. (2) Methods based
on the network architecture design are proposed to learn the
special geometric topological features of the tubular struc-
tures. PointScatter [28] is proposed to represent the tubular
structure with points set, which is an alternative to the seg-
mentation models for the tubular structure extraction task.
[14] proposed a tree-structured convolutional gated recur-
rent unit to model the coronary artery’s topological struc-
tures explicitly. Different from the ideas mentioned above
of allowing the model to learn the geometric changes com-
pletely freely, considering the limitation of the convergence
difficulty caused by excessive randomness and the possibil-
ity that the model will focus on the unexpected regions of
the target. Our work integrates the domain knowledge of
tubular structure morphology to stably enhance the percep-
tion of the tubular structure in the feature extraction process.

2.2. Methods based on Features Fusion

Methods based on features fusion [35, 15, 33, 21, 20]
strengthens the representation of the tubular structure by
supplementing additional feature information to the model.
Considering the topology and the sparsity of the tubular
structures, [35] proposed a cross-network multi-scale fea-
ture fusion method performed between two networks to
support high-quality vessel segmentation effectively. In
[15], a global transformer and dual local attention network
via deep-shallow hierarchical feature fusion are investigated
to simultaneously capture the global and local characteri-
zations. [33] proposed to fuse the contextual anatomical
information and vascular topologies for accurate tubular
structure segmentation. In our work, we propose a multi-
perspective feature fusion strategy to supplement the atten-
tion to the vital features from multiple perspectives. In this
strategy, we generate numerous morphological kernel tem-
plates based on our DSConv to observe the structural char-
acteristics of the target from multiple perspectives and real-
ize the feature fusion by summarizing the essential standard
features, thus improving the performance of our model.

2.3. Methods based on Loss Function

Methods based on loss function [24, 29, 1] introduce
measurement methods to supplement constraints in the
training process. These methods strengthen the strong con-
straints on the tubular structures segmentation. [24] in-
troduced a similarity measurement termed centerline Dice,
which is calculated on the intersection of the segmenta-
tion masks and the skeleton. [29] proposed a geometry-
aware tubular structure segmentation method, Deep Dis-
tance Transform (DDT), which combines intuitions from
the classical distance transform for skeletonization and
tubular structure segmentation. These methods focus on
the continuity of the tubular structure segmentation, but the

skeleton’s inaccuracy and offset will affect the constraints’
precision. [1] proposed a similarity index that captures the
topological consistency of the predicted segmentation and
designs a loss function based on the morphological closing
operator for tubular structure segmentation. In [30], topo-
logical data analysis methods are incorporated with a geo-
metric deep learning model for fine-grained segmentation
for 3D objects. These methods will capture the features of
the topological objects. Drawing inspiration from this, our
work proposes a topological continuity constraint loss func-
tion (TCLoss) that better constrains the continuity of the
segmentation from a topological perspective. Our TCLoss
gradually introduces constraints based on Persistence Ho-
mology [27, 2] during the training process to guide the net-
work to focus on the fracture regions and realize continuity.

3. Methodology
Our method is designed to deal simultaneously with 2D

and 3D feature maps of thin tubular structures. For sim-
plicity, our modules are described in 2D, and the detailed
extension to 3D is also provided in our open source.

3.1. Dynamic Snake Convolution

In this section, we discuss how to perform Dynamic
Snake Convolution (DSConv) to extract the tubular struc-
ture’s local features. Given the standard 2D convolution co-
ordinates as K, the central coordinate is Ki = (xi, yi). A
3× 3 kernel K with dilation 1 is expressed as:

K = {(x− 1, y − 1), (x− 1, y), · · · , (x+ 1, y + 1)} (1)

To give the convolution kernel more flexibility to focus
on complex geometric features of the target, inspired by
[6], we introduced deformation offsets ∆. However, if the
model is left free to learn the deformation offsets, the per-
ceptual field tends to stray outside the target, especially in
the case of thin tubular structures. Therefore, we use an iter-
ative strategy (Figure 3), selecting the following position to
be observed in turn for each target to be processed, thus en-
suring continuity of the attention and not spreading the field
of sensation too far due to the large deformation offsets.

