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Abstract

Although Magnetic Resonance Imaging (MRI) is very
helpful for brain tumor segmentation and discovery, it of-
ten lacks some modalities in clinical practice. As a re-
sult, degradation of prediction performance is inevitable.
According to current implementations, different modalities
are considered to be independent and non-interfering with
each other during the training process of modal feature ex-
traction, however they are complementary. In this paper,
considering the sensitivity of different modalities to diverse
tumor regions, we propose a Category Aware Group Self-
Support Learning framework, called GSS, to make up for
the information deficit among the modalities in the indi-
vidual modal feature extraction phase. Precisely, within
each prediction category, predictions of all modalities form
a group, where the prediction with the most extraordi-
nary sensitivity is selected as the group leader. Collab-
orative efforts between group leaders and members iden-
tify the communal learning target with high consistency
and certainty. As our minor contribution, we introduce a
random mask to reduce the possible biases. GSS adopts
the standard training strategy without specific architectural
choices and thus can be easily plugged into existing in-
complete multi-modal brain tumor segmentation. Remark-
ably, extensive experiments on BraTS2020, BraTS2018,
and BraTS2015 datasets demonstrate that GSS can im-
prove the performance of existing SOTA algorithms by
1.27-3.20% in Dice on average. The code is released at
https://github.com/qysgithubopen/GSS.

1. Introduction
Magnetic resonance image (MRI) segmentation of brain

tumors is becoming increasingly important in clinical eval-

uation and diagnosis. MRI is designed for different tissues

of brain structures and brain tumors with multiple imag-
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Figure 1. Average accuracy on BraTS2020, BraTS2018, and

BraTS2015 datasets. Our GSS enables consistent performance im-

provements over state-of-the-arts, i.e. mmFormer [40], RFNet [7],

without bringing any change to base networks during inference.

ing modalities, such as Fluid Attenuation Inversion Recov-

ery (FLAIR), contrast enhanced T1-weighted (T1c), T1-

weighted (T1) and T2-weighted (T2). Combining multi-

modal images for brain tumor segmentation can signifi-

cantly improve segmentation accuracy. Most existing meth-

ods stitch multi-modal images on channels and input them

into the network [18, 46, 27, 30, 10]. However, in clinical

practice, the problem of lost modalities is pervasive due to

data corruption, various scanning protocols, and unsuitable

conditions of the patient [34, 22, 31, 47]. Therefore, there is

a great need for a robust multi-modal approach for flexible

and practical clinical applications to address the problem of

missing one or more modalities.

The current main direction for incomplete medical im-

age segmentation tasks involves multiple stages network to

deal with all incomplete modalities cases [11, 8, 7, 2, 40].

This approach considers improving the network’s ability to

extract features of interest for individual modalities, which

plays a pivotal role in the subsequent fusion phase. How-

ever, these efforts only focus on learning invariant fea-

tures and lack inter-modal interactions. It is worth noting

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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that Ding et al. [7] find out that different modalities con-

tain distinct appearances and thus have different sensitivi-

ties to diverse tumor regions. In particular, Flair is more

sensitive to the background (BG), and T1c is more sensi-

tive to necrotic, non-enhancing tumor cores (NCR/NET)

and GD-enhancing tumors (ET), while Flair and T2 are

more sensitive to peritumoral edema (ED), and unfortu-

nately, the above approach does not consider it as a pri-

ori information. Consequently, multi-modal feature interac-

tion could be a knowledge transfer process between sensi-

tive and non-sensitive modalities. Fortunately, knowledge

distillation is an effective method for addressing this is-

sue. However, existing knowledge distillation-based meth-

ods [13, 32, 33, 1, 3, 17], often employ another, more com-

plex model in order to convey complete modalities feature

information, resulting in a tremendous computational effort

during training. Meanwhile, there is a risk of conveying in-

accurate information through direct mutual knowledge dis-

tillation between modalities. In addition, if the result after

fusion is used for distillation, it can not match the modali-

ties’ input states, and model collapse is inevitable.

To alleviate these problems, we propose Category Aware

Group Self-Support Learning framework for incomplete

multi-modal brain tumor segmentation, which is called

GSS. As shown in Fig. 2, during the model training phase,

we establish self-support groups among students (modal-

ities) instead of the teacher of previous knowledge distil-

lation methods, while no new models and parameters are

introduced. Specifically, we establish the groups for each

label and, based on how sensitive each modal is to each la-

bel, choose one or more top of them to serve as the group

leaders. Group leaders can decide on this category with just

one affirmative vote. When the group leaders are irreso-

lute, the other group members can make another decision

by their voting results to assist in making the right deci-

sion. If both group leaders and members are in doubt about

this category, then take the category for which estimated

minimum probability. Ultimately, based on the votes of the

self-support group and after normalization, the soft labels

of each category for knowledge distillation are determined.

