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Abstract

Video nystagmography (VNG) is the diagnostic gold
standard of benign paroxysmal positional vertigo (BPPV),
which requires medical professionals to examine the direc-
tion, frequency, intensity, duration, and variation in the
strength of nystagmus on a VNG video. This is a te-
dious process heavily influenced by the doctor’s experience,
which is error-prone. Recent automatic VNG classifica-
tion methods approach this problem from the perspective
of video analysis without considering medical prior knowl-
edge, resulting in unsatisfactory accuracy and limited di-
agnostic capability for nystagmographic types, thereby pre-
venting their clinical application. In this paper, we propose
an end-to-end data-driven novel BPPV diagnosis frame-
work (TC-BPPV) by considering this problem as an eye
trajectory classification problem due to the disease’s symp-
toms and experts’ prior knowledge. In this framework,
we utilize an eye movement tracking system to capture the
eye trajectory and propose the Gram-based attentive neu-
ral ordinary differential equations network (Gram-AODE)
to perform classification. We validate our framework us-
ing the VNG dataset provided by the collaborative univer-
sity hospital and achieve state-of-the-art performance. We
also evaluate Gram-AODE on multiple open-source bench-
marks to demonstrate its effectiveness in trajectory classi-
fication. Code is available at https://github.com/
XiheQiu/Gram-AODE.

*Equal contribution
†Corresponding author

1. Introduction
Benign paroxysmal positional vertigo (BPPV) is a clas-

sic type of otogenic vertigo, which is transitory dizziness
caused by head movements to a certain position with high
prevalence (i.e, the lifetime prevalence of 2.4%) [46]. The
characterization of nystagmus in individuals with BPPV is
crucial for the diagnosis of BPPV. In clinical practice, in-
formation on nystagmus is typically obtained through posi-
tional testing and the type of BPPV condition can be deter-
mined by irregular rhythmic eye movements, consisting of
nystagmus and eye-twisting movements [44]. Video Nys-
tagmography (VNG) can significantly improve the detec-
tion rate of BPPV nystagmus [27]. According to the type of
nystagmus movement, medical professionals might classify
BPPV into different types of therapy. However, distinguish-
ing the different disorders can be a challenging task. During
diagnosis, the medical professional must examine the VNG
video for nystagmus features such as direction, frequency,
intensity, duration, and intensity variation, which is time-
consuming and error-prone.

Recent research has demonstrated the success of using
deep learning to comprehend human behavior in the video,
and automatically classify VNG for BPPV analysis based
on relevant image [29, 3] or time-series features [18]. How-
ever, these models are proposed from the perspective of
video analysis without explicitly considering the disease
symptoms and pathology, which provide sufficient classi-
fication types in clinical practice.

Therefore, we propose a novel end-to-end data-driven
framework to perform BPPV diagnosis by considering this
problem as an eye Trajectory Classification (TC-BPPV)
problem due to the disease’s symptoms and experts’ prior
knowledge. This framework can classify the BPPV into
ten classes which are commonly recognized in clinical prac-
tice. In this framework, we first simplify the complex video
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analysis into a trajectory classification task through the eye
movement tracking technique. This is achieved by retriev-
ing the pupil center for every nystagmus video in the dataset
using the contour detection algorithm [6] and the Hough cir-
cle transformation algorithm to produce pupil coordinates
[2]. This process dramatically reduces the feature learn-
ing space by following the typical clinical diagnosis prior
knowledge, whereas the pupil movement trajectory is one
of the strongest diagnosis evidence [16].

Then, we perform classification through a Gram-based
Attentive neural Ordinary Differential Equations network
(Gram-AODE). We regularize the obtained coordinates to
the Gram matrix through a carefully designed production
process. This process not only ensures the preservation
of the translation equivariant property which is coherent
with clinical diagnosis, but also provides detailed relational
information in the feature map and overcomes intricate
temporal patterns. Subsequently, we process the acquired
feature map through a neural ordinary differential equa-
tions (ODEs) network to explicitly consider the continuous
changes between the trajectory points and implicitly model
the underlying dynamics of eye movement. The ablation
studies also show that the discrete residual network is inef-
fective to process the feature image due to the difficulty of
choosing the specific number of residual layers, which also
supports our utilization of neural ODEs with their superior
adaptive resolution capability. Finally, we employ an atten-
tion mechanism to perform feature integration in the hidden
feature space and output the final classification results. The
overview framework is illustrated in Figure 1.

