
Breaking The Limits of Text-conditioned 3D Motion Synthesis with Elaborative
Descriptions

Yijun Qian1,2, Jack Urbanek1, Alexander G. Hauptmann2, Jungdam Won3*

META AI1, Carnegie Mellon University2, Seoul National University3

yijunq@meta.com,jju@meta.com,alex@cs.cmu.edu,jungdam@imo.snu.ac.kr

Abstract

Given its wide applications, there is increasing focus on
generating 3D human motions from textual descriptions.
Differing from the majority of previous works, which regard
actions as single entities and can only generate short se-
quences for simple motions, we propose EMS, an elabora-
tive motion synthesis model conditioned on detailed natu-
ral language descriptions. It generates natural and smooth
motion sequences for long and complicated actions by fac-
torizing them into groups of atomic actions. Meanwhile,
it understands atomic-action level attributes (e.g., motion
direction, speed, and body parts) and enables users to gen-
erate sequences of unseen complex actions from unique se-
quences of known atomic actions with independent attribute
settings and timings applied. We evaluate our method on
the KIT Motion-Language and BABEL benchmarks, where
it outperforms all previous state-of-the-art with noticeable
margins.

1. Introduction
Generating 3D human motions has been widely used in

many areas, such as in film and game industries to animate
characters in the scene or in sports and medical applica-
tions to analyze and explain the movement of players and
patients, respectively. Many of these tasks have resorted
to motion data, which require laborious manual work by
animators or high recording costs. Furthermore, existing
tools often are not user-friendly and require extensive train-
ing in advance of using the tools. Recently, attention to
generating 3D human motions conditioned on natural lan-
guage descriptions (i.e., text-to-motion) has grown in the
vision and graphics community as an alternative method
that can provide high-quality and flexible results from one
of the most intuitive and comfortable interfaces for people,
which is a textual description. The task, however, is chal-
lenging, given the diversity of language descriptions and
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Figure 1. The majority of previous works are conditioned on
the ambiguous action-level description, which prevents them from
generating motion sequences with detailed controls (e.g., they
can’t explicitly generate motions of lifting things up in place or
at another location). On the other hand, our model conditioned on
the atomic action-level description can easily generate motion se-
quences with detailed controls.

complexity of 3D human motion synthesis. Many recent
works have attempted to make progress in this space. The
earliest works [13, 28] focus on generating motions con-
ditioned on a single action label (i.e., a word); however,
action labels contain limited semantic representations and
can’t guide detailed motion generation as a result. The fol-
lowing works [23, 10, 2] naturally go further by encoding
longer natural language descriptions as text input. The most
recent works [17, 29, 39, 6] either focus on improving the
generalization of extracted semantic representations or im-
proving the generation quality of the motion synthesis mod-
ule. To the best of our knowledge, all of them try to gener-
ate a single latent vector to describe the whole textual input
then forward it to a decoder for motion synthesis. If re-
garding generated motions as a ”visualized” language, pre-
vious works are similar to seq-to-seq methods designed for
sentence-to-sentence translation. It works well when the
natural language input contains limited semantic informa-
tion which can be fully covered by a single sentence. How-
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ever, such methods would have difficulties to model all the
semantic representations and inherited dependencies when
the input information increases to a paragraph or article
level. Furthermore, the GPU memory size will limit the
maximum length of the input sequence, making the meth-
ods unable to tackle the full paragraph or article as a single
entity. A natural idea may come up as directly factorizing
the input paragraph into sentences and then applying a seq-
to-seq method autoregressively to translate the factorized
sentences one by one. However, given the successful ex-
perience in [8, 46], such simple concatenation won’t work
well because it doesn’t capture the contextual information
thoroughly where the same sentence may have different se-
mantic meanings depending on its contexts. This also ap-
plies to text-conditioned motion synthesis. For example,
the same ”stand up” action could be visually different when
its previous action is either ”sit down” or ”squat down”.

Inspired by this, we propose EMS, an Elaborative
Motion Synthesis model conditioned on detailed natural
language descriptions. EMS aims to generate natural and
smooth 3D motion sequences of complicated actions by fac-
torizing them into components of atomic actions. As is
shown in Figure 2, EMS is a two-stage generation model
where a sequence of atomic actions (i.e., unique behaviors)
are first generated by the atomic action generation subnet
Navae then they are refined and connected by the connec-
tion sub-net Ncvae. In our implementation, both of the
sub-nets are transformer-based variational auto-encoders
(VAE). However, our framework does not rely on spe-
cific ”sentence-level” translation backbones, so we can also
use the recently released diffusion module [39] or graph
GAN[1] as our backbone. Although our model is espe-
cially designed for generating complicated long motion se-
quences, when compared with previous state-of-the-art on
KIT-ML benchmark, our model still outperforms in all ex-
isting metrics with noticeable margins. When it comes to
the more challenging BABEL benchmark, our method is on
average 36 percent better than the previous SOTA.

