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Abstract

Recent work shows that well-designed adversarial ex-
amples can fool deep neural networks (DNNs). Due to
their transferability, adversarial examples can also attack
target models without extra information, called black-box
attacks. However, most existing ensemble attacks depend
on numerous substitute models to cover the vulnerable sub-
space of a target model. In this work, we find three types
of models with non-overlapping vulnerable frequency re-
gions, which can cover a large enough vulnerable sub-
space. Based on this finding, we propose a lightweight en-
semble adversarial attack named LEA?, integrated by stan-
dard, weakly robust, and robust models. Moreover, we an-
alyze Gaussian noise from the perspective of frequency and
find that Gaussian noise is located in the vulnerable fre-
quency regions of standard models. Therefore, we substi-
tute standard models with Gaussian noise to ensure the use
of high-frequency vulnerable regions while reducing attack
time consumption. Experiments on several image datasets
indicate that LEA? achieves better transferability under dif-
ferent defended models compared with extensive baselines
and state-of-the-art attacks.

1. Introduction

Convolutional neural networks (CNNs) have been suc-
cessfully employed in image classification, but recent works
have shown that even the most advanced CNNs are vulner-
able to adversarial examples [12, 29, 26, 1]. Adversarial
attacks deliberately impose small perturbations to the be-
nign input to mislead a model. In general, adversarial at-
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Figure 1. An example of our ensemble attacks, where three sub-
stitute models are used to craft adversarial examples. Classifier hy
is an adversarial trained model, ho is a weakly robust model, and
h3 is a standard model.

tacks can be divided into white-box attacks and black-box
attacks. White-box attacks need to know all the information
about the target model (e.g., model structure, and model pa-
rameters), which is usually impracticable because an adver-
sary cannot obtain all the information about the target model
in reality. In contrast, black-box attacks do not require
knowing the internal information of the target model, which
can be further separated into query-based and transfer-based
ones. Query-based attacks require extensive queries of the
output of the target model [19, 21, 27, 32], which not only
makes the target model suspect but also increases query
costs. Transfer-based attack treats the target model as a pure
black box, which crafts adversarial examples using a substi-



tute model (white-box model) [10, 40, 7, 8, 23, 41].

In this paper, we focus on transfer-based black-box at-
tacks. Depending on whether one or more substitute models
are utilized, transfer-based attacks are further divided into
single-model-based attacks and ensemble attacks. How-
ever, single-model-based attacks may lead adversarial ex-
amples to overfit the substitute model and decrease the at-
tack success rate [16]. An efficient method to address this
issue is to combine multiple substitute models. In order
to approximate the target model, existing ensemble attacks
have to use many models with different structures as substi-
tute models [7, 8, 23, 41], which is generally intuitive and
empirical. Moreover, training a large number of substitute
models and crafting adversarial examples on them is seri-
ously time-consuming [39, 24].

To facilitate the description of our ideas, we formalize
the definition of vulnerable subspace, which is a set of ad-
versarial examples. Each model has its special vulnerable
subspace. The effectiveness of transfer-based attacks de-
pends on how close the vulnerable subspace of the substi-
tute model is to the target model. However, it is hard to char-
acterize the vulnerable subspace due to its high dimensions.
The transformation to the frequency domain makes it eas-
ier to study since the frequency domain of an image is two
dimensions. Some previous work showed that adversarial
perturbations added to the high-frequency regions of images
are more effective than other frequency regions [35, 38],
while other work showed that low-frequency regions are
also vulnerable [13, 30].

In this work, we focus on the vulnerable frequency re-
gions of different models. Our experiments showed that
three types of models (standard, weakly robust, and robust)
have distinct distributions of the vulnerable frequency re-
gions. For standard models, they have vulnerable high-
frequency regions; for weakly robust models, they have
vulnerable mid-frequency regions; and for robust models,
they have vulnerable low-frequency regions. Due to the re-
versibility of the Fourier Transform, we infer that the union
of their corresponding vulnerable subspaces is large enough
to cover that of the target model. Based on this assump-
tion, we propose a lightweight ensemble adversarial attack,
namely LEA2, which only includes three types of substitute
models regardless of the kind of target models. Figure 1
illustrates the process of our ensemble attack. Moreover,
we find that Gaussian noise is located in the vulnerable fre-
quency regions of standard models. Therefore, we use the
Gaussian noise to replace standard models to reduce time
consumption further. To sum up, our main contributions are
summarized as follows:

e We investigate the weakly robust model in the fre-
quency domain and find that the mid-frequency per-
turbations achieve the highest attack success rate.
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» From the perspective of frequency, we construct an en-
semble only including three types of substitute models,
which significantly reduces the time cost and boosts
the transferability of adversarial examples.