Considering that the decision of the self-help group is posi-

tively correlated with the quality of the initial prediction of

the model at the early stage of training, which is still flawed

at some locations, we introduce a random masking strat-

egy to reduce the possible biases. Overall, our contributions

are threefold: 1) We propose Category Aware Group Self-

Support Learning framework for incomplete multi-modal

brain tumor segmentation. The dominating characteristics

of several modalities are utilized to direct the distillation of

mutual knowledge between modalities without expanding

the complexity of the initial network. 2) In the optimal soft

label selection, we set up a novel self-support group, aban-

doning the direct mutual constraint of modalities through

the pseudo-labels generated between each modal, but refin-

ing to categories, maximizing the use of information from

each modal. 3) Taking advantage of the proposed ran-

dom mask strategy, GSS could improve the performance of

the state-of-the-art segmentation framework on the widely

used BraTs2020, BraTs2018, and BraTs2015 benchmarks

(Fig. 1).

2. Related Work
Incomplete Multi-modal Brain Tumor Segmentation.

Incomplete multi-modal learning, also known as hetero-

modal learning [11], aims at designing robust methods

with any subset of available modalities at inference [40],

which is very common in practical applications, such as

scarce annotation [42, 34, 6] and missing modal prob-

lems [38, 31, 22, 45]. The incomplete multi-modal brain

tumor segmentation task involves segmenting brain tumors

from hetero-modal MRI images with various missing com-

ponents. Therefore, compared with the standard brain tu-

mor segmentation, segmenting brain tumors from incom-

plete multi-modal data is more practical but challenging.

Zhang et al. [40] bridged Transformer and CNN to build the

long-range dependencies within and across different modal-

ities of MRI images for a modal-invariant representation.

Ding et al. [7] proposed a Region-aware Fusion Module

by aggregating multi-modal features of different regions

adaptively to model the relations of modalities and tumor

regions. However, it is essential to note that such meth-

ods used separate encoders for each modal. There was

ground truth that could guide the network to extract sim-

ilar distributions from incomplete modal features at train-

ing time. Nonetheless, these efforts focused on learning

shared/invariant features and lacked inter-modal interac-

tions. To address this problem, Zhao et al. [44] recently pro-

posed an adaptive feature interaction strategy based on the

graph structure, which interacts with multi-modal features

to accommodate multi-modal segmentation with different

missing modalities. However, this approach introduced a

more complex graph structure on the one hand, which in-

creases the computational cost and can not be migrated to

other algorithms. On the other hand, the features cannot

learn information beyond the ground truth.

In contrast, Our GSS achieves inter-modal information

complementarity by selecting an inter-modal consensus op-

timal learning pseudo-target. In addition, GSS only acts on

the training phase of the model and does not require changes

to the inference process.

Knowledge Distillation. The concept of knowledge dis-

tillation (KD) was first proposed by Hinton et al. in [13].

KD defines a learning manner where a bigger teacher net-

work is employed to guide the training of a smaller student

network for many tasks [13, 19, 21, 35]. The “dark knowl-

edge” is transferred to students via soft labels from teach-

21318



Fusion

GT

NCR/NET
BG

ET
ED

Group Leader

Group Member

ED
Group

FLAIR

T1

T1c

T2

NCR/NET
Prediction

ET
Prediction

BG
Prediction

ED
Prediction

FLAIR
Prediction

T1
Prediction

T1c
Prediction

T2
Prediction

(a)

(b)

ET
Group

NCR/NET
Group

BG
Group

SF

1 0 1 0 ... 1 1 0 1

1 1 1 1 1 0 1 1

0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

…
1 1 1 1 1 1 1 1

1 0 1 1 1 1 0 1

1 1 1 1 0 1 1 1

...

...

...

...

...

...

……………………
SGSS

*

SF

Random mask

ST1

ST1c

ST2

Lkd (Eq. 2)
Ltask(Eq. 1)

Figure 2. The overall architecture and design details for deploying GSS (b) in existing incomplete brain tumor segmentation methods (a).

ers. For raising the attention on negative logits, the hyper-

parameter temperature was introduced. Previous works of

logit distillation mainly focus on proposing effective regu-

larization and optimization methods rather than novel meth-

ods [26, 26, 4, 29, 16, 15, 23, 14]. Zhang et al. [41] proposes

a mutual learning manner to train students and teachers si-

multaneously. Zhang et al. [43] provides a novel viewpoint

to interpret logit distillation by decoupling the classical KD

loss into two parts. Yang et al. [37] presents a novel cross-

image relational KD to transfer global pixel correlations

from the teacher to the student for semantic segmentation.

Phan et al. [28] proposes a new class similarity weighted

knowledge distillation method to eliminate the forgetting of

visually similar classes in continual semantic segmentation.

However, these methods can not do away with the require-

ment for a huge computationally intensive teacher network.

There is one major difference between our GSS and pre-

vious distillation algorithms: rather than using a larger net-

work as a teacher. It instead employs a self-support student

group as a teacher while not introducing new models and

parameters.