In a nutshell, our contributions are four-fold:

• We propose EMS, a two-stage text-conditioned elabo-
rative motion synthesis model which generates smooth
and natural 3D motion sequences for complicated
actions given detailed natural language descriptions.
Users can generate sequences of unseen complex ac-
tions from unique sequences of known atomic actions
with independent attribute settings and timings ap-
plied.

• We propose Natural Loss for the text-to-motion task,
an objective function especially designed to judge if
the generated motions look natural by calculating the
difference between prior and posterior distributions.

• We built a synthetic (i.e., augmented) dataset contain-

ing contrastive atomic action samples, which enable
the model to understand atomic-action level attributes.

• We demonstrate that our model outperforms all previ-
ous SOTA in various metrics with noticeable margins
on the two existing benchmarks.

2. Related Works
In this section, we will briefly review previous literature

on motion synthesis and text-conditioned motion genera-
tion. Although there are many other text-conditioned gen-
eration tasks, like image generation [16, 15] and video gen-
eration [7, 14], as they focus on generating different modali-
ties, often with much larger datasets, we won’t discuss them
here.

Human Motion Synthesis Human motion synthesis re-
quires the model to generate human motions either condi-
tioned on specific types of modalities or from unconstrained
distributions. Thus, there are two main categories of motion
synthesis, 1) conditioned synthesis and 2) unconditioned
synthesis. The first types of methods aim to generate mo-
tion sequences based on a specific kind of modality like mu-
sic [19, 21, 22], speech [11, 5, 3], and text [23, 25, 1, 2]
etc. The latter ones [26, 35, 37, 44, 48] directly generate
motions from an unconstrained distribution, which allows
the model to generate numerous samples but users basi-
cally can’t intervene the generation process. Lately there
are three mainstream methods, VAEs[13, 28], GANs[1, 25],
and Diffusions[39]. Our EMS model should be recognized
as one of the text-conditioned motion generation methods.
But it mainly focuses on providing a new perspective on
synthesizing motion sequences of complicated actions.

Text-conditioned Motion Generation Thanks to the
great success of large language models [8, 9, 40] in recent
years, it’s now possible to extract robust semantic repre-
sentations directly from natural language descriptions. The
leading pipelines of current text-conditioned motion gener-
ation methods all focus on mapping the extracted semantic
representations and motion features to the same distribu-
tion in a shared latent space, then implementing a decoder
that translates latent variables to 3-dimensional motions.
For example, some methods [31, 47] use 2D body motions
with fixed root joints, which makes the generated motion
incomplete for many applications since they are unable to
model the global trajectory. Another method [1] applies 2D
pose estimation on captioned video datasets and projects the
joints to 3D axis with manual data cleaning. However, due
to the heavy occlusion of lower bodies, they can only model
the upper body motions. Most recent works [24, 43, 12, 20,
29, 23, 25, 1, 10, 14, 17] directly use 3D motion capture
datasets [30, 32] with textual descriptions. The majority
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of them[24, 12, 29, 23, 25, 1, 10, 14, 17, 12, 39, 49] are
trying to combine different language extractors and motion
synthesis backbones. They still treat the motions and de-
scriptions as single entities. As discussed before, this leads
the model to easily overfit and also prevents the model from
generating motion sequences for long and complex actions.

There exist previous studies that are similar to ours [43,
20], where they propose a multi-act action generator. How-
ever, firstly they only use action tags (words) as input, which
contains very limited semantic representations. For exam-
ple, when generating a ”kick” action, they can neither con-
trol the avatar using left feet or right feet to kick the ball nor
generate a fast kick or slowly kick. Secondly, they simply
assemble the atomic action sequences and don’t make full
use of both textual and motion contextual information. E.g.
TEACH [4] does not incorporate any motion context and
only includes the action label of the preceding action for
text context, our model significantly broadens this context
scope. Lastly, we propose a unique natural loss to eliminate
the discontinuity during connection stages.