Extensive experiments on three popular datasets
demonstrate that LEA? significantly boosts the trans-
ferability of adversarial examples while reducing time
consumption compared to state-of-the-art ensemble at-
tacks.

2. Related Work

Transfer-based attacks are based on the fact that despite
the substitute and target models adopting diverse architec-
tures, they may share similar decision boundaries [8, 23].
According to the attack mechanism adopted by the adver-
sary, there are two types of transfer-based attacks. One is
the single-model-based attack [10, 8, 40], and the other one
is the ensemble attack. Since the former tends to overfit the
substitute models, we focus on ensemble attacks.

Ensemble attacks. Liu et al. [23] first propose an en-
semble attack that prevents the noise from overfitting a sin-
gle model architecture and thus bolsters the transferability.
Dong et al. [7] further investigate three manners of orga-
nizing the base models and demonstrate that the ensemble
of averaging logits outperforms the others for boosting the
attack effectiveness. Hang et al. [15] propose two types of
ensemble-based black-box attack strategies to produce ad-
versarial examples with more powerful transferability. Xie
et al. [41] propose an ensemble attack DI-FGSM by em-
ploying random transformations to the input examples to
enhance the transferability. Dong et al. [8] shift the input to
create a series of translated images and approximately es-
timate the overall gradient to mitigate the problem of over-
reliance on the substitute model. Li et al. [22] apply feature-
level perturbations to an existing model to potentially cre-
ate a huge set of diverse models and propose a longitudinal
ensemble method specifically for their networks. Xiong et
al. [42] reduce the gradient variance among various models
to boost ensemble attacks. Che et al. [2] divide a large num-
ber of pre-trained source models into several batches and
introduce long-term gradient memories in their new ensem-
ble algorithm for specific networks or tasks(e.g., pix-to-pix
image translation). Long et al. [25] proposed a frequency
domain data augmentation for training, and this can signif-
icantly improve transferability. However, these ensemble
attacks have to use a large number of substitute models to
craft adversarial examples.

Adversarial Examples in Frequency Domain. It has
been increasingly common in recent years to investigate the
essential characteristics of adversarial examples from the
frequency domain. Tsuzuku & Sato [34] first proposed a
frequency framework by studying the sensitivity of CNN’s



for different Fourier bases. Wang et al. [35] show that high-
frequency components play significant roles in promoting
CNN’S accuracy and conclude that smoothing the CNN
kernels helps to enforce the model to use features of low
frequencies. Guo et al. [13] propose a low-frequency attack
(LA) that successfully fools defended models, which shows
that low-frequency components also play a significant role
in model prediction. Deng & Karam [5] proposed a method
of generating adversarial attacks in the frequency domain it-
self. Chen et al. [3] revealed that CNN classifiers rely on the
amplitude spectrum of images rather than the phase spec-
trum, whereas humans rely more on the phase spectrum.
However, these studies did not analyze the differences be-
tween the different types of models from the frequency per-
spective.

3. Motivation

Szegedy et al. [33] first observed the adversarial exam-
ples in DNNs. Let X be an input space and ) be a label set.
A classification model is a mapping function gy : X — ).
Given an original image z € X with the ground truth label
y € Y, go(x) = y, where 6 is the parameter of the classifi-
cation model. The purpose of adversarial attacks is to find a
tiny perturbation 4, fooling the classifier gy (z') # y, where
an adversarial example 2’ = x + §. In general, to ensure
that the adversarial example is as similar as possible to the
original image, J is required to be less than a specific value
€as ||z’ — x|, < ¢, where ||| is a norm and p could be 1,
2, 0o. In this work, we formally define vulnerable subspace
as follows:

Definition 1 Vulnerable Subspace. Given a perturbation
budget €, there exist a set A C X such that A = {'|2' =
z+IN|6|lp < eng(a’) #y}. Wesay Ais the vulnerable
subspace of the classification model g. For convenience, we
denote it by Ay.

As shown in [33], a non-target attack is modeled as a
constraint optimization problem:

argmax L (g (x+9),y;0), s.t.[|0], <,
5

ey

where £ is the loss function. However, it is impractical
to directly optimize Eqn (1) via the target model g under
black-box settings because its parameter # is inaccessible.
To address this problem, a common approach is to train a
local substitute model ~ simulating the target model g. The
effectiveness (i.e., transferability) relies on the overlap be-
tween the vulnerable subspace Ay and A, of the substi-
tute model A and the target model g. Due to the black-box
property, the vulnerable subspace of the target model is un-
known. An intuitive way [23] is to collect many substitute
models h;,i = 1,2,..., M with different architectures to
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cover the target model’s all possible vulnerable subspace,
ie, Ag € Ap, UAp, -+ U Ap,,. Thus, ensemble attacks
were proposed [7, 41, 24], which is modeled as the follow-

ing optimization:
M
—log ((Z w;S; (ZE/)> - 1y> , )
i=1

where S;(z’) is the softmax outputs of the i-th substi-
tute model, w; is the ensemble weight with w; > 0 and
Zij\il w; = 1, and 1, is the one-hot encoding of y.