In DSConv, we straighten the standard convolution ker-
nel, both in the direction of the x-axis and the y-axis. We
consider a convolution kernel of size 9 and take the x-
axis direction as an example, the specific position of each
grid in K is represented as: Ki±c = (xi±c, yi±c), where
c = {0, 1, 2, 3, 4} denotes the horizontal distance from the
central grid. The selection of each grid position Ki±c in
the convolution kernel K is a cumulative process. Starting
from the center position Ki, the position away from the cen-
ter grid depends on the position of the previous grid: Ki+1

is augmented with an offset ∆ = {δ|δ ∈ [−1, 1]} compared
to Ki. Hence, the offset needs to be Σ, thus ensuring that
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Figure 2. Methodology. Schematic overview of our proposed method illustrated on an example of the 3D coronary artery segmentation.
Our method has three sections: (1) Dynamic snake convolution (DSConv), which learns the deformation according to the input feature
map, adaptively focuses on the slender and tortuous local features under the knowledge of the tubular structure morphology. (2) Multi-view
feature fusion strategy, which generates multiple morphological kernel templates based on our DSConv and is used to observe the structural
characteristics of the target from multiple perspectives. (3) Loss function, called topological continuity constraint loss function (TCLoss),
is based on Persistent Homology to guide the network to focus on the fracture regions with abnormally low pixels/voxels distribution and
realize continuity constraint.

the convolution kernel conforms to a linear morphological
structure. Figure 3 in the direction of the x-axis becomes:

Ki±c =

{
(xi+c, yi+c) = (xi + c, yi +Σi+c

i ∆y),

(xi−c, yi−c) = (xi − c, yi +Σi
i−c∆y),

(2)

and Equation 2 in the direction of the y-axis becomes:

Kj±c =

{
(xj+c, yj+c) = (xj +Σj+c

j ∆x, yj + c),

(xj−c, yj−c) = (xj +Σj
j−c∆x, yj − c),

(3)

As the offset ∆ is typically fractional, bilinear interpola-
tion is implemented as:

K = ΣK′B(K ′,K) ·K ′ (4)

Figure 3. Left: Illustration of the coordinates calculation of the
DSConv. Right: The receptive field of the DSConv.

where K denotes a fractional location for Equation 2 and
Equation 3, K ′ enumerates all integral spatial locations and
B is the bilinear interpolation kernel and it is separated into
two one-dimensional kernels as:

B(K,K ′) = b(Kx,K
′
x) · b(Ky,K

′
y) (5)

As shown in Figure 3, our DSConv covers a 9× 9 range
during the deformation process due to the two-dimensional
(x-axis, y-axis) changes. DSConv is designed to better
adapt to the slender tubular structure based on the dynamic
structures so as to better perceive the key features.

3.2. Multi-view Feature Fusion Strategy

This section discusses implementing the multi-view fea-
ture fusion strategy to guide the model to complement the
focus on essential features from multiple perspectives. For
each K, two feature maps f l(Kx) and f l(Ky) from layer l
are extracted from the x-axis and y-axis, expressed as:

f l(K) = {Σiw(Ki) · f l(Ki)︸ ︷︷ ︸
f l(Kx)

,Σjw(Kj) · f l(Kj)︸ ︷︷ ︸
f l(Ky)

} (6)

where w(Ki) denotes the weight at position Ki, and the
features extracted by the l-th layer convolution kernel K are
calculated using the cumulative approach.

Based on Equation 6, we extract m groups of features as
T l, which contains different morphology of the DSConv:
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Figure 4. The multi-view feature fusion strategy.