To fully evaluate our proposed framework, we first con-
duct a comprehensive evaluation of TC-BPPV on the clini-
cal dataset provided by the collaborative university hospital.
This dataset consists of real patients’ VNG videos that are
manually labeled by medical professionals. Due to the tra-
jectory classification nature of our proposed Gram-AODE
method, we also evaluate the method on several publicly ac-
cessible trajectory classification benchmarks to demonstrate
its effectiveness. Based on the experiment results, our pro-
posed TC-BPPV can perform clinical BPPV diagnosis in
an end-to-end data-driven manner with human expert-level
accuracy. The Gram-AODE method also consistently out-
performs some existing state-of-the-art baseline approaches
in some open-source trajectory classification benchmarks.
Our main contributions are summarized as follows:

• We present TC-BPPV through eye trajectory classifi-
cation, which is end-to-end and data-driven. Accord-
ing to our knowledge, we are the first to handle the
challenging VNG classification as a time-series trajec-
tory classification problem for BPPV diagnosis using
machine learning techniques.

• Our proposed model explicitly leverages the induc-

tive bias based on the disease’s symptoms and experts’
prior knowledge. We consider the BPPV as eye trajec-
tory classification and express the translation equivari-
ant property of the point set.

• We develop a Gram-based attentive neural ordinary
differential equations network (Gram-AODE) to per-
form time-series trajectory classification. This method
can overcome intricate temporal patterns and learn the
points’ inner relation with underlying dynamics in a
higher dimensional space to provide an accurate pre-
diction.

• We conduct rigorous evaluations of TC-BPPV on the
clinical dataset provided by the collaborative univer-
sity hospital. The results indicate high feasibility in
clinical practice. We also test Gram-AODE in sev-
eral open-source trajectory classification benchmarks,
which demonstrate state-of-the-art performance.

2. Related Work
Deep learning techniques have been applied to automati-

cally classify VNGs for BPPV analysis [17]. [29, 3] extract
image-related features for disorder identification, while [24]
distinguishes VNGs through multiple ad hoc strategies.
However, these approaches are provided from the perspec-
tive of video analysis, which lacks consideration of dis-
ease symptoms, pathology, and appropriate categorization
types for clinical practice. In reality, due to the diseases’
symptoms and experts’ prior knowledge, the complex video
analysis can be simplified into an eye trajectory classifica-
tion problem through the eye movement tracking technique,
which in nature belongs to a time-series classification (TSC)
problem. TSC involves monitoring a process at regular in-
tervals and can be divided into univariate time series clas-
sification (UTSC) [41, 31, 1] and multivariate time series
classification (MTSC) [9, 26] based on the dimensions of
the collected data. Approaches towards solving UTSC in-
clude symbolic aggregate approximation (SAX) [35, 21, 25]
and shapelet-based methods [49, 23]. Deep neural networks
such as ShapeNet and TapNet have also shown promise
[22, 48]. MTSC can be addressed by combining univari-
ate classifiers such as ROCKET[9] and HIVE-COTE [26].
However, handling the challenging VNG classification as
a time-series trajectory classification problem, transform-
ing time-series data into feature images, and capturing tor-
sional nystagmus patterns in fine-grained eye movements
for BPPV analysis are underexplored in the literature and
pose a significant challenge.

3. Methods
Figure 1 provides an overview of our proposed TC-

BPPV framework for VNG diagnosis and Gram-AODE
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Figure 1. An overview of our proposed framework

method for time-series trajectory classification. In this sec-
tion, we first present the VNG data pre-processing tech-
niques for detecting eye movement and acquiring trajectory.
Then, we introduce the Gram matrix conversion method
for converting time-series data into a more stable and low-
variance Gram matrix. After that, we describe neural ordi-
nary differential equations network to learn the underlying
dynamics and continuous changes of trajectory points. Fi-
nally, we elaborate on our designed attention mechanism to
integrate hidden features and perform classification. This
section presents the VNG data pre-processing techniques
for detecting eye movement and acquiring trajectory data.

3.1. VNG data pre-processing

The VertiGoggles R ZT-VNG-II records original VNG
videos with a frame size of 640x480 and a frame rate of
60. To prepare the dataset, abnormal and interfering frames
were deleted, and pupil position was extracted for each
frame using the contour detection and Hough circle trans-
formation algorithms [6], saving it in chronological order
with the form of coordinates. This procedure facilitates
data augmentation to reduce data dimensionality in low-
data regimes through the integration of prior knowledge.