There also has been an attempt to build a system that is
most similar to what we aim for [45]. The system is ba-
sically developed for pre-visualization of movies, where it
can generate 3D human motions of multiple characters in-
teracting with each other given movie scripts. Although im-
pressive motions with details were generated from a sim-
ple interface that can easily be controlled by users, the sys-
tem can only handle limited scenarios, motion generation
for a scenario often takes several hours due to computation-
ally expensive stochastic optimization, and the input script
needs to be converted as a form of a directed acyclic graph
called an event graph. Note that the system was developed
before recent breakthroughs in modeling language and mo-
tion by deep learning. We ultimately aim to generate similar
high-quality results relying on recent breakthroughs while
overcoming existing shortcomings. The method we present
in this paper will be a stepping stone in that direction.

3. Methods

3.1. Task Definition

Given a textual description of motion, our task (text-to-
motion) is to generate a full-body motion in 3D that corre-
sponds to the input description semantically. More specifi-
cally, we are interested in a setting where the input descrip-
tion is long enough to include a variety of human behaviors
(e.g., a very long sentence or a sequence of sentences), and
it could also include detailed modifiers for the behaviors.

Clearly defined, the model takes in natural language de-
scriptions W1:m = {W1,W2, ...,Wm} of the complicated
action A1:m = {a1, a2, ..., am}, duration of each atomic ac-
tion D1:m = {D1, D2, ..., Dm} then generates 3D motion
sequences M1:F = {M1,M2, ...,MF } during the inference

stage, where each Wi represents part of the input sentence
describing an atomic action ai existing in the full action.
Each Di represents the duration of the ith atomic action,
F represents the total frames of generated full action se-
quence, where F =

∑m
i=1 Di, and m represents the number

of atomic action components of the full action A. During
the training stage, the model will also require ground truth
3D motion sequences H = {H1

1:D1
, H2

1:D2
, ...,Hm

1:Dm
},

where each Hi
1:Di

represents the ground truth motions of
the ith atomic action. Each motion is represented as a se-
quence of poses Hi

1:Di
= {Hi

1, H
i
2, ...,H

i
Di

} where Hi
j is

the jth pose (i.e., joint angles and the root joint position) of
an articulated human body.

Prompt Engineering for Textual Description. Differing
from previous methods [43, 20], which directly use the ac-
tion label (e.g., ’kick’, ’walk’) as the textual description of
an atomic action, we do prompt engineering to preserve the
semantic information in natural language descriptions. We
add prompt heads, “The person firstly xxx” to the very first
atomic action component, “finally, xxx” to the last atomic
action, and “then xxx” to the others. Meanwhile, we no-
ticed that the temporal stamps of atomic actions contain
overlap in the original annotation of BABEL [32]. In other
words, multiple atomic actions may happen simultaneously
during some temporal stages. If only using atomic action
labels as the textual description, the model may get mul-
tiple training samples whose ground truth motions are the
same, but their descriptions differ from each other. It may
also encounter samples whose textual descriptions are the
same, but their ground truth motions are different (e.g.,
the motion of ”kicks while throwing” would be different
from ”kicks”) Thus, as is shown in Figure 3, if multiple
atomic actions happen simultaneously, we fill them into the
prompt ”{Action 1}, {Action 2},..., and {Action n-1} while
{Action n}.”

Motion Representation. We followed TEMOS [29] to
encode the global root trajectory of the body and joint rota-
tions in 6D representation format [50] and forward them to
SMPL[10] to get the motion representation.

3.2. Model Structure

As is shown in Figure 2, the EMS model employs a
transformer [41] based multimodal VAE. To be specific, the
model contains two sub-nets Navae and Ncvae. Navae fo-
cuses on generating the motion sequence of a single atomic
action. It is a multimodal-conditioned VAE that conditions
on both ground truth motions and natural language descrip-
tions during the training stage, and only conditions on the
natural language descriptions during the inference stage.
On the other hand, Ncvae is a motion-conditioned VAE de-
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Figure 2. Model Overview: For easier understanding, we skip the input of duration Di and related positional encoding modules. The
model contains two sub-nets Navae and Ncvae, where Navae generates motions of single atomic action and Ncvae refines and connects the
generated motions of atomic actions. The two subnets share the same Motion Decoder Mdec during the training. In the figure, we show the
training and inference procedures of the target atomic action ai, whose natural description is Wi, ground truth motion is Hi

1:Di
, duration is

Di (not shown in the figure), synthetic description is W syn
i , and synthetic ground truth motion is Hisyn

1:Di
. We bold the description to show

the difference between Wi and W syn
i . During the training stage, the model takes in both natural language descriptions, durations, and

ground truth motion sequences. During the inference stage, the Motion Encoder Menc is deactivated, and the model can generate motions
only from natural language descriptions and durations.