However, collecting a large number of models is gener-
ally inefficient and time-consuming to train so many substi-
tute models [24]. In this paper, we hope to cover the vul-
nerable subspace of the target model with as few substitute
models as possible.

Unfortunately, it is difficult to accurately characterize
a vulnerable subspace due to its high dimensions. Mean-
while, the target model is unknowable. In the frequency
domain, no matter what kind of target model, its vulnerable
subspace is in certain 2-D frequency regions. From this per-
spective, we construct a frequency-based ensemble attack.

arg max
CL'/

4. Methodology
4.1. Vulnerable Frequency Regions

Fourier analysis provides another view to investigate the
properties of images. Some previous works showed that
adversarial perturbations added to the high-frequency re-
gions of images are more effective than other frequency re-
gions [35, 38]. In contrast, other works showed that low-
frequency regions are also vulnerable to adversarial exam-
ples [13, 30]. Similar to the vulnerable subspace defined in
the spatial domain, we formally define vulnerable frequency
regions as follows:

Definition 2 Vulnerable Frequency Regions. Given the
model g’s vulnerable subspace Ay, there exists a vulner-
able frequency region of g correspondingly in the frequency
domain: By = {f|x + 65 € Ay} where &y is the specific
perturbation corresponding to the frequency f.

Let D: X — F be the 2-D Discrete Cosine Trans-
form [28] (DCT, details of which are included in Appendix
A.1) and D~ is its corresponding inverse. Here we present
the formula of the specific frequency perturbation ¢ ¢ as fol-
lows:

0 = - Sgn (Dfl (D(VL)® /\/l)) , 3)
1, D(z) e S s
0, D(x) ¢ S
) fN}7

, fn are orthogonal DCT modes and L is

where Sgn(-) is a sign function, M = {

a mask to select frequencies, S = Span {f1, fa,. ..
where f1, fa,...
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Figure 2. The attack success rate of d¢ on different models. Standard Model is standard trained ResNet18 (WideResNet), Weakly Robust
Model uses PGD attack with e = 4/255, a = 2 / 255 to train ResNet18 (WideResNet) for 20 epochs, and Robust Model uses PGD with
€ = 8/255, e = 2/255 to train ResNet18 (WideResNet) for 50 epochs.

a loss function. When f selected by the mask M are fre-
quency bands 36 to 63, ; are called the high-frequency per-
turbations, and when the selected f are frequency bands 10
to 35 and O to 9, then §; are called mid-frequency pertur-
bations and low-frequency perturbations, respectively. The
details of frequency bands are included in Appendix A.1.

Our experiment shows that for standard models, high-
frequency perturbations have a higher attack success rate;
for robust models, the high-frequency perturbations can
hardly fool it, while the low-frequency perturbations
achieve a high attack success rate; for weakly robust mod-
els', the mid-frequency perturbations achieve the highest at-
tack success rate (see Fig. 2). Though the standard model
hstandard, Weakly robust model hyeqk, and robust model
hrobust have the same structure, their vulnerable frequency
regions are different but complementary. According to the
vulnerable frequency regions, we further divide substitute
models into standard, weakly robust, and robust for ensem-
ble, equivalent to the ensemble of many randomly chosen
models. Based on this idea, we construct a lightweight en-
semble attack LEA? described in Section 4.3, and propose
a remark that presumes:

Remark 1 An ensemble of three types of models with non-
overlapping vulnerable frequency regions, i.e., Bp,_,,,. 4ora 1
Bhyeur N B, = ¢, can achieve a large enough vul-
nerable subspace covered by an ensemble of many ran-
domly chosen substitute models, i.e., A, .. 10009 Ahwear U
Ap ~ Ap, UAp, - UAy,,, where M > 3.

robust

robust

4.2. Gaussian Noise Substitution

Previous research [6] indicated that Gaussian noise r ~
N (0,0?) also has a significant impact on the classifica-
tion performance of DNNs. Ford et al. [11] demonstrated
that images with additive Gaussian noise and adversarial
examples manifest the same underlying phenomenon. As

IThe descriptions of the standard, robust, and weakly robust models are
presented in Appendix A.2.
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Figure 3. RCT maps for Gaussian noise and the FGSM adversarial
examples [12] generated on the standard trained ResNet18. The
upper left and lower right corners represent the lowest and highest
frequency components in the DCT space, respectively. The deeper
color indicates a greater change for a specific frequency compo-
nent between the original and perturbed images, where o = 0.1

for the Gaussian noise and the maximum perturbation ¢ = 1/255
for FGSM.

we all know, generating adversarial examples is very time-
consuming [39], which needs calculating the gradients by
back-propagation, but generating the Gaussian noise only
needs a random number generator. Based on this, we want
to explore whether Gaussian noise can replace one of the
three types of models above to reduce time consumption.