3.2. Gram matrix conversion of time series

Time series data is collected at regular intervals, has tem-
poral characteristics, and presents different regular distribu-
tions according to the time order. The classification cate-
gory of a time series is determined by its temporality, and
events of the same type should have similar features. This
applies to clinical practice where patients with the same
type of BPPV exhibit similar eye movement patterns.

Time series data can be uni-variate or multi-variate [12].
The eye movement trajectory obtained from VNG pre-
processing is a multi-variate time series with two coordi-
nates. Unfortunately, the direct classification of such time-
series data is challenging due to the intricate temporal vari-
ations. Furthermore, to perform more efficient and accurate
classification, the property of translation equivariant should
be explicitly leveraged in the model learning process as an
inductive bias to further reduce learning space complexity
and improve convergence. The methodology for diagnosing
BPPV via VNG suggests that eye movement patterns and
trends are more strongly associated with BPPV type than
eye position.

The Gram matrix measures vector similarity and is use-
ful in machine learning tasks such as style transfer and time-
series classification [42, 47]. To improve performance, nor-
malization, and wise correlations can be applied. We are
inspired by Wang et al. [43], who use the Gram matrix to
transform time-series data into feature images and CNN for
categorization, providing a solution to TSC.

Hence, we perform Gram matrix conversion on the ac-
quired time-series data to represent the inner point relations
expressively and reserve the translation equivariance prop-
erty. A Gram matrix is a Hermitian matrix in the inner prod-
uct space of a set of vectors, with values determined by the
vector inner product of the elements [15].

Set T = {t1, t2, t3, · · · , tN} for a length of N sequence,
where each element is arranged in the order of acquisition
time, and ti ∈ R denotes the i-th value. When collect-
ing time series data in real-world scenarios, the collected
data may not have the same scale. We follow the nor-
malization formula to convert all elements in set T in or-
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der to make the weights of each feature dimension of the
data consistent. The normalization formula is given by
t′i = ti − tmin/(tmax − tmin), where t′i is the normalized
i-th value, tmin is the minimum value of T , and tmax is the
maximum value of T .

By considering the time-series nature and potential cycli-
cal patterns of eye movement trajectory, we believe that the
Polar coordinate can better preserve data temporal correla-
tions compared with the Cartesian coordinate. A given time
series data T exists one and only one polar coordinate map-
ping and inverse mapping. Thus, the time series T ′ can be
mapped according to the following rules:

θi = arccos (t′i) , ri = i/N, (1)

where θi is the angle and ri is the radial distance. N can
be used as a constant factor that adjusts the span of the po-
lar coordinate system and is also numerically equal to the
length of the time series data. In polar coordinates, the ri
denotes the temporality, while the θi denotes the numerical
change of original T ′. This property provides a theoreti-
cal basis for transforming uni-variant time series data into
2D feature images by using the following Gram matrix for
classification.

Typically, the elements of the Gram matrix are deter-
mined by the vector inner product, and the Gram matrix
generally takes the following form:

G =

 ⟨v1, v1⟩ . . . ⟨v1, vn⟩
...

. . .
...

⟨vn, v1⟩ . . . ⟨vn, vn⟩

 , (2)

where v represents sequential vectors and ⟨·, ·⟩ denotes the
inner product operation. Here, we replace the inner prod-
uct operation using cos (θi + θj) on data point i and j to
get a stable transformation with lower variance. It is worth
to know that cos (θi + θj) = cos θi cos θj − sin θi sin θj =

titj −
√
1− t2i

√
1− t2j . Hence, it can effectively represent

the inner relationships between all data points. After Gram
matrix transformation, each element of the Gram matrix can
be regarded as a pixel of the feature image and the whole se-
quence data can be transformed into the image which retains
comprehensive sequence information.

3.3. Neural ODEs Network

After we acquire the feature image in a modified Gram
matrix transformation, we process the feature image us-
ing a neural ODE network to model the underlying dy-
namics of trajectory points and learn the relation of con-
tinuous changes[28]. Neural ODE connects neural net-
works and differential equations to model continuous time
data and produce normalized flows [10, 39]. Augmented
neural ODEs represent complex functions and learn com-
plex functions from input to augmented space features [8].

