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Abstract

Text-to-image (T2I) models based on diffusion processes
have achieved remarkable success in controllable image
generation using user-provided captions. However, the tight
coupling between the current text encoder and image de-
coder in T2I models makes it challenging to replace or up-
grade. Such changes often require massive fine-tuning or
even training from scratch with the prohibitive expense. To
address this problem, we propose GlueGen, which applies
a newly proposed GlueNet model to align features from
single-modal or multi-modal encoders with the latent space
of an existing T2I model. The approach introduces a new
training objective that leverages parallel corpora to align
the representation spaces of different encoders. Empirical
results show that GlueNet can be trained efficiently and en-
ables various capabilities beyond previous state-of-the-art
models: 1) multilingual language models such as XLM-
Roberta can be aligned with existing T2I models, allowing
for the generation of high-quality images from captions be-
yond English; 2) GlueNet can align multi-modal encoders
such as AudioCLIP with the Stable Diffusion model, en-
abling sound-to-image generation; 3) it can also upgrade
the current text encoder of the latent diffusion model for
challenging case generation. By the alignment of various
feature representations, the GlueNet allows for flexible and
efficient integration of new functionality into existing T2I
models and sheds light on X-to-image (X2I) generation.1

1. Introduction

Text-to-image (T2I) generative models have made great

progress in the last few years thanks to algorithmic advances

*This work was done when Can Qin interned at Salesforce AI Research.

Primary contact: qin.ca@northeastern.edu
1Code will be available at: https://github.com/salesforce/GlueGen
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Figure 1. Setting of GlueGen. GlueNet is trying to provide an

adaptable portal for the Stable Diffusion model to input multi-

modal data, such as text, audio, i.e., (a) and (b), or text-audio hy-

brid signals, i.e. (c), for X-to-image generation.

and the availability of large-scale paired training datasets

[42, 70, 45, 50, 49]. Diffusion-based T2I generative mod-

els in particular have achieved remarkable results in terms

of image quality [24, 36, 3, 47, 35, 73]. Despite these

strong results, controllable generation for these methods is

still challenging: generated images are often not faithful

to the captions, compositional capabilities are lacking, and

prompt engineering is often required to achieve the desired

results [37]. Moreover, most large-scale models have only

been trained on English text captions, greatly limiting their

use across the world.

Recent research has emphasized the crucial role of text

encoders in improving Text-to-Image (T2I) models’ perfor-

mance, and their ability to comprehend and represent text

is considered a bottleneck for image generation [47, 10].

However, the current T2I models’ text encoders are often

trained on short image captions, which limits their per-

formance on complex prompts and challenges their qual-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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ity of feature extraction [45]. Furthermore, T2I mod-

els’ capacities are limited to generating images from text,

and they cannot incorporate multimodal conditions such as

sound and audio easily. Nevertheless, replacing the text en-

coder in existing T2I models is challenging since the text

encoder and image generator’s representation spaces are

tightly coupled [45, 42]. This severe domain gap between

the new conditions and the existing model impedes the im-

age generation’s final performance, and training the entire

T2I model from scratch, with higher quality image-caption

pairs, would be prohibitively expensive [14].2

As seen in Fig. 1, we propose GlueNet to address the

challenge of efficiently replacing or upgrading the text

encoder in existing diffusion-based T2I models. With

GlueNet, off-the-shelf pre-trained language models and

multimodal encoders can be easily aligned with image en-

coders of T2I models, greatly enlarging their functionalities

at a low cost. Importantly, this can be achieved without

requiring retraining from scratch or even finetuning, main-

taining the representation alignment between the text and

image encoders. The proposed method follows an encoder-

decoder structure. The encoder of GlueNet first aligns

the representation space of the new condition encoder with

that of the T2I model’s image generator, minimizing both

element-wise and global-wise discrepancy. Then, the de-

coder of GlueNet maps the aligned condition representa-

tions back to the original representation space of the new

condition encoder by minimizing the reconstruction loss,

preserving rich semantics captured by the pre-trained model

during alignment training. Align existing models would

inevitably decrease feature discriminability [7, 11], which

makes the feature decoder necessary. The entire training

of GlueNet requires only a parallel corpus with the same

content but different modalities or languages. At inference

time, only the encoder of GlueNet is applied on top of the

new condition encoder for representation alignment.