Figure 3. Illustration of temporal segmenting and prompt engineer-
ing. The translucent rounded rectangles with different colors rep-
resent the original annotations. The texts above brackets are mod-
ified descriptions Wi after segmenting and prompt engineering of
atomic action ai.

signed to connect and refine the generated motions from

Ncvae.
Note that the model and training framework we propose

is flexible rather than being specific to certain methods,
where the encoders and decoders can be easily replaced by
other kinds of motion synthesis and semantic representation
extraction methods (e.g., GAN[1], Diffusion[39], Bert[8],
Distilled Bert[36], or GPT3[9]). We will then introduce the
detailed structures and settings of the encoders and decoders
of the two sub-nets in later paragraphs. For implementation
efficiency, all our encoders and decoders are transformer-
based without extra specifications.

Atomic Action Generation Net Navae contains a text en-
coder Tenc, an atomic motion encoder Menc, and a motion
decoder Mdec. For the text encoder, after extracting word
embeddings from a pre-trained language model [36], the
text encoder Tenc will encode the embeddings to a shared
multimodal sphere as learnable distribution tokens (µt, and
σt). For the motion encoder, we followed the steps in [29]
to reorganize the motion sequence and also encode them
to the shared multimodal sphere as learnable distribution
tokens (µm, and σm). The distribution tokens are then
treated as the µ and σ of a Gaussian Distribution. With
the reparameterization trick [18], we sample text latent vec-
tor Zt from N (µt, σt) and motion latent vector Zm from
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N (µm, σm). As mentioned before, the latent vectors of two
different modalities share the same latent space dimension-
ality d. Both of them will be forwarded to the motion de-
coder Mdec independently with the duration of the atomic
action to generate motion sequence M i

1:Di
and T i

1:Di
.

M i
1:Di

= Mdec(Z
m, Di) (1)

T i
1:Di

= Mdec(Z
t, Di) (2)

In the following sections, we will introduce how these gen-
erated motion sequences are used for connection and op-
timization. During the training stage, the module is opti-
mized by a KL loss function to extract the same Gaussian
distributions from the two input modalities and regulated
by a reconstruction loss to generate motions similar to the
ground truth independently.

Atomic Action Connection Net Ncvae contains a multi-
motion encoder Mcon, and shares the motion decoder
Mdec in Navae. Similar to Menc, Mcon also takes in
reorganized motion sequences and encodes them to the
shared multimodal sphere as learnable distribution tokens
µc and σc. The difference lies in that the input motions
are not ground truth training samples but the concatena-
tion of generated motions T i−1

Di−1−P :Di−1
, T i

1:Di
, and T i+1

1:P ,
where P represents the temporal window the model used for
connection and refinement. Similarly, the motion decoder
Mdec will generate the connection motions Ci−1

Di−1−P :Di−1
,

Ci
1:Di

, and Ci+1
1:P with the duration 2P + Di. We explored

the influence brought by different contextual window set-
tings, and the details will be introduced in section 5. In our
implementation, the duration of each atomic action is ap-
plied in creating masks and generating positional encoding
in the form of sinusoidal functions. It’s time-consuming to
generate motion features of the previous and next atomic
action at every iteration. Directly using the ground truth
motions seems an efficient option; however, it will cause a
serious mismatch between the training and inference stage
since the ground truth motions are inaccessible during the
inference stage. On the other hand, for the first several
epochs, the model is far from converged and won’t generate
realistic sequences. Thus, we build a motion cache to store
the generated motions and update it according to a heuris-
tic rule at every iteration. More specifically, the cache will
be initialized with the ground truth motions. Then in each
iteration, if the generated motions are similar to the ground
truth samples (above a threshold Θ) and more similar than
the current cached ones (we ignore this requirement if the
cached sample is ground truth), the cached samples will be
replaced by the newly generated ones.

3.3. Synthetic Data Generation

For each atomic action sample, if it contains body part
name in the description, we mirror the sequence to get a
synthetic sample of a similar motion with different body
parts. For example, for the action ”kicks the ball with left
foot”, through mirroring, we could have a synthetic sample
of ”kicks the ball with right foot”. Meanwhile, to enable the
model to understand motion speed, we will randomly accel-
erate or slow down the motion sample and add adverbs like
”fast”, ”quickly”, and ”slowly” in the description to gen-
erate extra samples. The ratio of acceleration or slowing
down is randomly selected from 0.3 to 3. The synthetic text
descriptions W syn

i and motion sequences Hi,syn are also
forwarded to Navae just like Wi and Hi to get the output
of distribution tokens, latent vectors, and generated motion
sequences. In other words, these synthetically created sam-
ples will be used not only in the contrastive learning task
but also in the main generation task.

