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Abstract

Hand-object interaction understanding and the barely
addressed novel view synthesis are highly desired in the im-
mersive communication, whereas it is challenging due to
the high deformation of hand and heavy occlusions between
hand and object. In this paper, we propose a neural render-
ing and pose estimation system for hand-object interaction
from sparse views, which can also enable 3D hand-object
interaction editing. We share the inspiration from recent
scene understanding work that shows a scene specific model
built beforehand can significantly improve and unblock vi-
sion tasks especially when inputs are sparse, and extend it
to the dynamic hand-object interaction scenario and pro-
pose to solve the problem in two stages. We first learn
the shape and appearance prior knowledge of hands and
objects separately with the neural representation at the of-
fline stage. During the online stage, we design a rendering-
based joint model fitting framework to understand the dy-
namic hand-object interaction with the pre-built hand and
object models as well as interaction priors, which thereby
overcomes penetration and separation issues between hand
and object and also enables novel view synthesis. In or-
der to get stable contact during the hand-object interaction
process in a sequence, we propose a stable contact loss
to make the contact region to be consistent. Experiments
demonstrate that our method outperforms the state-of-the-
art methods. Code and dataset are available in project web-
page https://iscas3dv.github.io/HO-NeRF.

1. Introduction
Hand-object interaction understanding plays an impor-

tant role in immersive contextual teaching applications such
as surgical operation and training in the use of machin-
ery. Previous works mostly focus on the hand-object in-
teraction detection [10], reasoning [26] or pose estima-

*indicates corresponding author.

tion [17, 16]. However, the barely addressed novel view
synthesis of hand-object interaction is also highly desired.

Recently, neural rendering is emerging to facilitate the
novel view synthesis simply by learning from a collection
of images and produces promising high-quality images. Al-
though existing neural rendering approaches perform well
on static scenes [31, 2], rigid objects [54, 12] and human
models [39, 38, 45], they barely considered scene con-
text in interaction (such as contact [63] and model pen-
etration [4, 24]). In the realm of hand, LISA [8] is the
only hand neural rendering model, and achieves promis-
ing rendering results of bare hands. However, LISA cannot
work well for hand-object interaction due to heavy inter-
occlusions and it requires dense (about 20) camera views
that may refrain it from wide applications. It is even more
challenging to use sparse-view images to synthesize novel
views [49, 25] and estimate accurate pose for hand-object
interaction, which plays a key role in many applications
such as Holoportation [36] and manipulation skill learning
from human demonstration [42, 1].

In this work, we propose a novel-view synthesis and pose
estimation system for hand-object interaction scenes with
sparse camera views (Fig. 1). Recent scene understanding
work [53] shows a scene specific model built beforehand
can significantly improve and unblock vision tasks espe-
cially when inputs are sparse, and we extend it from static
objects to dynamic hand-object interaction scenes and solve
the problem in two stages. We first use sparse-view images
as input to train the pose-driven neural rendering models of
hand and object during the offline stage. Benefiting from
the progress of hand pose tracking [15, 19, 28] and object
pose estimation [27], we only need very low cost to build
hand model and object model. Then at the online stage,
we estimate both hand and object poses using a novel dif-
ferentiable rendering-based model fitting under geometric
constraints. In this way, we can understand hand-object in-
teraction accurately and render novel views effectively.

However, it is non-trivial to fulfill this goal. Firstly, it is
difficult to build neural rendering systems from sparse cam-
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Figure 1: We propose a neural rendering and pose estimation system for hand-object interaction using sparse view images.
(a) During offline stage, we learn hand and object models that enable rendering and shape reconstruction. During online
stage, we initialize the pose from sparse camera views (b), and then conduct online fitting to improve pose estimation, which
enables photo-realistic free viewpoint rendering (c). Our framework also naturally supports hand object interaction editing.

era views due to insufficient visual information and depth
ambiguity caused by hand-object inter-occlusions. Exist-
ing few-shot neural rendering methods [25, 49] fail under
sparse camera views (Fig. 7). In order to solve this prob-
lem, we establish the fitting process based on the pre-built
models which provides strong shape and appearance pri-
ors, and it can achieve excellent novel view rendering from
sparse views. Secondly, it is difficult to obtain accurate hand
and object poses and reasonable interactions only by pho-
tometric constraints due to extensive occlusion. In order
to handle this problem, we propose a novel differentiable
rendering-based model fitting process under geometric con-
straints to refine the poses and enforce the spatial context
between hand and object by leveraging the signed distance
function (SDF) to reduce penetration and to encourage tight
hand-object regions to contact. We propose a stable contact
loss to penalize large sliding of the hand-object contact area
across temporally consecutive frames. Through the joint
model fitting process, we can achieve accurate pose estima-
tion for hand-object interactions. Thirdly, our system needs
a dataset to include images of hand, object, and hand-object
interaction. However, existing datasets such as [5, 13] can-
not satisfy this requirement, so we need to collect a real
dataset to evaluate our method.