To verify the effectiveness of the proposed framework,

we conducted three major experiments ranging from single-

and multi-modal encoders. Firstly, we upgraded the exist-

ing text encoders of the Latent Diffusion Model [45] us-

ing a stronger language model, T5-3B [41]. Our model

showed competitive improvements in FID score and user

study ranking compared to the baselines but it still re-

quired finetuning for the overall performance boost. Sec-

ondly, we aligned a multilingual language model, XLM-

Roberta-L [9], using our approach, enabling multilingual

text-to-image generation. It achieved competitive results of

translation-based models under a significantly lower train-

ing cost. Finally, we demonstrated GlueNet’s capability to

bring new functionalities beyond text signals into existing

T2I models. The alignment of the AudioClip [20] encoder

enables sound-to-image generation without requiring any

2The cost of training a Stable Diffusion model is around 600K USD.

parameter finetuning of the image generator. This new ca-

pability allows the existing Stable Diffusion model to gen-

erate high-quality images that correspond to sound signals

such as dogs barking and street music. This new capabil-

ity goes beyond the traditional T2I generation and opens up

new possibilities for creating multimedia content towards

X-to-Image (X2I) generation.

Our contributions can be summarized as follows:

• To the best of our knowledge, this is the first work

to consider the problem of efficiently aligning a pre-

trained audio model with a pre-trained T2I diffusion

model for sound-to-image generation.

• Extensive experiments on text-to-image generation

benchmarks demonstrate the superiority of our model

over the baseline LDM method on both image quality

and language controllability.

• Our framework also enables text-to-image generation

beyond English prompts without the need of multilin-

gual image-text pairs for retraining.

2. Related Works
2.1. Text-to-Image Models

Generative Adversarial Nets (GANs) [18] is one of the

major frameworks in text-to-image generation. The method

in [44] was an early stage approach to use a GAN to train

a text-to-image generation network. Since then, other GAN

based methods, e.g., Stack-GAN [72], Attn-GAN [66] and

SD-GAN [69], have obtained promising results. In addi-

tion, recent works showed more improvements on the gen-

eration quality. DM-GAN [75] improved text-to-image per-

formance by introducing a dynamic memory component.

DF-GAN [57] designed a fusion module to fuse text and im-

age features. LAFITE [74] took advantage of CLIP’s model

to construct pseudo image-text pairs, and proposed a GAN

model to learn text-image pairs.

Auto-regressive transformer is another major framework

in text-to-image generation. DALL-E [43] and CogView

[13] adopted an autoregressive transformer [63] to train

the correspondences between visual tokens and text tokens.

Parti [70] used a powerful visual encoder, ViT-VQGAN

[71], to improve results upon DALL-E. The method in [16]

is similar to CogView and DALL-E, while introducing ad-

ditional controlling elements to improve the tokenization

process. NÜWA [65] and NUWA-infinity [64] trained au-

toregressive visual synthesis model to support both text-to-

image and text-to-video generation tasks.

Concurrently, diffusion models [54, 55, 56] became a

main research focus. In such methods, noise is added to

an image, and a score network is trained to denoise and

recover the input image. GLIDE [36] performed guided
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Figure 2. Illustration of our desired GlueGen framework. With the proposed GlueNet model of the GlueGen framework, the pre-

trained image generator (i.e. UNet) can be bridged to off-the-shelf single- or multi-modal encoders to expand their functionalities, i.e.,

multilingual/sound-to-image generation, within a limited budget. GlueNet is trained offline and does not require back-propagation of UNet

and image-text pairs for training. Therefore, GlueGen is flexible and efficient to achieve.

inference with and without a classifier network to gener-

ate high-fidelity images. DALL-E 2 [42] and Imagen [47]

set new state-of-the-art results in the text-to-image gener-

ation. In DALL-E 2, a prior to produce CLIP image em-

beddings conditioned on text was learned, and a diffusion

model was used to decode the image embeddings to an im-

age. In Imagen, a large-scale frozen text encoder T5-XXL

[41] was adopted to generate embeddings, and a cascade of

conditional diffusion models was used to map these embed-

dings to images of increasing resolutions. Latent diffusion

model and stable diffusion model [45] are state-of-the-art

methods that apply the diffusion model on the latent embed-

ding space as in [53, 61]. These methods are computation-

ally friendly while achieving impressive results. To incor-

porate more conditions for controllable content generation,

[73, 35, 4] introduced additional parameters with new data

to inject external knowledge within the current pre-trained

model. [8] tried to alter the language model for more ca-

pacities. However, all these models are designed to adapt

text and image (or similar 2d grid) conditions without the

attempt for sequential signals such as audio.