3.4. Training EMS

Our model is trained on atomic action samples. Thus,
during the training stage, we randomly sample a batch of
atomic actions at a time. These atomic actions don’t need
to be the components of the same full action. For each
atomic action ai, the model consumes in the textual de-
scription of itself Wi, its previous action Wi−1, next action
Wi+1, and synthetic sample W syn

i . For the motion input, it
requires the ground truth motion sequence of itself Hi

1:Di
,

its synthetic sample Hi,syn
1:Di

, parts of previous atomic action
Hi−1

Di−1−P :Di−1
and next atomic action Hi+1

1:P . If the atomic
action is the first or last component of the full action, the
first or last P frames will be used as a part of previous or
next atomic action, and the rest frames are preserved. Our
loss function L for a training sample consists 4 terms:

L = λrecLrec + λembLemb + λnatLnat + λconLcon (3)

where the terms correspond to reconstruction, embedding,
naturalness, and contrastive, respectively, and λ∗ is its cor-
responding weight. The details of the terms are as follows:

Reconstruction Loss The reconstruction loss Lrec en-
forces the model to generate motions that are similar to the
corresponding ground truth motions conditioned on differ-
ent modalities (i.e., ground truth motions, natural language
descriptions, and generated motions):

Lrec = l1(H
i
1:Di

, T i
1:Di

) + l1(H
i
1:Di

,M i
1:Di

)+

l1(H
i,syn
1:Di

, T i,syn
1:Di

) + l1(H
i,syn
1:Di

, T i,syn
1:Di

)+

l1(C
i−1
Di−1−P :Di−1

: Ci
1:Di

: Ci+1
1:P , Hi−1

Di−1−P :M : Hi
1:Di

: Hi+1
1:P )

(4)
where l1 represents the smooth L1 loss. Note that the first
two terms indirectly encourage the two distinctive embed-
dings, one generated from the atomic motion encoder Navae
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and the other generated from the text encoder Tenc, to be the
same. The third term generated from Tenc but conditioned
on the synthetic description, and the fourth term generated
from Menc but conditioned on the synthetic motions. Simi-
lar to the first and second terms, they are also regulated to be
the same. The last term will update the connection motion
encoder Ncvae so that it generates motions that are similar
to the corresponding ground truth motions as well.

Embedding Loss Our embedding loss regularizes the
reparameterized distributions

LKL = KL(N (µc, ϕc)||N (0, I))+

KL(N (µt, ϕt)||N (0, I)) +KL(N (µm, ϕm)||N (0, I))+

KL(N (µt, ϕt)||N (µm, ϕm))

(5)

where the first three terms enforce all three encoders to gen-
erate embedding that is similar to Gaussian distributions,
and the last term directly encourages the motion and text
embeddings to be the same.

Natural Loss Unlike previous methods generating the
output motion all at once, we propose a two-stage ap-
proach where atomic actions are first generated, and then
connected and refined in the later stage. We notice that
the reconstruction loss is not enough to make the com-
bined motions smooth enough. This is mainly because
the original atomic actions are generated separately, and
the number of possible combinations by those atomic ac-
tions grows exponentially as the length of the input descrip-
tion increases. As a result, the publicly available train-
ing datasets we use in this paper might not have enough
combinations of those atomic actions. This problem has
not yet been visited in other relevant work [4, 20, 12] be-
cause they aim for generating motions given short input
descriptions. To mitigate this problem, we introduce an
additional loss Lnat to judge whether the generated mo-
tions look natural based on an existing motion prior Hu-
MoR [35], which is a conditional VAE model with a learn-
able posterior learned in an unsupervised manner from a
motion dataset. More specifically, we pretrain transformer-
based prior Mprior and posterior Mpost encoders, which
encode Ci

1:Di
, {Ci−1

Di−1−P :Di−1
;Ci

1:Di
;Ci+1

1:P } to the shared
multimodal sphere as distribution tokens (µprior, σprior),
(µpost, σpost), respectively. Intuitively speaking, the model
learns a distribution of plausible transitions from an atomic
action Ci

1:Di
to an atomic action with connections to ad-

jacent actions {Ci−1
Di−1−P :Di−1

;Ci
1:Di

;Ci+1
1:P }. Our natu-

ral loss Lnat measures whether the generated motions are
within this distribution, and it is computed as follows:

Lnat = l1(Cgen,MHD(ϵ(µprior
i , σprior

i ))) (6)

Cgen = Ci−1
Di−1−P :Di−1

: Ci
1:Di

: Ci+1
1:P (7)

µprior
i , σprior

i = Mprior(C
i
1:Di

) (8)

where ϵ represents the reparameterization function [18], and
MHD represents the motion prior decoder.