3. Approach

3.1. Preliminaries

Knowledge Distillation for Segmentation. Unlike tra-

ditional image classification, segmentation needs to clas-

sify each pixel from N category species to an individual

category label. Assume that the input to the network is

F ∈ R
C×D×H×W , where C, D, H and W denote the

number of channel, depth, height, and width. The segmen-

tation network transforms the F into a categorical logit map

S ∈ R
N×D×H×W . The segmentation task loss is to train

each pixel with its ground-truth label using cross-entropy:

Ltask =
1

D ×H ×W

D∑

d=1

H∑

h=1

W∑

w=1

CE(σ(Sd,h,w),Gd,h,w).

(1)

Here, CE denotes the cross-entropy loss, σ denotes the

softmax function and Gd,h,w denotes the ground-truth la-

bel of the (d, h, w)-th pixel.

Motivated by Hinton’s KD [13], a direct method is to

align the class probability distribution of each pixel from

the student to the teacher. The formulation is expressed as:

Lkd =
1

D ×H ×W

D∑

d=1

H∑

h=1

W∑

w=1

KL(σ(
Ss
d,h,w

τ
)||σ(S

t
d,h,w

τ
)).

(2)

Here, σ(Ss
d,h,w/τ) and σ(St

d,h,w/τ) represent the soft class

probabilities of the (d, h, w)-th pixel produced from the stu-

dent and teacher, respectively. KL denotes the Kullback-

Leibler divergence, and τ is a temperature. The overall loss

is formulated as:

Lall = α ∗ Ltask + β ∗ τ2 ∗ Lkd. (3)

where α and β are the balanced parameters, which are set

to 0.7 and 0.3 in this paper.

Incomplete Multi-modal Brain Tumor Segmentation
Baseline. As shown in Fig. 2 (a), RFNet [7] and mm-

Forer [40] as the SOTA paradigm for incomplete modali-

ties consists of four separate encoder-decoders and a fusion

module. The complete MRI is used for training the encoder-

decoder of each modal separately, and the features extracted

by the encoder are fed to the fusion module. A feature map
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Algorithm 1 GSS With Single Group Leader Algorithm

Input: L0: group leader with size of D × H × W ;M0,

M1, M2: members with size of D × H × W ;TL: the

threshold of group leader;TM : the threshold of group

members; TL � TM

Output: Multi-modal students optimal soft target Svote;

1: set Svote size with D ×H ×W , value with 0

2: for j = 1; j < D ×H ×W ; j ++ do
3: if L0j > TL then
4: Svotej = L0j

5: else if M0j > TM and M1j > TM and M2j > TM

then
6: Svotej = Average(M0j ,M1j ,M2j )
7: else
8: Svotej = Minimum(L0j ,M0j ,M1j ,M2j )
9: end if

10: end for

of the same size value of 0 is used instead of one or more

feature map inputs to simulate the modal missing condition.

In the test phase, the missing modal is replaced by an all-0

input, and the decoder is discarded. In this paper, we fo-

cus on improving the feature extraction capability of the

encoder and, therefore, only act in the training phase of the

model.

Multi-modal Knowledge Distillation. Existing incom-

plete multi-modal brain tumor segmentation methods tend

to deal with individual modalities separately, lacking infor-

mation interaction between modalities. Different modali-

ties have differential sensitivity to different tumor regions.

A model’s performance can be improved if incomplete

modalities acquire information about complete modalities.

Zhang et al. [39] proposes a self-distillation training tech-

nique to improve model performance, arguing that there

is still room for progress in knowledge transfer methods

within a model. Inspired by this motivation, GSS extracts

the optimal knowledge through modal interactions during

the training phase of the network, which is passed to each

student as a teacher (Fig. 2 (b)). The self-support student

group mechanism for multi-modal interactions is developed

for each category based on the sensitivity of the different

modalities to the tumor region, which is then supplemented

by information from the group members to prevent incor-

rect decisions by the group leaders.

3.2. Multi-modal Self-Support Student Group

In order to accommodate multiple modalities sensitive to

a single class at once, we have created two types of group

leaders composition.

Single Group Leader. For categories, i.e. BG,

NCR/NE, and ET, where there is only one sensitive modal,

we give the segmentation mask of that modal as the

only group leader L0 ∈ R
1×D×H×W . The remaining

Algorithm 2 GSS With Double Group Leaders Algorithm

Input: L0, L1: group leader with size of D × H × W ;

M0, M1: members with size of D ×H ×W ; TL: the

threshold of group leader; TM : the threshold of group

members; TL � TM ; ρ: penalties coefficients

Output: Multi-modal students optimal soft target Svote;

1: set Svote size with D ×H ×W , value with 0

2: for j = 1; j < D ×H ×W ; j ++ do
3: if L0j > TL and L1j > TL then
4: Svotej = Maximum(L0j , L1j )
5: else if (L0j � TL and L1j > TL) or (L0j > TL and