2.2. Sound-to-Image Generation

Sound and image are two distinct modalities. [26] at-

tempts to address sound-guided semantic image manip-

ulation by aligning sound features with a GAN model.

CoDI [6] take a two-stage strategy which pre-trains indi-

vidual diffusion model with aligned prompt encoder in the

beginning. Then it aligns latent to project multimodal fea-

tures into a shared space. AAI [68] introduces sound-guided

image generation, editing and stylization into one model.

3. Preliminary
3.1. Latent Diffusion Model

The Latent Diffusion Model (LDM) [45] and its exten-

sion, i.e., Stable Diffusion3, which are variants of Denois-

ing Diffusion Probabilistic Model (DDPM) [23] family, are

selected as our baseline models due to their excellent bal-

ance in efficiency and visual quality. In general, LDM is

composed of two stages. Firstly, there is an auto-encoder

(AE) pre-trained by enormous images with the regulariza-

tion in either KL-divergence or vector quantization [62, 1].

An encoder network, i.e., E, is applied for latent feature

extraction as z = E(x), which can be mapped back to im-

age space by a decoder network. The input images x and

reconstructed images x̂ are almost identical x ≈ x̂.

Secondly, LDM trains a diffusion model in the latent

space [53, 61]. It follows the standard DDPM [23] with

denoising loss and uses U-net [46] as the image decoder as

in [55]. To enable generative controllability, LDM has ap-

plied multiple conditioning signals (y) such as text, mask,

or layout, encoded aside and injected into the U-net, with

the help of cross-attention layers. This can be formulated

as:

LLDM := Ez∼E(x),ε∼N(0,1),t,y [‖ε− εθ(zt, t, cφ(y))‖] ,
(1)

where t represents the time step, zt is the noise corrupted

latent tensor at time step t, and z0 = E(x). ε is the un-

scaled Gaussian noise, cφ is the conditioning network pa-

rameterized by φ and εθ is the Unet-like denoising network

(a.k.a, image decoder). The parameters of both condition-

ing and denoising networks, i.e., θ, φ, are trained by the

LDM loss. During inference, clean images can be gener-

3https://github.com/CompVis/stable-diffusion
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ated via classifier-free guidance [24] as:

ε̂θ(zt|y) = εθ(zt) + s · (εθ(zt, cφ(y))− εθ(zt)), (2)

where s is the guidance weight to balance text controllabil-

ity and image fidelity.

The basic T2I LDM model is trained on Laion-

400M [50] dataset. The Stable Diffusion Model (SDM) was

trained with more epochs and training data, i.e., Laion2B-en

and Laion-high-resolution [49].

3.2. Condition Encoder

LDM uses Bert-like [12] encoder as the text encoder

jointly trained with the image decoder using the DDPM

loss. SDM uses a pre-trained CLIP [40] text encoder frozen

during training. It has been found that increasing the size of

the text encoder is very helpful for performance [47]. In or-

der to upgrade existing models, our goal is to be able to effi-

ciently plug in more advanced language condition encoders

such as T5-3B [41], AudioClip [20], or XLM-Roberta [12].

4. GlueNet
The text encoder is one of the key components of T2I

models, as generation requires precise and fine-grained text

embedding for guidance. The overall performance can

be greatly boosted by increasing the size of the text en-

coder [47], however, upgrading an existing text model to

a more powerful one is challenging. Because existing T2I

models are not modular, directly replacing (or augmenting

with) another condition encoder does not work. The key

technical challenge is the mis-alignment between the new

condition encoder and the old image decoder. Moreover,

joint finetuning also falls short due to catastrophic forget-

ting occuring when updating well trained parameters.

Considering these two different condition encoders as

source and target domains, we apply a neural network to

learn to align. As shown in Fig. 2, this paper has presented

a general framework called GlueGen. Within the frame-

work, GlueNet works as an additional module to bridge the

new language model and the old image decoder.