Optimal transmission and regularization strategies reduce
neural ODE’s computational overhead [11]. Rodriguez et
al.[30] propose LyaNet for rapid convergence and robust-
ness. Moreover, the neural ODE network can automati-
cally adjust the resolution based on the input feature image,
which demonstrates high efficiency[10].

Neural ODE follows typical ODE with general form:

h(0) = h0,
dh

dt
(t) = fθ(t, h(t)), (3)

where h0 denotes initial vector, θ represents learning pa-
rameters, and fω denotes neural networks with parameter
ω. Neural ODEs can be viewed as a continuous equiva-
lent of residual networks [45, 13, 33, 7]. In a network with
residual structure, the transition of the hidden state between
t and t+ 1 layers can be expressed as ht+1 = ht + ft (ht).
If time t is a continuous variable and the time step ∆t = 0,
we can obtain the differential form:

lim
∆t→0

ht+∆t − ht

∆t
=

dh(t)

dt
= f(h(t), t). (4)

Thus, the hidden state is transformed into an ODE, the
discrete network form is converted into a continuous state,
and the hidden state at any time step can be acquired by
solving the initial value problem. The hidden state h(t)at
time t is the feature to be learned by the model. For exam-
ple, if the start time is t0, the end time is t1, and the initial
state is h(t0), then the state h(t1)at the time t1can be ex-
pressed as:

h (t1) = h (t0) +

∫ t1

t0

f(h(t), t; θ)dt. (5)

In contrast to a typical neural network, the neural ODE
network predicts y by solving the ODE, which can contin-
uously adjust the dynamics of the system so that the output
is constantly close to ground truth. The neural ODE net-
work is optimized using the ODE Solver [8], which com-
putes gradients via the adjoint method.

3.4. Kernel Attention Mechanism

After the processing of the neural ODE network, we in-
tegrate the learned hidden features and provide the final
prediction through a designed vision attention mechanism.
This mechanism can significantly reduce the computation
complexity and provide even more accurate predictions. We
start with the typical multi-head attention.

Multi-head attention [40] is a common attention mecha-
nism that allows the model to learn different attention rep-
resentations in different attention subspaces. Given query
Q ∈ Rn×dk , keys K ∈ Rm×dk , values V ∈ Rm×dv ,
and the attention weights W , the common multi-head self-
attention is computed as follow:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (6)
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headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
, (7)

MultiHead(Q,K, V ) = (head1|| . . . || head h)Wo, (8)

where || denotes the concatenation. In order to better apply
Multi-head attention to image tasks and reduce computing
resource consumption, [4] proposed a low-rank linearized
multi-head attention, which can effectively reduce the time
complexity and improve the accuracy. We define a kernel
function ϕ(·) instead of the softmax function. If this kernel
function is decomposable, then we can obtain

Attention(Q,K, V ;ϕ) =
(
ϕ(Q)ϕ(K)T

)
V. (9)

In this way, we can first compute ϕ(K)T V , thus
changing the time complexity from O

(
HT 2D/H

)
to

O
(
HT (D/H)2

)
. When head H equals feature dimen-

sions, the time complexity reduces to O (HT ). In our im-
plementation, we utilize the cosine similarity function as
our kernel function. The cosine similarity function used in
the kernel attention is ϕ(x) = x/∥x∥2.

3.5. Gram-AODE

For a sample j with total number of video frames N ,
in the i frame pupil coordinates for (xj

i , y
j
i ), we use Xj =

(xj
1, . . . , x

j
n) to represent change of pupil position in x-axis,

and Yj = (yj1, . . . , y
j
n) to represent the change of pupil po-

sition in the y-axis. G denotes Gram transformation intro-
duced in Section 3.2, and the input image feature matrix
with label zj can be expressed as Mj = (G(Xj)||G(Yj))
with channel dimension concatenation.

The acquired input image feature is processed using
down-sampling layers g(Mj) that reduce the spatial dimen-
sions of the feature map while keeping the channel dimen-
sion intact. This is typically performed to decrease compu-
tational complexity and compress spatial information into a
smaller space while maintaining crucial features [7]. Next,
the new feature map is passed through a Neural ODE net-
work block introduced in Section 3.3, which is designed to
capture the underlying dynamics and continuous changes in
the hidden feature. The Neural ODE block hj = f(g(Mj))
treats the state evolution as a differential equation which al-
lows the model to learn the dynamics of the input data in a
continuous and differentiable manner, thereby enabling bet-
ter generalization and prediction on our task. After that, the
hidden vector hj is linearized and processed using the ker-
nel multi-head attention block introduced in Section 4.4.1
to generate the final prediction ẑj = MultiHead(hj). The
attention mechanism allows the model to concentrate on rel-
evant areas of the input feature map and learn to attend to
multiple aspects of the feature channels concurrently.