L1j � TM ) then
6: Svotej = Maximum(L0j , L1j )− ρ ∗ |L0j −L1j |
7: else if M0 > TM and M1 > TM then
8: Svotej = Average(M0j ,M1j )
9: else

10: Svotej = Minimum(L0j , L1j ,M0j ,M1j )
11: end if
12: end for

modalities segmentation masks are set as group members

M0,M1,M2 ∈ R
1×D×H×W . For prediction, the sensitive

modal is set as group leader. Compared to insensitive mem-

bers, the prediction of the leader is more accurate at the

same threshold. Thus, a sensitive group leader can accu-

rately predict the current class at a relatively low prediction

probability TL, while the requirements TM for members

should be higher. The group leader decides the category

when it predicts above TL,

Svotec = L0, where L0 > TL. (4)

When the group leader’s prediction does not reach TL, the

group leader’s decision can only be overturned if all mem-

bers vote above the TM

Svotec = Averge(M1,M2,M3), where L0 <= TL

and M0 > TM and M1 > TM and M2 > TM .
(5)

The minimum of all modalities should be taken to am-

plify the self-support group’s judgment when both the group

leader and members believe the current position is inferior

to the category,

Svotec = Minimum(L0,M1,M2,M3),

where L0 <= TL and not (M0 > TM

and M1 > TM and M2 > TM ).

(6)

A detailed description of the GSS with a single group leader

algorithm is given in Algorithm 1.

Double Group Leaders. For categories, i.e. ED, where

there are two sensitive modalities, we give the two modal-

ities as the group leaders L0, L1 ∈ R
1×D×H×W . The re-

maining modalities are set as group members M0,M1 ∈
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R
1×D×H×W . It is necessary to select the most appropriate

prediction within the group leaders since there are two seats.

When the probability of the two group leaders are above

TL, then we consider that the current position must belong

to that category, and therefore the value with the highest

prediction should be retained,

Svotec = Maximum(L0, L1), where L0j > TL

and L1j > TL.
(7)

If only one of L0 and L1 reached the TL, the predicted value

for that position was set to the maximum of L0 and L1 mi-

nus a penalty value,

Svotec = Maximum(L0, L1)− ρ ∗ |L0 − L1|,
where (L0 � TL and L1 > TL) or

(L0 > TL and L1 � TM ).

(8)

The penalty value is used to penalize group leaders for in-

consistent results. However, it should not be so large as to

potentially reduce the motivation of top students who meet

the threshold. This paper sets the penalty value to 30% of

the difference between L0 and L1. Other cases are pro-

cessed similarly to Algorithm 1. A detailed description of

the GSS With Double Group Leaders Algorithm is given in

Algorithm 2.

Even though the selected soft labels are co-optimal

across modalities for each category, their distribution across

categories is chaotic, and it is easy to have unsmoothed pre-

dictions. Therefore, it needs to be normalized before they

are used for knowledge distillation [20]. In order not to

change the relative difference in predicted probabilities for

each category, we use the vector normalization:

St
c =

Svotec
∑N

i Svotei

(9)

where Svotec denotes the soft labels selected for category c
by GSS, N denotes the total number of categories, and St

c

denotes the normalized soft labels for category c.

3.3. Further enhancements

Why GSS need Random Mask? The soft labels elected

by the self-support student group are the optimal solution

in the current modal interaction. However, in some more

challenging areas, the students can not make the same judg-

ments as the teachers. Moreover, such regions are diffi-

cult to judge quantitatively. In recent years, several mask-

based pre-training methods [12, 36, 25, 9] have consistently

demonstrated that randomizing features to mask does not

degrade network performance but also improves the robust-

ness of the model. Inspired by them, we use the random

mask to discard inaccurate positions of soft labels. Un-

like MAE-based methods, the random mask sets all predic-

tions to 0 at a random position (also in the same position

as other modalities prediction) to discard inaccurate predic-

tions. Specifically, we randomly generate a 0-1 matrix of

size D ×H ×W , where the ratio of value 0 to value 1 is α
: 1-α. Then N identical matrices are stitched on the channel

to obtain Mask ∈ RN×D×H×W . The pixel multiplica-

tion of the GSS selected results SGSS and other modalities

prediction(SF , ST1, ST1c, ST2) with Mask respectively

provides the input used for distillation:

St = SGSS ∗Mask,

SsF = SF ∗Mask, SsT1 = ST1 ∗Mask,

SsT1c = ST1c ∗Mask, SsT2 = ST2 ∗Mask.

(10)

4. Experiments
4.1. Datasets and Evaluation Metric

In this section we use three different datasets from Multi-

modal Brain Tumor Segmentation Challenge (BraTS) [24]:

BraTs2020, BraTs2018 and BraTs2015. The subjects in the

three datasets all contain four distinct MRI modalities, i.e.,
Flair, T1c, T1 and T2. We split each dataset into train set,

validate set and test set, respectively, in the same scheme

as RFNet [7]. Dice coefficient [5] is used to measure the

segmentation performance of the proposed method, defined

as:

Dicek̄(ŷ, y) =
2 · ‖ŷk̄

⋂
yk̄‖1

‖ŷk̄‖1 + ‖yk̄‖1
(11)

Where k̄ denotes different tumor classes, including BG,

NCR/NE, ED, and ET. Whole tumor, tumor core, and the

enhancing tumor are composed of their combinations [7].