T l = (f l(Kx), f
l(Ky)︸ ︷︷ ︸

T l
1

, f l(Kx), f
l(Ky)︸ ︷︷ ︸

T l
2

, · · · f l(Kx), f
l(Ky)︸ ︷︷ ︸

T l
m

)

(7)
The feature fusion of multiple templates will inevitably

bring redundant noise. Therefore, a random dropping strat-
egy rl is introduced during the training stage (Figure 4), to
improve the performance of our model and prevent over-
fitting without increasing additional computational burden,
then Equation 7 becomes:

rl ∼ Bernoulli(p)

T̂ l = rl · T l

f l+1(K) = Σ⌊m×p⌋T̂ l
t

(8)

where p is the probability of random dropping and rl

satisfies the Bernoulli distribution. The optimal dropping
strategy is saved during the training phase and guides the
model to fuse key features during the testing phase.

3.3. Topological Continuity Constraint Loss

In this section, we discuss how to implement the topolog-
ical continuity constraint loss (TCLoss) based on the Persis-
tent Homology to constrain the continuity of the segmenta-
tion. The geometric and topological information in complex
structures is a pivotal clue to help the models understand the
continuous structures. Tools from the topological data anal-
ysis are adopted to extract the essential features hidden in
the complex tubular structures.

We aim to construct the topology of the data and extract
the high-dimensional relationships in the complex tubular
structure, represented as persistence barcodes and Persis-
tence Homology (PH), as illustrated in Figure 5.

Given G, its N -dimensional topological structure, ho-
mology class [9, 19] is an equivalence class of N -manifolds
which can be deformed into each other within G, where 0-
dimensional and 1-dimensional are connected components
and handles. PH is applied to compute the evolution of
topological features, and the period between the appear-
ance time b and disappearance time d of topological fea-
tures is kept [30]. Such periods are summarized in a con-

Figure 5. Illustration of the Persistent Homology and our TCLoss.

cise format called a persistence diagram (PD), which con-
sists of a set of points (b, d). Each point (b, d) represents
the d-th homology class that appears at b and disappears
at d. Let PD = dgm(·) denote the persistent homol-
ogy obtained from the groundtruth L and the output O.
We consider the topological information in complex tubu-
lar structures, which contains the key clues to determine
the presence of fractures, to be evident in the homotopy
features of 0-dimensional and 1-dimensional homological
features. The existing methods [30, 5, 10] use modified
Wasserstein distance to compute the best match between
the points generated by the output and the points generated
by the groundtruth, and the outlier points without optimal
pairing are matched to the diagonal and do not participate
in the loss calculation. However, in our task, the outlier
points represent anomalous appearing or disappearing time
and imply wrong topological relations that play an impor-
tant role. Therefore, we measure the similarity between the
two sets of points using Hausdorff distance[26]:


dH(PO, PL) = max

u∈PO

min
v∈PL

∥ u− v ∥

dH(PL, PO) = max
v∈PL

min
u∈PO

∥ v − u ∥

d∗H = max{dH(PO, PL), dH(PL, PO)}

(9)

where PO ∈ Dgm(O) , PL ∈ Dgm(L) and d∗H repre-
sents the bidirectional Hausdorff distance, which is com-
puted in terms of n-dim points. Our used Hausdorff dis-
tance is sensitive to outliers. As shown in Equation 9, if two
sets of points are similar, all the points are perfectly super-
imposed except only one point in PO, which is far from any
point in PH , then the Hausdorff distance is determined by
that point and is large [11].

Then the summation over all dimensions (n =
0, 1, 2, · · · , N ) is performed to obtain the LPH and the
whole TCLoss is integrated with the cross entropy loss LCE

as the final loss function LTC = LCE +
∑N

n=0 d
∗
H .

Finally, the topology and accuracy are constrained by the
combined effect of the two loss functions, contributing to
continuous tubular segmentation.