The entire network architecture can be trained end-to-
end by implementing an ODE solver [8] and SGD optimizer
[5], along with the cross-entropy loss on all K samples,
which is commonly used in classification tasks to measure
the difference between the predicted and true labels:

L(z, ẑ) = −
K∑
j=1

zj log(ẑj). (10)

4. Experiments
In this section, we present an evaluation of our pro-

posed TC-BPPV framework on a dataset comprising VNG
videos, which has been provided by the collaborative uni-
versity hospital. The dataset includes clinical diagnostic re-
sults and various diagnostic indicators for each patient. We
believe that this dataset will enable a comprehensive eval-
uation of our proposed framework, and effectively demon-
strate its clinical feasibility. For comparison purposes, we
have selected three state-of-the-art (SOTA) methods in var-
ious applications as baseline models. Firstly, we adopt the
3D-ResNet101 [14, 38], a deep learning model for video
classification, as our initial baseline method, which per-
forms video analysis directly on raw video inputs. Sec-
ondly, we employ another SOTA method, ROCKET [9], for
time-series classification to demonstrate the baseline perfor-
mance of eye movement trajectory classification. Thirdly,
we implement ResNet [14], which is a SOTA image classi-
fication method, to show the baseline performance of Gram
feature image classification.

Next, we evaluate the capabilities of our proposed Gram-
AODE method in time-series trajectory classification tasks.
We choose ROCKET [9], HIVE-CORE [26], and ResNet50
[14] with Gram feature image as our baseline methods and
test in 25 types of UCR open-source benchmark datasets to
demonstrate the general efficacy of our proposed method.

Finally, we provide comprehensive ablation studies to
test the influence of attention block, layer number of feature
image classification, and various choices of ODESolvers.

4.1. Experiment Setup

The VNG video dataset: The VNG video dataset con-
tains 646 videos of nystagmus movements from different
patients, which were recorded in real-world clinics at our
collaborative university hospital. The dataset is labeled by
medical professionals with respect to the four-movement
features of nystagmus: horizontal, vertical, axial, and in-
tensity change, representing the nystagmus pattern of each
patient in the video clip. It is noteworthy that numerous
complex nystagmus patterns exist; however, only the ten
most common nystagmus patterns with clinical relevance
are included. The number of occurrences for each nystag-
mus pattern is 47, 49, 51, 54, 58, 63, 63, 69, 73, and 119,
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respectively, with a median of 58 and a mode of 63. To
evaluate the performance of our proposed models, we ran-
domly partitioned the 646 VNG videos into 502 videos for
training, 72 videos for validation, and 72 videos for testing.

For a specific patient’s nystagmus video clip, the fol-
lowing diagnostic indicators are labeled by medical profes-
sionals based on their clinical practice: nystagmus intensity
variation and horizontal/vertical/axial nystagmus direction.
The details are demonstrated in Table 1. For model evalua-
tion, we test the model’s performance comprehensively on
both the nystagmus type classification and the four diagnos-
tic indicator classifications.

Label Intensity Horizontal Vertical Axial
0 stronger left up clockwise
1 weaker right down opposite
2 N/A N/A N/A N/A

Table 1. The labels of four types of diagnostic indicators

The UCR datasets: We employ the publicly available
UCR dataset, containing uni-variate time series data, for our
study. Data normalization is conducted to prepare the input
feature matrix, followed by Gram transformation for meth-
ods involving feature image classification. The dataset is
randomly partitioned into three subsets: training set (80%),
validation set (10%), and test set (10%), respectively. For
training and evaluation of the models, we employed cross-
entropy loss function on all methods.

We evaluate the efficacy of our proposed approach using
established metrics typically used in time-series classifica-
tion tasks. As the VNG video dataset involves multiple class
types, we pay particular attention to Top-k accuracy mea-
sures, including top-1 accuracy and top-3 accuracy. These
measures are essential in mitigating the issue of inaccurate
labeling of the data and fully evaluating the performance of
our proposed method.

4.2. VNG Experiment Results

Table 2 shows the performance of our proposed TC-
BPPV framework on the VNG dataset. We implement
ResNet [14] with a single layer of residual blocks on Gram
feature image, ROCKET with default setting introduced in
[9], and 3D-ResNet101 [14, 38] as our baseline methods.