We identify the differences between the original image
2 and its perturbed z’ in the frequency domain by calculat-
ing the average relative change of discrete cosine transform
(RCT) [38]. It indicates which frequency regions the pertur-
bations are mainly distributed in. RCT is defined as follows:
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where D is the discrete cosine transform and N is the num-
ber of examples.

As shown in Figure 3, the Gaussian noise is mainly dis-
tributed in the lower right corner of the RCT map, and the
FGSM perturbation [12] generated on the standard model
is also primarily concentrated in the same regions, which
means that Gaussian noise r ~ N (0, 0?) is located in the
vulnerable frequency regions of the standard model (i.e.,
D(r) = Bh,,,..u..q)- More experiments of Gaussian noise
are shown in Appendix B. According to these finds, we can
substitute standard models with Gaussian noise to reduce
time consumption while maintaining the transferability of
adversarial examples, as shown in the Remark 2:

Remark 2 According to Remark 1, there exists a set A, =
{a/|2/ =2 +7r,r ~ N (0,0%)} = An.,0sara> and replac-
ing the standard model with Gaussian Noise can achieve
an equally large vulnerable subspace, i.e., A, U Ay, U
Ap ~ Ap, UAp, - UAy,,, where M > 3.

Tobust

4.3. Implementation

Algorithm 1 LEA?
Input An original image x with ground-truth label y; robust

1 2 My .
models Ay oy Ry s Rl the ensen]g)le weights
w;; weakly robust models kL . h2 . ... hy 2, the en-

semble weights w;; size of perturbation ¢; iterations T'; step
size a
Output An adversarial example '

I: &j_g < x + 7, where 7 ~ N (0,0?)

2: fort=0toT — 1do

3 Inputzy tohli ., and get £ (Al .. (z4'),y)
fori=1,2,...,M;

4 Input x4 to hfuwk and get £ (hfﬂwk (z¢) ,y)
forj=1,2,..., My

5: Fuse the loss as u _
L (xtlv y) « Zi:ll wlﬁ (h:“obust (xt/) ’y) +

Iy .
Zj;1 wj[’ (hZueak (xt/) 7y)

6: Obtain the gradient V. L (2, y)

7: Update 2}, ; by applying the sign gradients as
wiyy  clip, {2 +a-Sgn (VoL (z',y))}

8: end for

9: return 7,

The analysis in Section 4.1 needs three types of sub-
stitute models for Eqn (2). Meanwhile, from the analysis
in Section 4.2, the example subspace with Gaussian noise
added (i.e., A;) is similar to the vulnerable subspace of
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the standard model (i.e., Ay, ,...,.)- Therefore, we replace
S WS dara (4 6) in Eqn (2) with Gaussian noise
r ~ N (0,0%) to further reduce the time consumption. In
brief, our lightweight ensemble adversarial attack (LEA2)
is to solve the following optimization problems:

M,
argmax — log ((Z Wi St st (T + 1+ 8)+
0 i=1
Ma | &)
ijsfﬂeak(‘r +r+ 6)) ’ 17/)7
j=1

where 7 ~ N (0,0?) is the Gaussian noise, M and M,
are the number of robust models and weak robust mod-
els respectively (M; and M are usually 1 or 2), S,opust
and Syeqr represent the softmax outputs of the robust
model and weak robust model respectively, Zf\ill w; +
Zj\fl w; = 1. The adversarial example z’ generated by
the above optimization is also limited by ||z’ — z|| , < e
The procedure of LEA? is presented in Algorithm 1.

We compared the differences of perturbations generated
by the black-box MI-FGSM attack [7], white-box PGD at-
tack [26], and our attack LEA? using Eqn (4) on CIFAR-10,
as shown in Figure 4. The perturbations generated by LEA?
are distributed throughout the entire frequency regions re-
gardless of the maximum perturbation € 8/255 or the
larger perturbation e = 16/255. In contrast, the perturba-
tions generated by MI-FGSM and PGD are more concen-
trated in the high-frequency regions, and almost no pertur-
bation is generated in the low-frequency domains. Since
the perturbations generated by LEA? can cover entire fre-
quency regions, LEAZ will attack successfully no matter the
target model’s vulnerable subspace. This can be explained
from another view that all possible target models, regard-
less of their specific form, have their vulnerable frequency
regions located in some specific frequency regions. So we
gain a more deep insight than Remark 1 as follows:

Remark 3 Three types of models with non-overlapping but
complementary vulnerable frequency regions are chosen as
substitute models for the ensemble, which can generate ad-
versarial perturbations that cover almost all possible vul-
nerable subspaces of target models. ie., A, U Ay, ... U
Ap ~ |J; Ag, where g; represents target models.