Contrastive Loss As explained before, we use contrastive
learning to enable the model further understand fine-grained
semantics and inherited dependencies. From the forward
passes, we get the generated motions from the original de-
scriptions and synthetic descriptions. The contrastive losses
will force them to be different from each other after process-
ing an MLP Nmlp. According to the experience in [34], the
implemented MLP will project features to another domain
which reduces the negative influence on the main generation
task.

Lcon =
Lmcon + Ltcon

2
(9)

Lmcon = ϕ(Nmlp(Menc(M
i
1:Di

))) · ϕ(Nmlp(Menc(M
i,syn
1:Di

)))

Ltcon = ϕ(Nmlp(Tenc(Wi))) · ϕ(Nmlp(Tenc(W syn
i )))

(10)

where ϕ is a normalization function.
Once the training procedure is finished, the model will

be sequentially given the atomic components of the compli-
cated actions, for which the textual description Wi and the
duration Di of each atomic action are only required at test
time.

4. Experiments
4.1. Datasets

In this work, we train and evaluate our method on two
open-source benchmarks, KIT Motion-Language (KIT-ML)
and BABEL.

KIT-ML KIT-ML[30] is built based on two motion cap-
ture (MoCap) datasets (KIT Whole-Body Human Motion
Database [27] and CMU Graphics Lab Motion Capture
Database) using the Master Motor Map (MMM) frame-
work [38] and provides full action-level natural descrip-
tions.

BABEL Similar to KIT-ML, the BABEL dataset [32] is
also built based on the larger motion capture dataset collec-
tion AMASS and provides frame-level atomic action anno-
tations. In contrast to KIT-ML, for each action sample, it
provides a group of descriptions and labels. Each refers to
a component atomic action with the start and end temporal
locations of the full sequence. Meanwhile, BABEL con-
tains more samples and covers more types of complicated
actions. BABEL consistently has at least twice as many
verb words as KIT-ML.
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Method APE root↓ APE traj.↓ APE local↓ APE global↓ AVE root↓ AVE traj.↓ AVE local↓ AVE global↓
TEMOS[29] 0.963 0.955 0.104 0.976 0.445 0.445 0.005 0.448

Ours(full) 0.797 0.785 0.094 0.811 0.417 0.406 0.004 0.423
Ours 0.571 0.553 0.088 0.592 0.282 0.280 0.003 0.301

Table 1. Comparing ours against previous SOTAs on KIT-ML

Method APE root↓ APE traj.↓ APE local↓ APE global↓ AVE root↓ AVE traj.↓ AVE local↓ AVE global↓
TEMOS[29] 0.766 0.731 0.172 0.825 0.269 0.262 0.016 0.274
TEACH[4] 0.674 0.654 0.159 0.717 0.222 0.220 0.014 0.234

Ours 0.434 0.423 0.116 0.495 0.173 0.168 0.011 0.181
Table 2. Comparing ours against previous SOTAs on BABEL dataset

Method FIDtrain↓ FIDtest↓ Acc.top1↑ Acc.top5↑
ACTOR[28] 1.48 1.53 0.50 0.75

MACVAE[20] 0.74 0.97 0.64 0.86
Ours 0.61 0.94 0.69 0.87

Table 3. Comparing ours against previous SOTAs on BABEL un-
der another settings of metrics

4.2. Evaluation Metrics

We find there are two main streams of evaluation met-
rics for text-conditioned motion synthesis. The first lines
of works [29, 2, 10] directly compare the generated mo-
tions with ground truth ones for evaluation. They mainly
report Average Position Error(APE) and Average Variance
Error(AVE). APE is the L2 distances between generated
motions and ground truth ones. AVE, on the other hand,
measures the difference in variations. It’s the L2 distances
between variances of generated and ground truth motions.
The root joint error only calculates the three coordinates
(X,Y and Z) of the root joint. The global traj. errors only
use the first two (X and Y) coordinates of the root joint.
Mean local and mean global are calculated by averaging
the joint errors under the local coordinate and global coor-
dinate. APE and AVE are the only metrics reported by our
baseline TEMOS[29], so we mainly followed it to make fair
comparison on the KIT-ML dataset.

Another line of works [20] use indirect metrics to evalu-
ate the quality of generated motions. Specifically, they use
frechet inception distance (FID), and action recognition ac-
curacy (Acc). FIDtrain and FIDtest represent distribu-
tion divergence from generated samples to training and test
set. And Acc measures how likely the generated motions
will be classified to the action label by the pre-trained ac-
tion recognition model.