Our proposed TC-BPPV approach outperforms all other
classification methods, including the second-best Gram-
ResNet, with an average absolute improvement of approx-
imately 4%. Specifically, our proposed method achieves a
Top-1 accuracy of 85.47% and a Top-3 accuracy of 97.64%
for the ten-class classification task, facilitating the identi-
fication of three possible BPPV types and assisting medi-
cal experts in decision-making. By contrast, ROCKET only
achieves a Top-1 accuracy of 64.49% in the ten-class classi-
fication task, indicating that the intricate temporal patterns
in the eye movement trajectory cannot be effectively alle-

viated using the original dimension without explicitly con-
sidering the internal point relations. We observed that the
3D-ResNet101 model only achieves a Top-1 accuracy of
33.66%, potentially due to its large learning space and lim-
ited data. The model failed to learn effective patterns in the
VNG videos without providing any inductive bias to reduce
the learning space. In contrast, our approach reliably clas-
sifies the types of BPPVs, exhibiting high recognition accu-
racy for each type through the use of prior knowledge of eye
movement trajectories and equivariant properties, assisting
medical professionals in more accurate diagnoses.

4.3. UCR Experiment Results

We evaluate the generalization capability of our pro-
posed Gram-AODE method in time-series trajectory clas-
sification by comparing it with HIVE-COTE with settings
introduced in [26], ROCKET, and ResNet on Gram feature
image which is used in Section 4.2. Since our proposed
Gram-AODE method leverages the translation equivariant
property which may not be satisfied in other benchmarks,
we implement Gram-AODE(2) for evaluation. Compared
with Gram-AODE, this method incorporates another aver-
age value matrix which replaces the Gram ⟨·, ·⟩ operation
with mean(ti, tj) = (ti + tj)/2. This matrix will be con-
catenated with the Gram matrix on the third dimension and
processed by the subsequent models.

Table 3 shows that both Gram-AODE and Gram-
AODE(2) outperform the prior state-of-the-art classical ap-
proaches, HIVE-COTE and ROCKET, on 20 datasets while
achieving comparable results on 4 datasets. Our results
demonstrate that explicitly representing the points relation
of time-series data is generally helpful in mitigating the in-
tricate temporal patterns, which can be learned in a higher-
dimensional space. Compared to the classical approaches,
our proposed methods are able to effectively model these
complex patterns, leading to improved performance. In ad-
dition, comparing the results of Gram-ResNet, we can ob-
serve that the neural ODE can effectively learn the under-
lying dynamic changes in the trajectory data, which can
generally improve the classification performance. These
findings further highlight the potential of our proposed ap-
proaches for time-series classification tasks.

4.4. Ablation Studies

4.4.1 Attention Mechanism and the Cosine Operator

In this section, we present an ablation study on the atten-
tion mechanism proposed in Section of our framework. We
compare the performance of our modified method, which
we refer to as Gram-ODE, against our proposed approach,
Gram-AODE, by removing the attention mechanism block
from our framework. We perform a comprehensive evalua-
tion of our ablated method on all experiments using both the
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Model Top-1 (10 class) Top-3 (10 class) Top-1 (5 class) horizontal vertical axial intensity
TC-BPPV 85.47 97.64 93.76 93.47 97.59 98.97 96.42
ROCKET 64.49 77.72 75.23 78.26 79.56 81.34 76.92

3D-ResNet101 33.66 52.51 40.83 55.27 43.01 45.54 41.28
Gram-ODE 82.56 96.56 90.30 91.89 94.38 98.49 95.40

Gram-ResNet(1) 81.05 95.38 89.79 92.63 92.42 95.40 90.30
Gram-ResNet(6) 80.21 96.55 88.77 92.41 91.68 91.83 89.68

Gram-ResNet(18) 78.74 96.10 87.75 91.57 89.28 88.26 87.78

Table 2. Comparative results in accuracy (%) of video nystagmography classification for ten classes, five classes, and four diagnosis
indicators in BPPV disorders.