robust

5. Experiments
5.1. Experiment Setup

Datasets. We conduct experiments on three general
datasets, namely CIFAR-10 [20], CIFAR-100 [20], and
ImageNet-30 [4]. In particular, CIFAR-10 contains 50K
training examples and 10K testing examples with the size



Table 1. The attack success rate of various attacks on standard models with JPEG compression [14] on CIFAR-10. The best results are
indicated in bold. Other results on CIFAR-100 are included in Appendix C.4.
Dataset Attack ResNet20 VGG16
Clean JPEG-75 JPEG-50 Clean JPEG-75 JPEG-50
TI-FGSM [8] 58.41% 42.86% 37.40% 54.25% 36.93% 33.30%
MI-FGSM [7] 94.83% 64.07% 32.07% 88.91% 66.04% 26.72%
CIFAR-10 DI-FGSM [41] 97.54% 75.95% 53.42% 96.30% 70.72% 47.00%
MI-FGSMens [7] 99.52 % 83.21% 58.32% 97.85% 77.53% 53.89%
DI-FGSMens [41] 99.43% 90.36 % 75.59% 98.81% 87.31% 72.37%
LEAZ?(ours) 94.93% 88.79% 83.89% 91.46% 87.66 % 84.73%

Table 2. The attack success rate of various attacks on standard models with JPEG compression [14] on ImageNet-30. The best results are

indicated in bold.
Dataset Attack WideResNet101 DenseNet121
Clean JPEG-75 JPEG-50 Clean JPEG-75 JPEG-50
TI-FGSM [8] 83.41% 82.06% 81.70% 78.45% 78.62% 78.27%
MI-FGSM [7] 86.53% 81.83% 78.16% 69.84% 66.56% 61.94%
ImageNet-30 DI-FGSM [41] 90.40% 88.03% 87.49% 82.68% 78.47% 77.19%
MI-FGSMens [7] 97.24% 95.59% 93.67% 78.15% 76.41% 73.56%
DI-FGSMens [41] 98.66 % 96.33% 95.32% 92.14% 91.67% 89.74%
LEAZ2(ours) 96.95% 96.87% 96.53% 95.16% 95.11% 94.92 %

MI- FGSM(E 8/255)
o
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- 2 = W
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T T Y
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Figure 4. RCT map of various attack method on CIFAR-10.
The upper left and lower right corners represent low and high fre-
quency, respectively. More results on CIFAR-100 are included in
Appendix C.3.

of 32x32 from 10 classes; CIFAR-100 has 100 classes,
containing the same number of training (testing) examples
as CIFAR-10; ImageNet-30 is a subset with 30 classes ex-
tracted randomly from the ImageNet dataset [4]. In exper-
iments, we selected correctly classified images to evaluate
various attacks, ensuring that the effectiveness of attacks is
caused by the attacks themselves and not the model perfor-
mance.

Models. For the standard models, we standardly
train ResNetl8, ResNet20, ResNet34 [17], WideRes-
Net [44], and VGG16 [31] on CIFAR-10 and CIFAR-
100 respectively. On ImageNet-30, we standardly train

-0.0
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ResNet18, ResNet50, WideResNet101, Densenet121 [18],
and VGG16. For the robust models, PGD [26] with ¢ =
8/255 and o« = 2/255 is used for adversarial training for 50
epochs to obtain the robust models with two different struc-
tures, PGD-ResNet18 and PGD-WideResNet on CIFAR-
10 and CIFAR-100. Trades [45] and Mart [37] are used
to train for 50 epochs to obtain robust Trades-ResNetl8
and Mart-ResNet18 on CIFAR-10 and CIFAR-100. On
ImageNet-30, we train PGD-ResNetl8, PGD-ResNet50,
Trades-ResNet18, and Mart-VGG16 in the same way. For
the weak robust models, we use PGD with ¢ = 4/255 to
train for 20 epochs to obtain Weak-ResNet18 on CIFAR-10,
CIFAR-100, and ImageNet-30. The details of these models
are provided in Appendix C.1.

Competitor. In order to show the effectiveness of our
proposed LEA?, we compare it with diverse state-of-the-
art attack methods, including first-order attack FGSM [12],
PGD [26], LA [13], MI-FGSM [7], DI-FGSM [41], TI-
FGSM [8]. MI-FGSMens and DI-FGSMens represent the
ensemble attacks mentioned in [7] and [41], respectively.