Dicek̄ denotes the Dice score of the tumor class k̄. Larger

Dice scores represent that predictions are more similar to

the ground truth and thus indicate better segmentation ac-

curacy.

4.2. Implementation Details

Group Self-Support Learning framework (∗) is im-

plemented in the official code of RFNet [7] and mm-

Former [40], and then compare with their ontologies, U-

HVED [8] and RobustSeg [2]. Due to mmFormer’s dataset

partitioning being different from our reference RFNet, we

utilize the official code to retrain on the new dataset par-

titioning. For a quick and fair comparison, mmFormer is

trained with an initial official hyperparameter. In contrast

to the official, both mmFormer and our GSS deployment, in

which batch size is set as 2, are implemented with PyTorch

1.10 on two Nvidia GeForce RTX 3090Ti GPUs. The GSS

reloads the model every 300 epochs of training and starts

training from the 0th epoch, reloading it a total of 4 times.

In this paper, we use the 300th epoch result of mmFormer

as the baseline. When GSS deployment on RFNet, We use

the PyTorch environment provided by RFNet officials and

train it on two NVIDIA Tesla V100 16GB GPUs.

21321



59

63

67

71

75

79

83

87

Baseline Without Only one Only duoble SSGKD

D
ic

e 
si

m
ila

rit
y 

co
ef

fic
ie

nt
 (%

Complete Core Enhancing Average

GSS

Figure 3. The influence on the number of group leader. Without

represents direct mutual distillation.

Operation
Dice(%)

Complete Core Enhancing

Baseline 86.98 78.23 61.47

fusion dis. 54.63 53.61 52.83

GSS 87.60 79.14 65.01
Table 1. Compare with distillation from fusion result (fusion dis.).

Norm. Opera.
Dice(%)

Complete Core Enhancing

Baseline 86.98 78.23 61.47

w/o norm. 87.76 79.08 64.48

norm. 87.60 79.14 65.01
Table 2. The influence on the accuracy of the normalization, where

’norm.’ denotes normalization operation (Norm. Opera.).

ρ
Dice(%)

Complete Core Enhancing

0.1 87.63 79.17 65.07

0.2 87.60 79.14 65.01

0.3 87.63 79.25 65.32
0.4 87.60 79.18 65.25

0.5 87.61 79.11 65.30

Table 3. The influence of the penalties coefficients ρ.

TL TM
Dice(%)

Complete Core Enhancing

0.65 0.65 87.64 79.19 65.21

0.65 0.75 87.66 79.24 65.39
0.65 0.85 87.64 79.15 65.34

0.75 0.75 87.62 79.12 65.12

0.75 0.85 87.60 79.14 65.01

0.85 0.85 87.63 79.11 64.93

Table 4. The influence of the threshold TL and TM .

4.3. Ablation Study

For our initial attempts at GSS, we used RFNet [7] as the

baseline. When variables are not discussed, the epoch is set

to 300, TL is set to 0.75, TM is set to 0.85, Temperature τ
for Lkd is set at 10, and penalties coefficients ρ is set at 0.2.

As shown in Fig. 3, the number of group leaders is tailored

by the sensitivity of the modal to the label and is better than

τ
Dice(%)

Complete Core Enhancing

1 87.54 79.11 65.07

2 87.57 79.09 65.12

4 87.59 79.15 65.14

6 87.56 79.09 65.13

8 87.61 79.24 65.10
10 87.60 79.14 65.01

Table 5. The influence on the accuracy of the temperature τ .
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Figure 4. The influence on the random mask rate α.

using single or multiple group leaders directly. However, di-

rect mutual distillation between modalities will reduce the

accuracy of the baseline. Moreover, model performance

will be drastically reduced if the fusion predictions are used

to distill the model predictions for each modal (as is shown

in Table. 1). As shown in Table 2, normalization is neces-

sary to smooth out the prediction before distillation for the

GSS-selected teachers. Additionally, we perform ablation

experiments on the individual hyperparameters introduced

by GSS, specifically, when penalties coefficients ρ is set to

0.3, threshold TL and TM to 0.65 and 0.75, and temperature

τ to 8 the network obtained the optimal solution, which are

presented in Table 3, 4, and 5.

As shown in Fig. 4, the random mask further improves

the performance of the model as the training continues, and

its ability gradually decreases when a certain number of it-

erations is reached, which is since GSS can select the cor-

rect predictions at most positions in this time, but most of

the predictions are discarded by the random mask, failing

to improve the distillation effect. In particular, when the

mask rate is 60%, the performance decreases considerably

instead, which we believe results from discarding high con-

fidence predictions due to the extensive mask range. The

experimental results show that a mask rate with 20% is op-

timal for GSS. As a final observation, GSS outperforms the

baseline in all parameter scenarios, indicating its reliability.