6074



4. Experiments Configurations
4.1. Datasets

We employ three datasets containing two public and
one internal dataset for validating our framework. In 2D,
we evaluate the DRIVE retina dataset[25] and the Mas-
sachusetts Roads dataset[17]. In 3D, we used a dataset
called Cardiac CCTA Data. Details concerning the experi-
mental setup can be found in the supplementary material.

4.2. Evaluation Metrics

We performed comparative experiments and ablation
studies to demonstrate the advantages of our proposed
framework. The classical segmentation network U-Net [4]
and the CS2-Net [18] proposed in 2021 for vascular seg-
mentation are compared to validate the accuracy. To val-
idate the network design performance, we compared the
DCU-net [31] proposed in 2022 for retinal vascular seg-
mentation. To validate the advantages of feature fusion, we
compared the Transunet [3] for medical image segmenta-
tion proposed in 2021. To validate the loss function con-
straint, we compared clDice [24] proposed in 2021 and
Wasserstein-distance-based TCLoss LWTC [30]. These
models are trained on the same dataset with the exact im-
plementation and were evaluated by the following metrics.
All metrics were calculated for each image and averaged.

1. Volumetric scores: Mean Dice Coefficient (Dice),
Relative-Dice coefficient (RDice)[22], CenterlineDice
(clDice)[24], Accuracy (ACC) and AUC are used to
evaluate the performance of the results

2. Topology errors: We follow [24, 28] and calculate the
topology-based scores including the Betti Errors for
Betti numbers β0 and β1. Meanwhile, to objectively
verify the continuity of the coronary artery segmenta-
tion, the overlap until first error (OF) [23] is used to
evaluate the completeness of the extracted centerline.

3. Distance errors: Hausdorff Distance (HD) [26] is also
widely used to describe the similarity between two sets
of points, which is recommended to evaluate the thin
tubular structures.

5. Results and Discussion
In this paragraph, we will evaluate and analyze our pro-

posed framework’s effectiveness in three ways: (1) The per-
formance of our proposed method for the thin tubular struc-
ture segmentation task is compared and verified by the fol-
lowing metrics. The visual effects of different methods are
simultaneously shown. (2) We analyzed the effectiveness
of our proposed DSConv to guide the model to focus on the
tubular structure, and the help of the TCLoss to constrain

the topology of the segmentation. (3) We provide com-
prehensive experiments, including ablation studies, on the
DRIVE dataset as an example. Additionally, due to space
constraints, we highlight some of the most important com-
parison experiments on other datasets. The results show the
strong performance of our method on both 2D and 3D fields.

5.1. Quantitative Evaluation

The advantages of our method on each metric are demon-
strated in Table 1, and the results show that our proposed
DSCNet achieves better results on both 2D and 3D datasets.

Evaluation on DRIVE. On the DRIVE dataset, our
DSCNet outperforms the other models regarding segmen-
tation accuracy and topological continuity. In Table 1, our
proposed DSCNet achieves the best segmentation results
compared with other methods with Dice of 82.06%, RDice
of 90.17%, clDice of 82.07%, ACC of 96.87%, and AUC
of 90.27% from the perspective of the volumetric accu-
racy. Meanwhile, from the view of the topology, our DSC-
Net achieves the best topological continuity compared with
other methods with β0 error of 0.998 and β1 error of 0.803.
The results show that our method better captures the spe-
cific features of the thin tubular structures and exhibits a
more accurate segmentation performance and a more con-
tinuous topology. As shown in the sixth to twelfth rows of
Table 1, with the addition of our TCLoss, different models
both show improvement in the topological continuity of the
segmentation. The results illustrate that our TCLoss accu-
rately constrains the model to focus on thin tubular struc-
tures that lose topological continuity.

Evaluation on ROADS. On the Massachusetts Roads
dataset, our DSCNet also achieves the best results. As
shown in Table 1, our proposed DSCNet with TCLoss
achieves the best segmentation results compared with other
methods with Dice of 78.21%, RDice of 85.85%, and
clDice of 87.64%. Compared with the results of the clas-
sical segmentation network UNet, our method achieves at
most 1.31% Dice, 1.78% RDice, and 0.77% clDice im-
provements. The results show that our model also performs
well for structurally complex and morphologically variable
road datasets compared with other models.