4.3. Implementation Details

For all transformer-based encoders and decoders of
Navae and Ncvae, we set the hidden embedding degree as
256 which enables the motion embeddings and semantic
representations to be easily projected to a shared sphere.
Each encoder contains 6 layers and the number of heads in
multi-head attention is set as 6. We preserve the dropout

layers and the dropout rate is 0.1. For intermediate FFNs,
the dimensionality is set as 1024. The model is optimized
by AdamW [42] with an initial learning rate of 1e−4. We
set weight parameters to balance the loss functions. Explic-
itly, λrec = 1, λemb = 1e−5, λnat = 1, and λcon = 1e−3.
Our model is trained on eight V100 GPUs with a batch size
of 64 for 1000 epochs.

4.4. Results

As is shown in Table 1, we evaluate our method with
two different settings of input on KIT-ML. The second line
(Ours(full)) refers to the model that consumes the input de-
scriptions all at once like what TEMOS did while the third
line (Ours) refers to the model that uses the factorized de-
scriptions. The factorized descriptions coming from BA-
BEL’s annotation, since it also covers the samples of KIT
Whole-Body Human Motion Database and CMU Graphics
Lab Motion Capture Database (the MoCap datasets KIT-
ML is built on). When taking in the full action description
(Ours(full)), we find our model still outperforms all previ-
ous SOTAs with noticeable margins. We assume the major
improvements are brought by the implementation of natural
loss and contrastive learning with the augmented synthetic
data. When enabling the model to take factorized descrip-
tions, our method gains significant improvement, where it
almost doubles the performance against previous SOTA,
TEMOS, on all eight metrics, which shows the superiority
of the idea of factorizing actions into components of atomic
actions.

Since our method is mainly designed to generate com-
plicated actions, we also evaluate it on the recently released
BABEL dataset [32]. Table 2 reports the reconstruction er-
rors, when compared against previous works [29, 4], our
method consistently outperforms in all eight metrics. On
average, our method is 42 percent better than TEMOS [29]
and 36 percent better than TEACH[4]. Table 3 shows FID
and top1/5 classification accuracy. In this case, our method
still achieves the best performance on all four metrics. How-
ever, the performance gap between ours and previous works
is not that large when compared to the results shown in Ta-
ble 2. We suppose that it’s because we follow the settings
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Figure 4. Qualitative comparison against previous SOTA [29]. In (a), our model correctly generates the walk motion and jog motions. The
baseline TEMOS, however, just generates a still-standing motion floating in the air. In (b) and (c), our model correctly controls the motion
speeds and body parts by giving detailed natural language descriptions. (Highlighted in rectangles)

of [20] where a subset of actions that don’t cover enough
complicated actions are evaluated. On the other hand, the
upper-bound performance of the action classifier and mo-
tion encoder is not that high, which may also bring hidden
bias to the evaluation results.

We also compare the methods on samples whose dura-
tion is longer than 20 seconds. As is shown in the last two
lines of Table 4, our method is, on average, 2 to 3 times bet-
ter than TEMOS. This verifies the superiority of our method
on generating long and complicated actions.

5. Ablations
5.1. Usage of contextual information

In this section, we will explore how the usage of con-
textual information affects final performance. Our model
applies text contextual information in Navae where it takes
natural language descriptions of the target atomic action it-
self and its previous and next atomic actions. It also applies
motion contextual information in Ncvae where it refines and

connects the atomic actions with the generated motions of
its previous and next atomic action. To find out their in-
dependent contribution to the final performance, we trained
a motion-context model whose Navae only conditions on
the text description of the target atomic action to generate
T i
1:Di

. We also trained a text-context model that preserves
the original settings of Navae, but without Ncvae, and di-
rectly concatenates the generated motions of atomic actions
through a simple average smoothing.

As is shown in Table 4, using text contextual information
brings on average 14 percent improvements, and using mo-
tion contextual information brings much more significant
34 percent improvements. Meanwhile, we noticed that the
performance of the text-context model is even worse than
the TEMOS baseline in Table 2 with concatenated action-
level descriptions. This is similar to the conclusion in nat-
ural language translation works [46]. We also explored the
influence brought by using different temporal window sizes
P in Ncvae. We find extending from temporal size 1 to 3
brings noticeable margins, however, the model gets compa-
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Method APE root↓ APE traj.↓ APE local↓ APE global↓ AVE root↓ AVE traj.↓ AVE local↓ AVE global↓
text-context 0.778 0.749 0.189 0.789 0.232 0.227 0.015 0.241

motion-context 0.502 0.495 0.142 0.575 0.196 0.195 0.014 0.209
fullP=1 0.479 0.462 0.126 0.502 0.185 0.178 0.013 0.191
fullP=5 0.453 0.437 0.118 0.483 0.177 0.172 0.012 0.182
fullP=3 0.434 0.423 0.116 0.495 0.173 0.168 0.011 0.181

fullP=3,×syn 0.496 0.483 0.137 0.527 0.192 0.191 0.012 0.204
fullP=3,×Lnat 0.526 0.519 0.146 0.538 0.206 0.198 0.013 0.214