4.4. Comparison with the State-of-the-art Methods

GSS (∗) is implemented in the official code of RFNet [7]

and mmFormer [40], and then compare with their ontolo-

gies, U-HVED [8] and RobustSeg [2]. As shown in Ta-
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Modalities
Dice(%)

Complete Core Enhancing

F T1 T1c T2 [8] [2] [40] [40]∗ [7] [7]∗ [8] [2] [40] [40]∗ [7] [7]∗ [8] [2] [40] [40]∗ [7] [7]∗

◦ ◦ ◦ • 81.19 85.49 87.37 87.89 86.89 88.55 53.40 58.66 62.21 63.28 63.81 65.77 29.05 37.66 54.71 56.14 40.07 41.48
◦ ◦ • ◦ 67.48 71.86 74.33 76.48 74.95 77.90 68.24 72.87 73.39 74.70 72.64 73.06 71.54 70.22 69.30 71.14 81.40 81.00

◦ • ◦ ◦ 53.58 68.40 74.07 75.79 74.20 77.02 41.14 50.00 61.73 64.46 61.27 66.30 19.16 22.67 54.38 57.63 29.44 42.67
• ◦ ◦ ◦ 83.82 83.02 86.87 87.64 86.91 88.04 51.37 46.67 56.39 58.30 58.71 63.60 22.18 28.30 48.95 51.38 35.23 38.86
◦ ◦ • • 84.77 87.53 87.92 89.09 88.39 89.39 73.18 78.46 77.59 78.93 77.50 79.78 83.54 76.82 73.63 75.50 86.97 86.98
◦ • • ◦ 69.65 74.59 77.19 78.54 78.13 80.08 68.85 76.40 74.65 75.02 74.06 74.29 76.96 73.95 70.79 71.45 82.48 82.05

• • ◦ ◦ 85.82 87.66 89.15 90.12 88.51 89.72 58.39 58.39 65.63 66.30 66.88 70.47 26.65 35.28 58.31 59.79 40.95 45.42
◦ • ◦ • 82.17 87.87 88.33 89.20 88.25 89.36 57.58 64.88 64.79 68.00 67.24 69.53 33.94 41.05 58.14 61.69 40.58 46.69
• ◦ ◦ • 87.74 89.08 90.63 90.76 89.62 90.82 59.13 63.51 65.98 66.28 68.74 70.64 30.31 39.72 58.50 59.41 44.64 49.03
• ◦ • ◦ 87.48 88.01 89.21 90.44 88.45 90.14 74.27 78.09 78.56 78.95 79.30 81.74 84.30 76.62 74.83 75.49 86.15 86.84
• • • ◦ 87.91 87.73 89.98 90.88 88.75 90.28 75.82 80.68 80.00 81.02 80.46 81.59 84.33 78.81 76.25 77.41 87.30 87.62
• • ◦ • 87.59 89.07 90.99 91.35 89.93 90.83 62.43 65.99 66.94 67.91 69.75 72.07 33.21 43.04 60.33 61.59 44.21 52.05
• ◦ • • 89.85 89.06 90.78 91.58 90.07 91.16 75.10 79.47 79.05 79.57 79.29 81.88 86.03 78.07 75.05 75.92 87.34 87.64
◦ • • • 84.72 88.26 87.92 89.11 88.41 89.45 74.85 80.84 78.84 80.52 79.18 79.99 84.03 78.56 74.98 76.85 87.47 87.50
• • • • 89.79 89.07 90.99 91.76 90.49 91.11 76.48 81.19 80.28 80.88 80.16 81.72 86.12 79.13 76.39 77.15 87.68 87.97

Average 81.57 84.45 86.38 87.38 86.13 87.59 64.68 69.19 71.07 72.27 71.93 74.16 56.76 57.33 65.64 67.24 64.13 66.92

Table 6. Results of state-of-the-art unified models (mmFormer [40], RFNet [7], U-HVED [8], RobustSeg [2]) and the GSS (∗) deployment

on their basis, on BraTS 2015 dataset. Dice similarity coefficient (DSC) [%] is employed for evaluation with every combination settings of

modalities.Complete, Core and Enhancing denote the Dice scores of the whole tumor, the tumor core and the enhancing tumor, respectively.