4.1. Objectives

Given sets of parallel corpus Xsrc = {xs
ij |i =

1, ..., Ls, j = 1, ..., Ns} and Xtar = {xt
ij |i = 1, ..., Lt, j =

1, ..., N t} with L as length of tokens and N as total quan-

tity, the source model F s and a target encoder F t have

mapped the raw data into embeddings denoted as S =
{sij |i = 1, ..., Ls, j = 1, ..., N} where sij = F s(xs

ij) ∈
R

ds and T = {tij |i = 1, .., Lt, j = 1, ..., N} where

tij = F t(xt
ij) ∈ R

dt . Due to the different models, there is

severe distribution mismatch between the source and target

features p(s) �= p(t). The GlueNet is an autoencoder whose

encoder M(·,ΘM ) learns to map the new features from a

source language model, i.e., s ∈ S , to align with the current

target encoder, i.e., t ∈ T , where p(M(s,ΘM )) ≈ p(t).

Therefore, this translation (i.e., F s ΘM−→ F t ) enables the im-

age generator to understand the new features coming from

the new condition model without finetuning. To achieve

this aim, we consider it as a domain adaptation [17, 39, 31]

problem and apply both element-wise and distribution-wise

alignment losses, which includes the minimization of the

mean square error (MSE) loss, i.e., Lmse, and the adversar-

ial loss, i.e., Ladv , measured over a discriminator network,

i.e., D(·,ΘD):

Lmse(ΘM ) := Ext∼Xt,xs∼Xs [||F t(xt)−
M(F s(xs),ΘM )||22], (3)

Ladv(ΘD,ΘM ) := Ext∼Xt [logD(F t(xt),ΘD)]

+Exs∼Xs [log 1−D(M(F s(xs),ΘM ),ΘD)],
(4)

where Xs and Xt denote the source and target inputs re-

spectively and they can be the same prompts in English

(e.g., LDM → T5-3B [41]) or in bilingual but parallel con-

tent for multilingual T2I or audio-label pairs.

Some insightful investigations in transfer learning reveal

that the cross-domain alignment will inevitably decrease

feature discrimination [7, 11]. To project the rich semantics

necessary for model upgrading, we further apply a decoder

network, i.e., N(·,ΘN ), for feature reconstruction:

Lrec(ΘM ,ΘN ) :=

Exs∼Xs
[||xs −N(M(F s(xs),ΘM ),ΘN )||22]. (5)

GlueNet is trained in an end-to-end manner and the de-

tails of which can be referred to in Appendix and Sec. 5.

[34] introduced that a universal learning engine should seek

a compressive closed-loop transcription with good property

in structure-preserving. Our cross-model mapping also re-

quires a similar functionality. GlueNet desires stability after

a loop whose input and output should keep almost equiva-

lent, i.e., x ≈ x̂ ≈ ˆ̂x ≈ ..., due to the constraint of recon-

struction loss. Therefore, inputting the reconstructed data

x̂ to GlueNet is expected to be consistent with the previous

loop. This is helpful for accelerating GlueNet training for

T5-to-LDM adaptation.

4.2. Model Architecture

The input data to alignment can be represented as the

sequence of tokens: Xi,∗ = {xi,1, xi,2, ..., xi,L} where

Xi,∗ ∈ X and xi,j ∈ R
C , with sequence length L and

token dim C. Inspired by the methods of image super-

resolution [28, 2] to densely regress target data under differ-

ent input-output dimensions, the translator network stacks

three sub-nets in sequence, as seen in Fig. 3 (c). The head

net is only used for simple feature transformation. The body
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Figure 3. (a) Illustration of features transformation throughout the model translation/alignment. (b) The general pipeline and learning

objectives of our proposed GlueNet. (c) Detailed architecture of GlueNet Encoder/Decoder.
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Figure 4. Signal analysis of CLIPText encoder on 77 tokens (used

for Stable Diffusion) averaging over 10,000 randomly sampled

prompts. (a) Average dis-similarity map (1-cosine) of CLIPText

tokens. (b) The distance between each token and the last token,

i.e., dist(s·,j , s·,L) with L tokens. We can conclude that only the

top K tokens are informative.

net has many residual modules for fine-grained representa-

tion learning. The tail network is appended and is mainly

employed for dimension conversion to match the target ten-

sors. Every residual module is implemented based on the

MLP-based token mixer [60, 33] with high efficiency and

strong ability in representation learning. Within the MLP-

mixer block, it consists of a Token Mixer and a Sequence

Mixer for orthometric purposes. The Token Mixer learns

the representation of each token with shared MLP, and the

Sequence Mixer is designed for learning the same channel

in sequential tokens:

U·,i =X·,i +W2σ(W1 ∗ LNγ1,β1
(X)·,i), i = 1, ..., C (6)

Xj,· =Xj,· +W4σ(W3 ∗ LNγ2,β2
(U)j,·), j = 1, ..., L

(7)

where X·,· is the feature, LNγ,β denotes layer normalization

parameterized by γ and β, and σ indicates the non-linear

operator such as GELU [21]. The U·,i is the outputs of Seq

MLP and W represents the weight matrix within the MLP

mixer.