Evaluation on CORONARY. On the Cardiac CCTA
dataset, we verify that our DSCNet still achieves the same
best results for segmenting the thin tubular structures in
3D. As shown in Table 2, our proposed DSCNet achieves
the best segmentation results compared with other meth-
ods with Dice of 80.27%, RDice of 86.37%, and clDice
of 85.26%. Compared with the results of the classical
segmentation network UNet, our method achieves at most
3.40% Dice, 1.89% RDice, and 3.83% clDice improve-
ments. Meanwhile, we used OF metrics to assess the con-
tinuity of segmentation. With our method, the OF metrics
improved by 6.00% for LAD, 3.78% for LCX, and 3.30%
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Figure 6. Qualitative results. To verify the performance of our method more objectively and efficiently, we selected representative
hard-to-segment regions from each dataset. From top to bottom, we show two rows of results for the DRIVE dataset, the Massachusetts
road dataset, and our internal Coronary dataset. From left to right, we show the original image, groundtruth, and the results from classical
UNet, DCU-net, our DSCNet, UNet with clDice, UNet with our proposed TCLoss, and our DSCNet with TCLoss. The results indicate
that our DSCNet and TCLoss outperform the other models regarding segmentation accuracy and topological continuity. The yellow arrows
indicate the areas where the segmentation is broken, while the green arrows indicate areas where the segmentation is performing well.

for RCA (LAD, LCX, and RCA are the vital trunks of the
coronary vessels). The improvement in the continuity of
vessels plays a crucial role in the clinic.

Ablation Experiment Analysis. Taking the DRIVE
dataset as an example, the ablation experiments prove the
importance of our DSCNet and our TCLoss. (1) To prove
the effectiveness of our DSCNet. The results in the first
five rows of Table 1 show that our method is better suited
to segmenting thin tubular structures. The results show that
our proposed DSConv plays a vital role in the model, help-
ing the network better to capture the critical features of the
thin tubular structures. (2) To prove the effectiveness of
our TCLoss. As shown in the sixth to ninth rows of Ta-

ble 1, with the addition of our TCLoss, different models
both show improvement in the topological continuity of the
segmentation. The results illustrate that our TCLoss accu-
rately constrains the model to focus on thin tubular struc-
tures that lose topological continuity.

5.2. Qualitative Evaluation

Our DSCNet and TCLoss have decisive visual superi-
ority in arbitrary aspects (Figure 6). (1) To demonstrate
the effectiveness of our DSCNet. From left to right, the
third to fifth columns show the performance of the differ-
ent networks in terms of segmentation accuracy. Thanks to
our DSConv to adaptively perceive critical features of the
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Dataset Network Loss Volumetric (%) ↑ Topology ↓ Distance ↓
Dice RDice clDice ACC AUC β0 β1 HD

DRIVE

UNet LCE 80.73±1.77 87.94±3.32 79.66±4.00 96.74±0.28 88.57±2.44 1.209±0.342 0.883±0.135 6.86±0.56

Transunet LCE 80.56±2.14 87.14±3.82 79.02±5.05 96.75±0.32 88.02±2.79 1.210±0.309 0.844±0.157 6.83±0.52

CS2-Net LCE 77.53±2.94 82.55±4.10 74.88±5.27 96.46±0.36 84.73±2.82 1.391±0.331 0.906±0.177 6.90±0.48

DCU-net LCE 80.83±1.99 87.73±3.60 80.19±4.80 96.77±0.31 88.45±2.67 1.104±0.327 0.817±0.166 6.84±0.58

DSCNet(ours) LCE 81.85±1.74 88.93±3.36 81.16±4.54 96.91±0.28 89.38±2.54 1.094±0.301 0.780±0.162 6.68±0.49