Modalities
Dice(%)

Complete Core Enhancing

F T1 T1c T2 [8] [2] [40] [40]∗ [7] [7]∗ [8] [2] [40] [40]∗ [7] [7]∗ [8] [2] [40] [40]∗ [7] [7]∗

◦ ◦ ◦ • 80.90 82.24 83.90 85.88 84.30 86.40 54.10 57.49 66.20 66.98 67.62 69.43 30.80 28.97 38.81 38.86 40.17 45.76
◦ ◦ • ◦ 62.40 73.31 74.77 77.18 74.93 78.47 66.70 76.83 79.92 81.15 80.99 82.32 65.50 67.07 72.28 75.75 69.43 77.10
◦ • ◦ ◦ 52.40 70.11 74.24 77.27 74.68 78.79 37.20 47.90 62.26 64.36 64.42 67.47 13.70 17.29 31.34 35.53 34.43 42.37
• ◦ ◦ ◦ 82.10 85.69 86.00 87.01 86.46 87.65 50.40 53.57 60.82 64.60 64.89 68.60 24.80 25.69 33.47 36.21 33.92 42.88
◦ ◦ • • 82.70 85.19 85.48 86.88 86.39 87.94 73.70 80.20 82.46 83.26 83.27 84.35 70.20 69.71 73.64 75.47 73.01 79.39
◦ • • ◦ 66.80 77.18 78.35 80.77 78.59 81.90 69.70 78.72 81.82 82.87 82.22 83.71 67.00 69.06 74.81 76.65 70.73 77.90
• • ◦ ◦ 84.30 88.24 88.26 88.86 88.78 89.56 55.30 60.68 68.67 70.81 71.59 73.81 24.20 32.13 35.96 40.41 39.68 47.34
◦ • ◦ • 82.20 84.78 85.35 86.64 86.15 87.48 57.20 62.19 68.51 69.85 70.89 73.24 30.70 32.01 40.83 42.75 41.42 48.98
• ◦ ◦ • 87.50 88.28 88.72 89.54 89.12 89.93 59.70 61.16 67.90 69.82 70.82 73.38 34.60 34.60 40.20 41.82 43.77 48.59
• ◦ • ◦ 85.50 88.51 88.61 89.35 89.17 89.90 72.90 88.54 81.66 82.90 82.94 83.71 70.30 70.30 74.09 76.61 72.84 77.84
• • • ◦ 86.20 88.73 88.54 89.33 89.71 90.25 74.20 81.06 82.63 83.26 83.77 84.73 71.10 70.78 74.45 75.91 73.17 78.42
• • ◦ • 88.00 88.81 89.20 89.69 89.68 90.23 61.50 64.38 70.24 71.20 73.09 75.37 34.10 36.41 39.67 41.93 44.79 50.17
• ◦ • • 88.60 89.27 89.39 90.12 90.06 90.73 75.60 80.72 82.41 82.96 83.54 84.42 71.20 70.88 74.08 76.39 73.13 78.69
◦ • • • 83.30 86.01 85.78 87.20 86.78 88.04 86.01 80.33 82.70 83.29 83.97 84.56 71.10 71.10 74.81 75.07 72.56 78.51
• • • • 88.80 89.45 89.39 89.94 90.26 90.74 76.40 80.86 83.03 83.04 84.02 84.61 71.70 71.70 75.52 76.41 73.21 78.33

Average 80.10 84.39 85.07 86.38 85.67 87.20 64.00 69.78 74.75 76.02 76.53 78.25 50.00 51.02 56.95 59.03 57.12 63.49

Table 7. Results of state-of-the-art unified models (mmFormer [40], RFNet [7], U-HVED [8], RobustSeg [2]) and the GSS (∗) deployment

on their basis, on BraTS 2018 dataset. Dice similarity coefficient (DSC) [%] is employed for evaluation with every combination settings of

modalities.Complete, Core and Enhancing denote the Dice scores of the whole tumor, the tumor core and the enhancing tumor, respectively.

Modalities
Dice(%)

Complete Core Enhancing

F T1 T1c T2 [8] [2] [40] [40]∗ [7] [7]∗ [8] [2] [40] [40]∗ [7] [7]∗ [8] [2] [40] [40]∗ [7] [7]∗