4.3. Cross-modality Alignment

GlueNet provides a way to align the cross-modal repre-

sentations between the text encoder, CLIPText [40], with

the AudioClip [20] model that maps sound signals into em-

bedding spaces. This alignment is useful for extending

the functionality of diffusion models like Stable Diffusion,

which only takes text signals as input. However, achieving

this alignment is challenging because the length of the to-

kens in each model is different. CLIPText’s embeddings re-

quire 77 tokens in a sequence, while AudioClip maps sound

signals to a single token with a sequence length of 1. Using

the standard GlueNet directly fails in this case.

During our exploration, we found that condition infor-

mation is not uniformly distributed across all 77 tokens of

CLIPText outputs. The top K tokens contain the majority

of the information. We computed an average dissimilar-

ity map over the CLIPText tokens, visualized in Fig. 4 (a),

and observed a prominent gap around the eighth or ninth to-

ken, with the later ones being highly similar. We also found

that corrupting the last token embedding with some random

noise would not degrade the generative results. Therefore,

it can be concluded that the contribution of different tokens

decreases progressively and could be estimated by the fea-

ture distance with the last token, w·,j = dist(s·,j , s·,M ), as

shown in Fig. 4 (b). We take the l2 distance as dist(·, ·)
and use this value to reweight the GlueNet objective over

different tokens for the sound-to-image generation.

Cross-modal signals fusion is another contribution. To

do this, we select the top K tokens of each modality output

from GlueNet. Then, the average of the remaining later to-

kens (excluding last K tokens) of two modality features is

concatenated with the top ones. This is a non-parametric

operation without any training. K is empirically chosen

from 4 to 8 (or higher). For more details, please refer to

Appendix.

5. Experiments

5.1. Experiments Setup

Upon the shoulders of giants, this paper applies the

Latent-Diffusion Model (LDM) and Stable Diffusion Model

(SDM) [45] as the baselines with a similar model but dif-
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d'un jardin d'après-midi

Spanish: Pintura impresionista 
de un jardín de tarde

Italian: Pittura impressionista 
di un giardino pomeridiano

Japanese: ����
��	�


Figure 5. Multilingual generation results in resolution 512 × 512 of XLM-Roberta + Glue-Net + SDM decoder (sd-v1-4) with the same

caption, i.e., “afternoon garden oil painting painted by impressionists”. With the help of different Glue-Nets and multilingual text encoder,

the SDM decoder can support different languages including Japanese, Italian, Chinese, French and Spanish. The guidance weight is

assigned as 7.5 and PLMS [30] sampling steps are 50.

ferent text encoders and scalabilities. LDM uses a Bert-

like [12] model as the text encoder that is jointly updated

with the image decoder based on DDPM loss, while SDM

uses a frozen pre-trained CLIP text encoder during training.

The LDM is designed for the images in 256 × 256 and SDM

targets 512 × 512 images. We implement the multilingual

T2I and sound-to-image generation upon the SDM.

Figure 6. Percentage of user votes

for text controllability with the

prompts from Drawbench [47] and

Winoground [59] for T5-to-LDM.

Implementation.
The GlueNet is

implemented as

the Fig. 3 with

an encoder M
and a decoder

N in symmetri-

cal architecture

consisting ∼51M

parameters. For

simplicity in de-

notation, we refer

GlueNet encoder

as GlueNet in

the following experiments, whose body net consists of 5

residual modules as default. We take the AdamW [32] as

the optimizer based on PyTorch [38]. The learning rate

is assigned as 1×10−4 for GlueNet training and 1×10−6

for LDM-T5-GlueNet finetuning. The GlueNet is trained

on Nvidia-A100, requiring 0.5 to 5 GPU days for different

uses.