UNet LTC(ours) 80.93±1.97 88.00±3.41 80.28±4.41 96.78±0.30 88.63±2.56 1.117±0.286 0.797±0.151 6.88±0.53

Transunet LTC(ours) 80.79±2.11 87.78±3.80 79.86±4.90 96.76±0.32 88.48±2.82 1.176±0.295 0.818±0.176 6.83±0.51

CS2-Net LTC(ours) 79.69±2.31 86.14±3.82 77.72±5.09 96.64±0.32 87.25±2.76 1.308±0.334 0.848±0.160 6.93±0.45

DCU-net LTC(ours) 81.18±1.90 87.89±3.43 80.60±4.54 96.83±0.31 88.59±2.57 1.076±0.313 0.817±0.167 6.80±0.56

UNet clDice 80.77±1.92 87.53±3.42 79.93±4.48 96.77±0.31 88.29±2.52 1.199±0.303 0.833±0.157 6.93±0.54

UNet LWTC 80.89±1.95 87.85±3.55 80.03±4.75 96.78±0.29 88.53±2.64 1.144±0.339 0.814±0.176 6.79±0.47

DSCNet(ours) LTC(ours) 82.06±1.44 90.17±3.04 82.07±4.35 96.87±0.24 90.27±2.32 0.998±0.312 0.803±0.179 6.78±0.51

ROADS

UNet LCE 76.90±6.30 84.07±6.46 86.87±6.59 97.97±1.27 98.29±1.24 1.107±0.551 1.505±0.467 8.11±2.42

Transunet LCE 75.82±6.83 81.50±6.65 86.04±7.40 97.97±1.28 98.23±1.15 1.105±0.615 1.570±0.663 8.11±2.53

DCU-net LCE 77.24±6.30 84.26±6.37 86.98±6.53 98.03±1.14 98.34±1.19 1.085±0.653 1.474±0.497 8.04±2.53

UNet LTC(ours) 77.70±6.07 84.80±5.96 87.47±6.31 98.03±1.23 98.41±1.13 1.072±0.631 1.401±0.496 8.04±2.72

UNet clDice 77.37±5.57 84.18±5.99 87.05±6.34 98.03±1.22 98.40±1.12 1.079±0.613 1.407±0.603 8.08±2.46

DSCNet(ours) LCE 78.04±5.77 85.35±5.42 87.74±6.02 98.05±1.21 98.39±1.19 1.118±0.641 1.441±0.523 7.96±2.43

DSCNet(ours) LTC(ours) 78.21±5.77 85.85±5.56 87.64±5.99 98.05±1.21 98.46±1.08 1.053±0.523 1.396±0.456 7.34±2.48

Table 1. Quantitative results for the DRIVE retina dataset and the Massachusetts road dataset (ROADS) are shown in this table. All
experiments verified the performance of our method on three levels: volumetric accuracy, topological connectivity, and distance error. Our
DSCNet and TCLoss achieve the most competitive results in all metrics.

Dataset Network Loss Volumetric (%) ↑ Topology OF ↑ Distance ↓
Dice RDice clDice LAD LCX RCA HD

CORONARY

UNet LCE 76.87±5.38 84.48±4.55 81.43±6.02 0.806±0.252 0.847±0.239 0.849±0.267 7.727±3.30

Transunet LCE 76.70±6.65 83.23±6.72 78.71±6.93 0.810±0.274 0.694±0.307 0.816±0.303 8.580±4.11

DCU-net LCE 78.33±5.00 85.67±4.29 82.29±5.31 0.833±0.219 0.746±0.296 0.835±0.300 7.331±3.06

UNet clDice 77.86±5.25 84.42±4.65 82.37±5.54 0.817±0.256 0.845±0.234 0.859±0.265 7.412±3.68

DSCNet(ours) LCE 79.92±5.26 85.98±4.60 84.95±5.76 0.858±0.198 0.853±0.241 0.862±0.267 6.326±2.85