◦ ◦ ◦ • 80.75 82.20 85.51 86.55 86.05 87.62 57.43 61.88 63.36 70.88 71.02 72.26 28.70 36.46 49.09 49.20 46.29 51.28
◦ ◦ • ◦ 68.54 71.39 78.04 79.10 76.77 80.14 73.01 76.68 81.51 83.68 81.51 83.38 66.59 67.91 78.30 79.61 74.85 78.62
◦ • ◦ ◦ 54.93 71.41 76.24 78.97 77.16 79.79 36.73 54.30 63.23 66.88 66.02 66.39 12.33 28.99 37.62 41.40 37.30 39.74
• ◦ ◦ ◦ 82.69 82.87 86.54 87.95 87.32 88.07 51.15 60.72 64.60 71.10 69.19 72.45 20.87 34.68 36.68 42.61 38.15 42.29
◦ ◦ • • 83.37 85.97 87.52 88.11 87.74 88.70 77.85 82.44 82.69 85.56 83.45 84.55 68.74 71.42 77.20 80.79 75.93 80.49
◦ • • ◦ 71.58 76.84 80.70 82.27 81.12 83.09 76.49 80.28 82.81 85.18 83.40 83.18 67.82 70.11 81.71 82.44 78.01 80.82
• • ◦ ◦ 85.01 88.10 88.76 89.65 89.73 90.10 55.10 68.18 71.76 75.09 73.07 73.72 22.53 39.67 42.98 46.60 40.98 49.50
◦ • ◦ • 81.58 85.53 86.94 87.93 87.73 88.72 85.53 66.46 67.76 73.59 73.13 73.43 28.73 39.92 49.12 50.84 45.65 53.05
• ◦ ◦ • 87.40 88.09 89.49 89.97 89.87 90.38 61.87 68.20 70.34 74.30 74.14 75.66 30.48 42.19 49.06 51.57 49.32 54.36
• ◦ • ◦ 86.13 87.33 89.31 89.38 89.89 90.64 76.86 81.85 83.79 85.49 84.65 85.96 69.53 70.78 79.44 81.48 76.67 80.99
• • • ◦ 87.10 88.87 89.79 90.03 90.69 91.08 79.51 82.76 84.44 86.07 85.07 85.75 71.32 71.77 80.65 81.58 76.81 82.27
• • ◦ • 88.07 89.24 89.83 90.40 90.60 91.05 63.46 70.46 72.42 75.99 75.19 75.69 30.60 43.90 50.08 50.73 49.92 53.87
• ◦ • • 88.33 88.68 90.49 90.51 90.68 91.33 78.68 81.89 83.94 85.47 84.97 86.04 69.84 71.17 78.73 80.85 77.12 81.14
◦ • • • 84.27 86.63 87.64 88.38 88.25 89.01 79.99 82.85 83.66 85.64 83.47 84.34 69.74 71.87 77.34 81.76 76.99 81.24
• • • • 88.81 89.47 90.54 90.72 91.11 91.60 80.40 82.87 84.61 85.71 85.21 85.75 70.50 71.52 79.92 81.59 78.00 83.00

Average 81.24 84.17 86.49 87.33 86.98 88.09 67.19 73.45 76.06 79.38 78.23 79.24 48.55 55.49 63.19 65.54 61.47 66.42

Table 8. Results of state-of-the-art unified models (mmFormer [40], RFNet [7], U-HVED [8], RobustSeg [2]) and the GSS (∗) deployment

on their basis, on BraTS 2020 dataset. Dice similarity coefficient (DSC) [%] is employed for evaluation with every combination settings of

modalities.Complete, Core and Enhancing denote the Dice scores of the whole tumor, the tumor core and the enhancing tumor, respectively.
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Figure 5. Visualization comparison of different baselines. NCR/NET, ED and ET are illustrated in green, yellow and blue, respectively.

Methods
sensitivity(%)↑ Hausdorff95(mm)↓

Com Cor Enh Com Cor Enh

mmFormer 99.61 99.82 99.82 2.78 4.96 3.73

mmFormer* 99.61 99.83 99.81 2.41 4.13 3.28
RFNet 99.60 99.84 99.82 3.47 5.02 4.37

RFNet* 99.67 99.84 99.84 2.30 4.12 3.24
Table 9. Comparisons under two testing criteria on BRATS2020.

’Com’, ’Cor’ and ’Enh’ denotes the whole tumor, the tumor core

and the enhancing tumor.

ble 4.4, 4.4 and 4.4, GSS significantly improves the average

scores for each category of RFNet [7] and mmFormer [40]

in Dice on each dataset (BraTs2020, BraTs2018 and

BraTs2015) and achieves a new SOTA for the incomplete

modalities. In particular, GSS significantly improves the

predictive accuracy of baseline for enhancing tumor (i.e.
maximum 8.52% improvement for RFNet and maximum

5.93% improvement for mmFormer in BraTs2020). Ta-

ble 9 reports that our GSS(*) also improves the SOTA

in terms of sensitivity and Hausdorff distance (95%) on

BRATS2020. Specifically, as shown in Fig. 1, GSS can

improve the performance of existing SOTA algorithms by

1.27-3.20% in Dice on average. As shown in Fig. 5, com-

pared to RFNet [7] and mmFormer [40], GSS can signifi-

cantly improve segmentation accuracy and accurately dis-

tinguish between ED and other categories, which indicates

that GSS can assist models in capturing better spatial con-

text.

5. Conclusion

In this work, we propose a novel category aware

group self-support learning framework (GSS) for incom-

plete multi-modal brain tumor segmentation. As part of our

process, we divide the groups according to categories, de-

cide the number of group leaders according to the sensitivity

of the modal, and design special algorithms for the different

kinds of group divisions to finally identify a pseudo-target

for cross-modal knowledge distillation. In order to pre-

vent GSS from failing at certain locations, we introduced

the random mask method, which randomly discards these

locations during training. Extensive experiments demon-

strate GSS could improve the performance of state-of-the-

art segmentation framework on the widely used BraTs2020,

BraTs2018, and BraTs2015 benchmarks.
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