DataSets HIVE-COTE Gram-ResNet ROCKET Gram-ODE Gram-AODE Gram-AODE(2)
ChlorineConcentration 75.49 80.76 72.48 99.32 99.76 99.20

Herring 61.31 62.73 63.94 74.60 76.90 76.92
DiatomSizeReduction 90.12 90.93 93.64 98.45 99.24 99.73

DistalPhalanxTW 70.40 66.61 69.49 66.56 75.90 79.62
BirdChicken 94.24 90.28 95.86 99.21 99.81 99.27

SonyAIBORobotSurface1 86.72 93.36 82.20 97.25 98.41 99.10
Chinatown 96.29 93.93 95.70 99.11 99.57 99.87
MoteStrain 94.14 90.82 92.36 96.09 96.37 98.43

ItalyPowerDemand 96.56 96.24 96.33 99.09 99.91 95.45
MiddlePhalanxTW 58.22 57.19 56.76 53.50 62.50 73.21

ProximalPhalanxTW 80.85 78.67 81.11 81.96 83.60 86.88
Symbols 95.32 90.51 95.31 95.09 99.60 99.06

SonyAIBORobotSurface2 91.19 98.11 92.94 98.97 99.77 98.97
SwedishLeaf 94.27 96.05 95.12 86.72 97.56 97.34

MiddlePhalanxOutlineAgeGroup 73.53 71.14 72.10 69.64 75.28 76.78
GunPoint 97.91 98.34 98.57 99.29 99.69 95.00
BeetleFly 91.91 85.79 100 75.19 100 100

BME 99.44 100 98.88 72.00 100 100
ECGFiveDays 100 95.43 99.13 99.48 100 100

FacesUCR 95.56 95.61 96.41 93.45 96.56 99.55
MedicalImages 77.84 79.80 74.61 74.07 79.10 81.73

PowerCons 98.89 91.11 97.69 94.44 97.22 97.23
GunPointAgeSpan 100 99.68 99.89 97.83 100 97.83

FaceAll 98.30 99.17 98.79 96.76 96.88 99.55
Car 87.69 86.24 85.96 50.96 83.34 97.28

Table 3. Accuracy (%) classification results of different approaches on various UCR benchmark datasets.

VNG dataset and UCR datasets. Our results are presented
in Table 2 and Table 3. Our findings demonstrate that while
Gram-ODE achieves comparable results with Gram-AODE
in VNG classification tasks, it fails to perform as well in
several UCR tasks. These findings underscore the impor-
tance of the attention mechanism for feature integration in
our proposed framework, highlighting the critical role that
attention mechanisms play in our proposed method.

We conduct ablations under identical settings to compare
Hydra attention with typical self-attention and two-layer
MLPs. The preliminary results in Table 4 demonstrate that
Hydra achieves the highest accuracy. Additionally, we high-
light the essential role of the cosine operator in our frame-
work.

Method Hydra Self-attention MLPs W/o. Cosine
Accuracy 85.47% 83.24% 80.42% 73.38%
Iter/sec 6.73 6.11 7.56 -

Table 4. Ablation results of VNGs ten-class classification with
Top-1 accuracy (%).

4.4.2 Discrete Residual Layers and Neural ODEs

We conducted an ablation analysis to investigate the effect
of the number of residual layers on Gram feature image
classification. This analysis aims to provide insight into the
complexity of the features generated by Gram matrix con-
version and the importance of incorporating neural ODE
blocks. Specifically, we replace the neural ODE block in
Gram-AODE with varying numbers of residual layers (i.e.,
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1, 6, and 18 layers) and evaluate the performance in 10-
class and 5-class VNG classification tasks. The findings
presented in Table 2 reveal that the ResNet model increas-
ingly overfits the dataset as the number of residual layers
increases. This suggests that the patterns underlying the
Gram feature image cannot be effectively learned using a
discrete residual flow, and even a single residual layer fails
to achieve optimal performance. In contrast, neural ODEs
model the continuous flow and effectively capture the un-
derlying dynamics in the trajectory, resulting in superior
classification performance.

4.4.3 The Effect of Simplifying VNG Classification

In this ablation study, we investigate the impact of two dif-
ferent approaches for VNG data classification: (1) direct
classification of raw VNG data as eye movement trajecto-
ries without Gram transformation, and (2) direct classifica-
tion of VNG data from the perspective of video analysis
without medical prior information. Our aim is to gain in-
sight into the importance of the Gram transformation and
the medical prior information for precise VNG data clas-
sification. Here, we report the Top-1 results of ten-class
classification accuracy.