DSCNet(ours) LTC(ours) 80.27±4.67 86.37±4.16 85.26±4.98 0.866±0.195 0.885±0.210 0.882±0.250 5.787±2.99

Table 2. Quantitative results for the 3D Cardiac CCTA dataset. Experimental metrics supplement with OF metrics for verifying the
topological connectivity. The LAD, LCX, and RCA are the three main trunks of the coronary vessels and are of great clinical value.

thin tubular structure, our model focuses more accurately
on special tubular features than other methods, thus show-
ing better performance on tubular structure segmentation.
(2) To demonstrate the effectiveness of our TCLoss. From
left to right, the sixth to eighth columns show the perfor-
mance of different loss functions on the continuity of the
segmentation of the thin tubular structure. With the addition
of our proposed TCLoss, the continuity of the segmentation
is greatly improved in hard-to-segment regions. The results
confirm that our method gives a stable segmentation perfor-
mance with better topological continuity, especially in com-
plex and variable morphological structures. Notably, on the
Massachusetts Roads dataset, our model achieves good vi-
sualization on adjacent straight or curved roads. More visu-
alization results can be found in the supplementary material.

5.3. Model Analysis

Our DSConv dynamically adapts the shape to tubular
structures, and the attention well fits the target. (1) Adapt to

the shape of tubular structures. The top of Figure 7 shows
the convolution kernel’s positions and shape. Visualization
results show that our DSConv adapts well to tubular struc-
tures and maintains the shape, while the deformable convo-
lution wanders outside the target. (2) Focus on the locations
of tubular structures. The bottom of Figure 7 shows the
heatmap of the attention on the given point. Results show
that the brightest regions of our DSConv are concentrated
in the tubular structures, which represents that our DSConv
is more sensitive to tubular structures.

5.4. Future Work

Our proposed framework copes well with the segmen-
tation of thin tubular structures and successfully inte-
grates morphological features with topological knowledge
to guide the model to adapt to the segmentation. However,
whether other morphological targets will achieve better per-
formance with a similar paradigm is still an exciting topic.
Meanwhile, more research will investigate the possibility of
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Figure 7. Top: We superimpose 3 layers with a total of 729 points
(red) on each image to show the convolution kernel’s position and
shape for a given point (yellow). Bottom: The heatmap shows the
region of interest for each convolution.

incorporating other types of domain knowledge or topolog-
ical analysis to further improve the performance of the seg-
mentation. Furthermore, more experimental and theoretical
validation will enrich this topic.

6. Conclusion

In this study, we focus on the special features of the tubu-
lar structures and use this knowledge to guide the model to
enhance the perception simultaneously in three stages: fea-
ture extraction, feature fusion, and loss constraint. Firstly,
we propose a dynamic snake convolution to adaptively fo-
cus on the thin and tortuous structure, thus accurately cap-
turing the features of tubular structures. Secondly, we in-
troduce a multi-view feature fusion strategy to complement
the focus on features from multiple angles during feature fu-
sion, ensuring the retention of important information from
different global morphology. Lastly, we propose a topolog-
ical continuity constraint loss to constrain the topological
continuity of the segmentation. Our method is verified on
both 2D and 3D datasets and the results show our method
provides better accuracy and continuity on the tubular struc-
ture segmentation task compared with several methods.
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[1] R. J. Araújo, Jaime S Cardoso, and H. P Oliveira. Topo-
logical Similarity Index and Loss Function for Blood Ves-
sel Segmentation. IEEE TRANSACTIONS ON MEDICAL
IMAGING, XX:1, jul 2021.

[2] Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips
persistence barcodes. J. Appl. Comput. Topol., 5(3):391–423,
2021.

[3] Jieneng Chen, Yongyi Lu, Qihang Yu, et al. Transunet:
Transformers make strong encoders for medical image seg-
mentation. arXiv preprint arXiv:2102.04306, 2021.
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