Condition Encoders. We apply the T5-3B [41] to up-

grade the text encoder of LDM Bert. T5-3B has 6x more pa-

rameters than LDM Bert and is trained by an enormous text

corpus beyond the image captions. Furthermore, to enable

multilingual T2I generation, we choose the XLM-Roberta-

L [12] as the new condition encoder. In sound-to-image

generation, we take the AudioCLIP [20] audio encoder.

Datasets. We have collected the text data for GlueNet

training. In monolingual T2I, only English texts are re-

quired, and we extract 18M captions from Laion-400M

as training corpus, and more data will be more helpful.

Multilingual GlueNets require parallel texts in different

languages. These data are collected by Wikimarix [51]

and Googletrans with ∼2M sentences for each. To train

GlueNet for sound-to-image generation, we use the Urban-

sound8k dataset [48]4, which consists of more than 8,000

audio samples collected from city environments in ten dif-

ferent classes, such as dog barking, children playing, car

horn, siren, etc.

5.2. Monolingual Text-to-Image Generation

Monolingual T2I generation focuses on the comparison

with LDM given the English text prompts. We have de-

composed our pipeline into two stages: alignment and fine-

tuning. GlueNet helps to align the new language model

whose potential can be better exploited by further finetun-

ing of image text pairs. This section verifies the bene-

fits of our vanilla and finetuned models in both quantita-

tive and qualitative evaluations. T5+GlueNet refers to the

LDM model with the stacking of T5 and GlueNet as the

text encoder where the LDM image decoder is unchanged.

T5+FT represents finetuning of the LDM image decoder

with DDPM loss based on text conditions from a fixed

T5. T5+GlueNet+FT is the final version, including both

GlueNet and joint finetuning with the image decoder. The

finetuning takes ∼ 100 GPU days of 116M image-text pairs

filtered from Laion-400M by BLIP score [27]. Unet fine-

tuning is optional and not needed for the remaining experi-

ments in Sec. 5.3 and Sec. 5.4.

5.2.1 Quantitative Evaluation

Tab. 1 reported the zero-shot FID score [22] on COCO

dataset [29] based on the pyorch-fid [52] package. Our re-

implementation score of LDM is slightly higher than the pa-

per’s one [45], which may because of different implementa-

tions. The table shows the minor drop of T5+GlueNet from

LDM since our current GlueNet model still leaves some in-

4https://urbansounddataset.weebly.com/urbansound8k.html
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correct alignments, which could be fixed by either joint fine-

tuning or collecting more text corpus to train GlueNet. With

the ∼100 GPU-days finetuning of a subset of the Laion

dataset (i.e., 116M image-text pairs), the overall perfor-

mance has been considerably improved, even outperform-

ing the LDM by certain margins.

Table 1. FID on COCO. * or ** indi-

cate our implemented results with 100

or 200 GPU days. ZS means zero-shot.

Method FID↓ ZS

CogView [13] 27.10 �

LAFTTE [74] 26.94 �

GLIDE [36] 12.24 �

Make-A-Secne [16] 11.84 �

LDM [45] 12.63 �

LDM* 13.55 �

T5+FT* 23.30 �

T5+FT** 12.41 �

T5+GlueNet 14.32 �

T5+GlueNet+FT* 12.05 �

We have also

conducted a user

study to compare

the text controlla-

bility in Fig. 6 by

Amazon Turk [5].

There are ∼1K

prompts collected

from Draw-

bench [47] and

Winoground [59],

which compre-

hensively cover

various scenarios

and numerous

difficult cases.

We report the percentages of users’ votes for the three

methods in Fig. 6. In the user study of controllability,

ours outperformed the LDM by 3%, which is a non-trivial

improvement. Moreover, the p-value is computed as

0.04 with three repeats of user study that is statistically

significant according to the criteria of <0.05.

5.2.2 Visual Comparison

In Fig. 8, we have exhibited some generated images of dif-

ferent methods. By comparing LDM and T5+GlueNet, we

can conclude that the proposed GlueNet helps to achieve

comparable high-quality images even replacing conditions.

Moreover, the T5+GlueNet+FT shows stronger controlla-

bility in many cases compared with LDM, such as “a cube

made of brick”, whereas the LDM’s results fail to display

the concept of “cube”.

5.3. Multilingual Text-to-Image Generation

Our proposed framework is very general and generic to

many language models, including the multilingual back-

bones. We choose the SDM as our base model with the pre-

trained clip-vit-large-patch145 as the text encoder to be up-

graded by the multilingual one, i.e., XLM-Roberta-L. The

GlueNet helps to align such two backbones with the parallel

corpus as training data. Thus, the old SDM image decoder

can successfully understand the text embeddings of other

languages encoded by GlueNet and XLM-Roberta-L with-

out any additional parameters updating except GlueNet.