Method ResNet50 ROCKET HIVE-COTE
Accuracy 46.01 64.49 57.48

Table 5. Top-1 accuracy (%) results of time series classification
without Gram transformation

Table 5 shows the results of time-series sequence clas-
sification on the VNG dataset without the use of the Gram
transformation. The experimental evaluation compares the
performance of three SOTA baselines: ResNet50 applied to
the trajectory images, ROCKET, and HIVE-COTE applied
to the trajectory data. The results reveal that it is not ap-
propriate to directly approach the VNG classification task
as a time-series trajectory classification problem. Without
the Gram transformation, it becomes difficult to distinguish
between sequences, and the translation equivariant property
is hard to exploit. These findings suggest that the Gram
transformation is a necessary step for the VNG classifica-
tion task, as it can more effectively capture the inner rela-
tionships between data points and learn the features inherent
in the data.

Method 3D-MobileNetV2 3D-ResNet50 3D-ResNet101
Accuracy 27.93 30.56 33.66

Table 6. The classification results in accuracy (%) for ten classes
of BPPV disorders using 3D-CNN methods

Table 6 presents a comparison of the classification per-
formance of three state-of-the-art 3D-CNN[38] approaches,
namely MobileNetV2 [34], ResNet50, and ResNet101, in

analyzing VNG videos from a video analysis perspective.
The lightweight networks MobileNetV2, ResNet50, and
ResNet101 with large sum parameters are selected and
transformed into 3D-CNNs [38] for evaluation on our origi-
nal VNG dataset. 3D-CNNs are a traditional algorithm that
has achieved success in various video classification applica-
tions, especially in addressing the action recognition prob-
lem. By performing 3D convolution in both spatial and tem-
poral dimensions, it can effectively capture motion informa-
tion contained in the video stream.

The classification of VNGs can be viewed as an action
recognition problem within the domain of video compre-
hension. Despite this fact, our experimental results indicate
that conventional 3D-CNN approaches (i.e., MobileNetV2,
ResNet50, and ResNet101) are inadequate for VNG video
classification, as demonstrated in Table 6. In practice, ac-
tion recognition usually depends on prior knowledge. How-
ever, due to limited information in a single VNG video
scene, target similarity, and moderate eye movement ampli-
tude, it is challenging to provide useful prior knowledge for
training. The VNG dataset used in our study is derived from
authentic medical scenarios. Thus, it has fewer data sam-
ples compared to other public datasets such as HMDB51
[19], Kinetics [36], and UCF101 [37]. Therefore, training a
VNG classification model is more difficult. Consequently,
it is noteworthy that video comprehension alone is insuffi-
cient for successfully classifying VNG videos.

4.4.4 Different Neural ODE Solver

Various modern ODE solvers are available to tackle real-
world problems. We investigate the impact of three variants
of the Neural ODE Solver (i.e., Euler, Midpoint, and 5th
order Runge-Kutta [32, 20]) on our framework and report
their performance in Table 7. Notably, for the VNG classi-
fication problem, the Runge-Kutta method demonstrates the
highest accuracy but the slowest training speed. In contrast,
the Euler method exhibits the fastest training speed, while
the midpoint method falls in between the other two methods
in terms of performance.

Solver Accuracy(10) Accuracy(5) Duration
Euler 80.84 81.63 39.66

Runge-Kutta 82.56 90.30 8.59
Midpoint 79.36 87.75 36.40

Table 7. The classification results in accuracy (%) of video nystag-
mography classification for ten classes, five classes, and training
speed (iteration/second) for different ODE solvers

5. Conclusion
In this paper, we conduct an investigation into VNG clas-

sification to aid in the clinical diagnosis of BPPV. The pro-
posed framework for BPPV diagnosis (i.e., TC-BPPV), is
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an end-to-end data-driven diagnosis framework comprising
two stages. The first stage tracks the eye trajectory using
an eye movement tracking system, while the second stage
involves the classification of the trajectories. To accurately
classify the trajectories, we propose Gram-AODE to first
perform Gram matrix transformation, and then use neu-
ral ODEs network following designed attention mechanism
to perform prediction. This method can effectively miti-
gate intricate temporal patterns in trajectories, consider the
equivariant property of disease symptoms, learn the under-
lying dynamics, and integrate the hidden feature. We exten-
sively evaluate our approach using the clinical dataset pro-
vided by our collaborative university hospital, and multiple
open-source benchmarks. Our method achieves a substan-
tial improvement in performance compared to SOTA mod-
els. This indicates that our proposed approach is applicable
in real-world clinical scenarios.
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