Implementation details. Among all attack methods,
maximum perturbation € = 16,/255, the iteration 7' = 20,
and the step size a = 2/255. For the convenience of
comparison, white-box FGSM and PGD attacks are viewed
as black-box attacks by using the substitute model (PGD-
WideResNet) to craft adversarial examples when attack-
ing various defended models on CIFAR-10 and CIFAR-
100. Similarly, on ImageNet-30, Mart-VGG16 is used as
the substitute model for FGSM and PGD. For the ensem-
ble attacks MI-FGSMens and DI-FGSMens, we use two



standard models and two robust models as their substi-
tute models according to the experiments in [7] and [41].
For CIFAR-10 and CIFAR-100, these models are PGD-
WideResNet, Mart-ResNetl18, ResNetl8, and ResNet34,
and the ensemble weights are set as 0.25 equally. These
models are PGD-ResNet50, Mart-VGG16, ResNet18, and
ResNet50 for ImageNet-30. For LEAZ2, the Gaussian noise
r~N (0, 0?) set ¢ = 0.1; the robust models on CIFAR-
10/100 are PGD-WideResNet and Mart-ResNet18, while
on ImageNet-30 are PGD-ResNet50 and Mart-VGG16; the
weak robust model is Weak-ResNetl8. The ensemble
weights are set as 1/3 equally.

5.2. Attack Standard Trained Models

In this section, we present the performance of vari-
ous black-box attacks on the standard models with JPEG
defense [9] on CIFAR-10 and ImageNet-30 in Tables 1
and 2. JPEG is a defense method that removes high-
frequency components to weaken adversarial examples and
is often used in conjunction with models for defense [14].
TI-FGSM [8], MI-FGSM [7], and DI-FGSM [41] are
first-order black-box attacks based on a single substitute
model. MI-FGSMens [7] and DI-FGSMens [41] are en-
semble attacks based on multiple substitute models. We
use ResNetl8 achieving 95.57% and 89.67% accuracy on
CIFAR-10 and ImageNet-30, respectively, as their substi-
tute model for the single-model-based black-box attacks.
For ensemble attacks, the substitute models used by them
are described in Section 5.1.

As shown in Tables 1 and 2, although the ensem-
ble attacks MI-FGSMens and DI-FGSMens perform better
against the completely defenseless standard models, the at-
tack success rate drops by 9.07% to 41.20% in the pres-
ence of JPEG defense, whereas our attack method consis-
tently maintains a high attack success rate (also maintains a
high success rate against undefended standard models) that
it only produces 0.05%~11.04% fluctuation with JPEG de-
fense. These results further suggest that the perturbations
generated by LEA? can cover the entire frequency region.
Even if the high-frequency perturbations are removed by
JPEG defense, the perturbations in the remaining frequency
bands still play an important role. In contrast, the perturba-
tions of other adversarial attacks are mainly concentrated in
the high-frequency regions; therefore, the performance of
adversarial examples is deeply weakened after JPEG com-
pression.

5.3. Attack Defended Models

Although most of the attacks can easily fool standard
models, they have a poor success rate when attacking the
defensive models, especially in black-box settings. To fur-
ther confirm the superiority of our attack, we first conduct a
series of experiments on the advanced defensive models on
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CIFAR-10 and CIFAR-100 (see Table 3), including AT [26],
Trades [45], JPEG [14], TVM [14], FS [43], and Spatial
Smoothing [43]. FGSM, PGD, TI-FGSM, MI-FGSM, DI-
FGSM, and LA are advanced first-order attacks based on
a single model. In order to verify the transferability of
these attacks, PGD-WideResNet is used as their substitute
model. As described in Section 5.1, ensemble attacks MI-
FGSMens and DI-FGSMens use two standard models and
two robust models as their substitute models.

Table 3 shows the transferability of the above adver-
sarial attacks on the advanced defended models. Com-
pared with attacking standard trained models (see Tables 1
and 2), although the ensemble attacks MI-FGSMens and
DI-FGSMens have high transferability when attacking the
standard model, their performance on the defended mod-
els is deeply weakened. In contrast to them, our attack
method LEA? has the highest attack success rate which is
3.8%~32.89% higher than other ensemble attacks. This is
because LEA? produces perturbations covering entire vul-
nerable frequency regions, which can fool more target mod-
els regardless of where the target model’s vulnerable sub-
space is located. More experiments on ImageNet-30 are
provided in Appendix C.4.

For the comprehensive evaluation, more experiments are
conducted on ImageNet-compatible dataset?. We compared
our LEA?2 with three recent ensemble attacks: SVRE [42],
VMI [36], and Ghost [22], where SVRE and VMI are gen-
erated on the ensemble of Res-101, IncRes-v2, Inc-v3, and
Inc-v4, and Ghost is generated on the ensemble of Inc-v3,
Inc-v4, IncRes-v2, IncRes-v2ens, and Res-v2-50. We also
compared LEA? with a recent advanced frequency-based
attack S2I [25] generated on Adv-Inc-v3. As shown in Ta-
ble 4, LEA? consistently outperforms the advanced ensem-
ble attacks. The second column of Table 4 also shows that
LEA? generates adversarial examples more efficiently than
other advanced ensemble attacks [22, 42, 36]. Meanwhile,
LEA? takes less time to generate adversarial examples than
the frequency-based attack S?1 [25] with one model.