TEMOS[29],D > 20 1.612 1.591 0.213 1.635 1.075 1.074 0.021 1.085
Ours,D > 20 0.572 0.538 0.141 0.591 0.428 0.424 0.018 0.485

Table 4. Ablation study results: Here we report the performance of our method with different settings to show the improvements brought
by each module or loss function.

rable performance with P=3 and P=5. We think this optimal
number is dataset-specific. Thus, replacing it with a soft
temporal pooling operation [33] may be the optimal solu-
tion, which we will leave for future work.

5.2. Usage of synthetic samples

The use of synthetic samples not only enables the model
to explicitly learn atomic-action level attributes but also
functions as data augmentation, which improves the mo-
tion generation quality. As is shown in Table 4, the use of
synthetic data improves on average 11 percent performance.

5.3. Implementation of Natural Loss

As mentioned in the previous section, we explicitly im-
plement a natural loss to judge if the generated motions look
natural or not. To explore the improvement brought by this
loss function, we trained the same model without using the
natural loss function. As is shown in Table 4, the imple-
mentation of natural loss brings an average of 16 percent
improvements.

5.4. Qualitative Comparison

In generation tasks, the metrics often do not fully corre-
spond to the quality of generation. We thus visualized sev-
eral samples to demonstrate the superiority of our method.
Figure 4(a) demonstrates that our method generates se-
mantically correct and natural-looking motions whereas the
generated motions by TEMOS are far from acceptable. In
Figure 4(b,c), our method can correctly control the body
part and motion speed of generated motion sequences by
giving explicit natural language inputs.

6. Limitations
Although we have enabled the model to generate se-

quences of unseen complex actions from unique sequences
of known atomic actions with independent attribute settings
and timings applied, the biggest limitation of our model is
that it still requires the atomic actions are ever learned. We
find many atomic actions only appear in the validation set
and our model can’t generate solid motions for them. One
natural solution is to integrate our model with zero-shot

learning methods [34]. We assume it a meaningful direc-
tion for future works.

Although the training set contains fairly enough ”turn
around” samples, we find our method still won’t perform
that well on generating “turn around” motions. In many
cases, it’s just rotating the figure around the z-axis, which
is different from what people will naturally do in the
real world. “Turn around” seems a simple motion at the
first glance. However, we find it contains lots of details,
which makes its generation pretty challenging. We also
notice that the problem widely exists in almost all recent
works[29, 4, 20], which may require a more powerful mo-
tion synthesis and language backbone.

Finally, we find that controlling motion speed sometimes
deteriorates the generation quality. We assume it because
we use simple speed-tuning operations to generate the syn-
thetic samples based on ground truth motions. Such opera-
tions may bring discontinuity or unnatural motions, which
deteriorates the generation quality. We assume applying
computer graphics methods may solve this problem and we
also leave this for future work.

7. Conclusion
We propose EMS, a two-stage text-conditioned elabo-

rative motion synthesis model. A detailed discussion of
limitations and future work is in the appendix. It enables
the users to generate natural sequences of complex actions
from natural language descriptions of known atomic actions
with independent attribute settings and timings applied. Our
method outperforms previous SOTAs on two benchmarks.
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[38] Ömer Terlemez, Stefan Ulbrich, Christian Mandery, Mar-
tin Do, Nikolaus Vahrenkamp, and Tamim Asfour. Master
motor map (mmm) — framework and toolkit for capturing,
representing, and reproducing human motion on humanoid
robots. 2014 IEEE-RAS International Conference on Hu-
manoid Robots, pages 894–901, 2014.

[39] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,
Daniel Cohen-Or, and Amit H Bermano. Human motion dif-
fusion model. arXiv preprint arXiv:2209.14916, 2022.

[40] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
Aur’elien Rodriguez, Armand Joulin, Edouard Grave, and
Guillaume Lample. Llama: Open and efficient foundation
language models. ArXiv, abs/2302.13971, 2023.

[41] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. ArXiv,
abs/1706.03762, 2017.

[42] Max Vladymyrov and Miguel Á. Carreira-Perpiñán. Fast
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