5https://huggingface.co/openai/clip-vit-large-patch14

Table 2. Comparison with AudioClip model for sound-to-image

generation. The CLIP↑ score over generated results on Urban-

Sound8K benchmark is reported here. We have evaluated three

different settings including 1) single sound, 2) sound-sound mix

and 3) sound-text mix.

Sound Mixed Sounds Sound-Text

AudioCLIP+SDM 16.07 13.25 17.22

GlueNet+SDM 20.85 20.50 22.02

Table 3. Comparison with translation model, i.e., M2M100-

418M [15], for multilingual generation. The Multilingual-CLIP↑
score over Crossmodal [58] benchmark is reported here. GlueN-

etR denotes the re-weighted objective as described in Sec. 4.3.

M2M100 [15] GlueNet GlueNetR

Chinese 24.50 22.01 23.17

French 25.08 23.09 23.91

Spanish 23.83 22.91 24.18
Japanese 23.73 23.99 24.23
Italian 21.08 22.40 22.88

Average 23.64 22.88 23.67

5.3.1 Comparison

Fig. 5 shows the example of multilingual generation results

with the prompt “afternoon garden oil painting painted by

impressionists” in many languages. Most of the results re-

veal the content of “afternoon garden”. The “impression-

ists” is a challenging notion that rarely appears in our train-

ing data. Thus, more high-quality parallel data will be

greatly helpful. Compared with those finetuned over mul-

tilingual image text pairs, our solution is far more efficient

and cheaper. For quantitative evaluation, we have compared

it with a popular multilingual translation model M2M100-

418M [15] (418M #params) trained by 7.5B parallel sen-

tences. In contrast, our GlueNet uses far fewer training data

(2M sentences for each pair). The results are listed in Tab. 3

where we reported the Multilingual-CLIP score calculated

over the 100 randomly selected multilingual image-caption

pairs from Crossmodal dataset [58].The re-weighted ver-

sion achieved competitive results of translation-based mod-

els under a significantly lower training cost.

5.3.2 Hybrid Multilingual Generation

The hybrid multilingual generation is more challenging that

both the original SDM and third-party translation toolbox

cannot address. Our proposed GlueNet has surprising ca-

pability in this problem. According to the results in Fig. 7,

the multilingual backbone bonded with GlueNet gives the

precise guide to the SDM decoder even with the prompts in

three different languages and randomly mixed.
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Stable Diffusion XLM-Roberta+GlueNet

(a) (b)

Figure 7. Hybrid multilingual generation in resolution of 512 × 512. There are three-different-language texts in the input caption including

Chinese, Japanese and English. The caption of (a) is “colorful, a cat painted by Picasso, sit on a table, is eating food” and the caption

of (b) is “a white, sedan, crash into a building”. With our GlueNet infused ahead, the XLM-Roberta can guide SDM decoder to generate

reasonable results where the original SDM fails to work.
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a cube made of brick
a painting by grant wood of 
an astronaut couple, 
american gothic style

a sign that says text to 
image

darth vader playing-with 
raccoon in mars during 
sunset

a person walking in a 
field of yellow flowers 
with a red dress

Figure 8. Monolingual generation in resolution 256 × 256 with

guidance weight 7.5 and DDIM steps 200. The details of each

method can be referred to in Sec. 5.1.

5.4. Sound-to-Image

Beyond the text signals, the proposed GlueNet also

achieves sound-to-image generation by aligning the CLIP

text encoder with AudioCLIP [20] audio encoders. This is a

challenging task due to the modalities gap and the mismatch

of token lengths (77 for CLIP and 1 for AudioCLIP). To

address these challenges, we apply a reweighted objective

with a high focus on the top and informative signals, as de-

scribed in Sec. 4.3. The input for GlueNet is the pairing data

< sound, label > encoded by AudioCLIP-audio-encoder

(ESResNeXt [19]) and the CLIP-text-encoder respectively.