5.4. Ablation Study

In this section, we study the effect of Gaussian noise
and mid-frequency perturbations on the transferability of
our attack LEA2. For the convenience of analysis, we only
explored undefended ResNet20 and defended robust PGD-
ResNet18 as our target models on CIFAR-10 and CIFAR-
100.

Influence of Gaussian noise. As shown in the first two
rows of each dataset in Table 5, we analyze the performance
of LEA? when Gaussian noise 7 ~ N (0,0?) is removed
(i.e., LEA% — r) or Gaussian noise is replaced by high-

’https://github.com/cleverhans—lab/cleverhans/
tree/master/cleverhans_v3.1.0/examples/nipsl7_
adversarial competition/dataset



Table 3. The attack success rate of various attacks on advanced defenses models. The best results are indicated in bold.

Dataset ~ Attack AT Trades JPEG-75 JPEG-50 TVM  FS Spatial
Smoothing
FGSM [12] 3459% 33.44% 34.11%  3400% 3343% 3456%  32.71%
PGD [26] 47.66% 44.18%  45.02%  44.84% 39.79% 47.44%  41.48%
TI-FGSM [8] 3474%  35.10% 3517%  36.65% 44.39% 3447%  43.95%
MIFGSM [7] 46.13% 43.58% 44.76%  44.28%  40.14% 46.09%  41.62%
CIFAR-10 DLFGSM[41]  48.85% 47.00% 4893%  50.26% 48.81% 48.68%  51.75%
MLFGSMens [7] ~ 51.65% 4596% 52.57%  50.59% 3835% 41.15%  36.71%
DI-FGSMens [41]  49.24%  52.65% 51.50%  49.76%  4534% 43.00%  44.99%
LA [13] 3801% 36.43% 3564%  3597% 4049% 38.13%  40.71%
LEA(ours) 59.40% 54.61% 57.31%  55.82% 5021% 59.24%  54.13%
FGSM [12] 57.42% 5298% 56.27%  56.87% 53.57% 56.76%  55.20%
PGD [26] 65.60% 59.18% 63.25%  61.99% 57.78% 63.83%  61.49%
TI-FGSM [8] 50.17%  48.70%  S51.91%  52.52% 5597% 5021%  55.64%
MILFGSM [7] 65.95% 60.54%  65.32%  64.24% 59.94% 6471%  61.99%
CIFAR-100 DI-FGSM[41]  62.92% 57.05% 63.89% 63.57% 64.13% 62.28%  64.57%
MLEGSMens [7]  62.14% 56.63% 39.83%  50.66% 48.86% 46.66%  43.15%
DI-FGSMens [41]  59.73% 5245% 32.75%  30.83% 42.62% 37.718%  38.84%
LA [13] 57.57% 5400% 56.63%  56.12%  60.36% 57.53%  60.86%
LEA(ours) 71.74% 65.92% T1.07% 69.55% 65.74% T1.64%  68.29%

Table 4. The time of generating adversarial examples and black-box attack success rates (%) on ImageNet-compatible dataset. Among all

attacks, maximum perturbation e = 16/255.

Attak Time (min) Adv-Inc-v3ens Adv-Inc-vdens JPEG TVM FS
SVRE-MI-FGSM [42] 28.7 56.4 49.6 84.5 59.8 57.1
S?I-FGSM [25] 24.3 31.6 30.4 83.1 404 35.1
VMI-FGSM [36] 27.7 36.6 32.9 79.5 504 525
Ghost-MI-FGSM [22] 118.4 429 41.2 717 485 447
MI-FGSMens [7] 30.2 48.8 40.6 70.8 463 518
DI-FGSMens [41] 34.8 52.4 452 742 5777 553
LEAZ(ours) 11.3 59.1 50.4 872 68.6 62.7

frequency perturbations generated by the standard trained
ResNet18 (i.e., LEA%2 — r 4+ ResNet18). (1) When Gaus-
sian noise is removed, its success rate on the standard model
decrease compared with LEA2. (2) In the same way as
state-of-the-art ensemble attacks select substitute models,
the standard model is used as a substitute model rather than
Gaussian noise (LEA? — 7 4 ResNetl8). When attacking
the defended models, the attack success rate on CIFAR-10
and CIFAR-100 decreased by 17.93% and 16.12% respec-
tively, and the attack time cost was dramatically raised since
adding a substitute model. Therefore, it is effective to use
Gaussian noise to replace the high-frequency perturbations
generated based on the standard model.

Influence of mid-frequency vulnerable regions. Ac-
cording to the analysis in Section 4.1, Weak-ResNet18’s
vulnerable frequency regions are the mid-frequency re-
gions. In order to examine whether mid-frequency vul-

nerable regions are useful for improving the transferabil-
ity of adversarial examples, we conduct experiments on
CIFAR-10 and CIFAR-100 that evaluate the attack’s per-
formance when LEA2 removes Weak-ResNet18 (i.e., LEA?
— Weak-ResNet18) replaced by standard trained ResNet18
(i.e., LEA? — Weak-ResNet18 + ResNet18). As shown in
the third and fourth rows of each dataset in Table 5, (1)
when the mid-frequency vulnerable regions are removed,
the attack success rate of attacking the standard model on
CIFAR-10 and CIFAR-100 reduces by 24.99% and 13.09%,
respectively. This is because the standard model not only
relies on the high-frequency component for prediction but
also the mid-frequency component plays an important role.
(2) The transferability of adversarial examples on the adver-
sarially trained model drastically reduces when the Weak-
ResNet18 is replaced by the standardly trained ResNet18.
It can be seen that mid-frequency vulnerable regions play a
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Table 5. The time of generating adversarial examples and attack success rate (ASR) of LEA? using different substitute models on standard

models and adversarially trained models.

Dataset Attack ResNet20 AT
Time (s) ASR Time (s) ASR

LEA? — r 418 86.86% 421 58.54%
LEA? — r + ResNet18 513 96.73% 512 41.47%

CIFAR-10 LEA? — Weak-ResNet18 325 66.94% 329 56.49%
LEA? — Weak-ResNet18 + ResNet18 418 94.57% 427 32.57%
LEA? 418 91.93% 427 59.40%
LEA? — r 271 83.04% 271 71.68%
LEA2 — r + ResNet18 360 93.75% 362 55.62%

CIFAR-100 LEA? — Weak-ResNet18 182 74.39% 184 70.72%
LEA? — Weak-ResNet18 + ResNet18 271 92.84% 273 46.12%
LEA? 271 90.48% 273 71.74%

Table 6. The attack success rate of existing ensemble attacks and
ensemble attacks applying our ensemble strategy on the adversar-
ially trained model. The best results are highlighted in bold.

Dataset Attack AT Trades
MI-FGSMens [7] 41.19% 39.16%
DI-FGSMens [41] 43.16% 41.11%

CIFAR-10 LEA2-MI-FGSMens(ours) 57.22% 52.18%
LEA2-DI-FGSMens(ours) 58.25% 53.29%
MI-FGSMens [7] 47.10% 44.87%
DI-FGSMens [41] 38.13% 35.88%

CIFAR-100 LEAZ2-MI-FGSMens(ours) 70.67% 64.52%
LEAZ2-DI-FGSMens(ours) 67.12% 61.79%

significant role in boosting the transferability of adversarial
examples.

5.5. Further Analysis

In this section, we analyze whether our ensemble strat-
egy can be combined with existing ensemble attacks to sig-
nificantly improve the transferability of adversarial exam-
ples. For convenience, we verify on advanced adversar-
ial training defense, MI-FGSMens and DI-FGsmens are
the same as the configuration in Section 5.1, LEA?-MI-
FGSMens and LEA2-DI-FGSMens indicate that the Gaus-
sian noise 7 ~ N (0,0?) is added, PGD-WideResNet,
Mart-ResNet18, and Weak-ResNet18 are used as substitute
models. Applying our ensemble strategy to the existing en-
semble attacks can significantly improve the transferability
of adversarial examples on the robust model. As shown in
Table 6, the attack success rate of LEA?-MI-FGSMens in-
creases by 13.02%~23.57% compared with MI-FGSMens,
and LEA2-DI-FGSMens increased by 12.18%~28.99%
compared with DI-FGSMens.
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6. Conclusion & Outlook

We find three types of models with non-overlapping vul-
nerable frequency regions, which can cover a large enough
vulnerable subspace. Based on this finding, we propose a
lightweight ensemble adversarial attack, LEA?, integrated
by standard, weakly robust, and robust models. In order
to further reduce time consumption, we analyze Gaussian
noise from the perspective of frequency and find that Gaus-
sian noise is located in the vulnerable frequency regions of
standard models. Therefore, we substitute standard mod-
els with Gaussian noise to ensure the use of high-frequency
vulnerable regions while reducing attack time consump-
tion. Compared with the black-box attacks and the ensem-
ble attacks, extensive experiments demonstrate the signifi-
cant effect of our method, which outperforms state-of-the-
art transfer-based attacks by a large margin. Looking for-
ward, more research directions about mid-frequency vul-
nerable regions could be exploited in future computer vi-
sion research. Meanwhile, we will explore how to apply
vulnerable frequency regions on other tasks, such as the in-
terpretability of DNNs. Moreover, effective ensemble de-
fense strategies against LEA? will be another crucial and
promising direction.
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