Then, GlueNet is trained to align the sound embedding with

the text embedding according to the objectives described in

Sec. 4. To evaluate the effectiveness of GlueNet, we con-

ducted both quantitative and visual comparisons over the

testing set of Urbansound8k. Our baseline for comparison

is the deployment of AudioCLIP audio and text models to

retrieve the labels with audio input. The retrieved labels are

then fed into the Stable Diffusion to generate results. The

CLIP score in Tab. 2 strongly reveals the superiority of our

GlueNet over the baseline, particularly over mixed sounds,

which are more challenging than single-source sounds and

can be difficult for humans to distinguish sometimes. We

also introduce cross-modal signals fusion as another contri-

bution of this paper. Our analysis of the sound-text fusion

in Tab.2 and Fig. 10 demonstrate that our proposed GlueNet

achieves the best results.

5.5. Alignment Analysis

To understand how GlueNet maps the cross-model fea-

tures, we have visualized its trajectory with the generative

results in different iterations in Fig. 9. In the beginning, the

old image decoder could not understand the new text em-

beddings at all. Then, certain patterns such as “pencil draw-

ing” appear after 300 iterations of training with a significant

decrease in losses. Such a gap can finally be sealed at the

end where both Lmse and Lrec converged to small values.

5.6. Comparison with PEFT methods

GlueNet belongs to adapter family but it is de-

signed for offline alignment. Popular methods like

ControlNet [73] or T2I-adapter [35] require new

condition-image pairs to train the adapter models.

Method FID ↓
Lora 16.72

GlueNet 14.32
Lora+FT 14.80

GlueNet+FT 13.19

Our comparison is with

Lora [25], one of the most

representative Parameters-

Efficient-Finetuning (PEFT)

methods. We tested Lora+T5

and GlueNet+T5 for image

generation on LDM (following

the setting of Tab. 1, +FT

indicates 10-gpu-day fine-tuning). We trained Lora+T5 to

align with LDM-bert and then fine-tuned Lora+T5 with

LDM-Unet. Evidently, our GlueNet outperforms both Lora

and Lora+FT in quantitative terms.
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Figure 9. Alignment analysis. (a): Initial result of direct replacement of a new text encoder, i.e., LDM-Bert → T5-3B. (b): Results of

GlueNet in different iterations with the new text backbone. The prompt is “an astronaut riding a horse as a pencil drawing”. (c): Curve of

Lmse and Lrec in training.

+ <text: in 
Chinese 
painting 
style> 

Sound of Car Horn

Mix Sound of Car Horn and Dog 
Barking

Sound of Dog Barking

AudioCLIP+SDM AudioCLIP+GlueNet+SDM

Figure 10. Sound-to-Image generation results.

(a) Single Sound (b) Mixed Sounds

Figure 11. Percentage of user votes of best results in sound-to-

image generation with (a) single-source sound and (b) mixed-

sources sound as inputs.

5.7. Transformer-based GlueNet

Language GNMLP GNTrans

French 23.91 23.87

Spanish 24.18 24.55
Italian 22.88 21.72

Avg 23.66 23.38

We have

implemented

a transformer-

based GlueNet

(GlueNet-Trans)

in a multilingual

setting following

Tab. 2. Our

results indicate that GlueNet-MLP marginally outperforms

GlueNet-Trans. We intend to further investigate the

self-attention models in this context.

5.8. Point-Cloud-to-Image

To extend the scope of this work, we have in-

corporated the 3D-to-image generation. We ap-

plied the point-cloud-based pre-training model, i.e.,

ULIP [67], as the 3D condition encoder and aligned

it with CLIPText using our proposed GlueNet.

Method CLIP ↑
ULIP 17.29

GlueNet 21.67

As a result, we have enabled

point-cloud-based image genera-

tion by substituting the ULIP-

Point encoder. We also com-

pared it with the retrieval-based

baseline, following the settings of

Tab. 2 (where sound is replaced with point cloud objects),

and our method demonstrated a significant improvement.

6. Conclusion
Infusing the pre-trained conditional encoder into the ex-

isting T2I image generator is an exciting direction toward

a more powerful AI system. However, the current encoder

cannot be easily upgraded due to the tight match. This paper

attempts to break such a strong constraint of the correspond-

ing image-text models towards flexible modularization and

efficient upgrading. To address the severe misalignment, we

have proposed the GlueNet with both objectives for cross-

model alignment and originality protection. Empirically, it

is beneficial for the overall performance and enables versa-

tile functionalities for X-to-image generation within a lim-

ited budget. We wish this work to be inspirable to the com-

munity in large-scale AI system design.
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