Our main contribution is summarized as follows. First,
to the best of our knowledge, we present the first solution
to unblock hand-object interaction neural rendering from
sparse views. We design a new two-stage approach (i.e.
offline model building and online model fitting) to achieve
accurate hand-object pose estimation and photo-realistic
novel view synthesis. Second, we leverage effective geo-
metric constraints to conduct rendering-based model fitting,
which can recover reasonable hand-object interaction even
under sparse views and inter-occlusions. To reduce the slid-
ing that occurs during the interaction, we design a new sta-

ble contact loss to enforce the hand-object contacted regions
to be consistent for video sequences. Third, we propose a
hand-object interaction dataset HandObject for neural ren-
dering tasks, including images for hand, object and hand-
object interaction scenes. Finally, experiments demonstrate
that, with the help of offline and online stages, our method
achieves significantly better performance in pose estimation
and rendering quality than previous methods.

2. Related Work

Hand-Object Interaction Understanding. Existing hand-
object interaction understanding works [4, 21, 55, 61, 62,
16, 26, 13, 17, 24, 59, 14, 46, 47, 7, 65] usually use hand sta-
tistical shape model such as MANO [44], and adopt known
object shape to estimate object 6D pose. The geometric fea-
ture extracted from implicit network can also be used to rep-
resent object shape [59, 46]. The key challenges of hand-
object understanding include occlusion, penetration and
separation between hand and object. However, mesh-based
hand and object representation is expensive for surface-
based penetration and contact loss [17]. In order to deal
with the contact for hand-object interaction understanding,
several existing works [17, 55, 21, 62, 24] achieve reason-
able contact by predicting hand regions where contact is
likely to occur and optimizing the distance between the ob-
ject vertices and contact regions on the hand. Recently, im-
plicit shape representations such as SDF [24, 4, 59, 7] are
emerged to facilitate the detection of the penetration and
contact between hand and object, because SDF can indi-
cate the spatial relationship between point and surface and
the penetration of two shapes can be judged with the sign
of SDF values. Our method adopts SDF representation to
facilitate geometric constraints in hand-object interaction.
Neural Rendering. Neural radiance fields (NeRF) [31]
aims to synthesize novel view of a scene via volume ren-
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Figure 2: Offline stage to learn hand and object models. Top: Hand model. Each sampling point on the ray is converted to the
local coordinate system of each hand part through bone transformation. Then we encode the point into embedding vectors
and feed it to hand model to get the SDF and color value. Bottom: Object model. We convert the sampling point to the model
coordinate with the object pose, and get the SDF and color value.

dering with densely sampled posed images. The few-shot
novel view synthesis methods [60, 49, 25, 20] use sparse
view images as input to build neural radiation fields, but
fail in widely divergent camera view. Although the shape
surface of an object is implicitly included in NeRF, the tra-
ditional density cannot extract accurate surface [48]. There-
fore, IDR [58], NeuS [48] and VolSDF [57] use SDF or oc-
cupancy fields combined with volume rendering to achieve
high precision reconstruction. But these methods only re-
construct rigid objects. From the perspective of new scene
synthesis, several NeRF editing works [40, 37, 54, 34] has
been proposed. However, these methods cannot be trivially
extended to edit non-rigid objects such as human hand.

Neural Articulated Shape Representation. Prior arts [9,
30, 6, 23, 39, 38, 35] use implicitly shape representation to
reconstruct articulated human body shape. NASA [9] and
its variants [30, 6] generates human body shape by convert-
ing the posed human body to the canonical pose and query-
ing the SDF value of a point in the canonical pose space. In
order to learn generative novel view synthesis, several meth-
ods [39, 38, 35, 45, 51, 64, 50, 8] integrate bone transforma-
tion [45] and linear blend skinning [38, 64, 50, 8] with neu-
ral radiance fields. Different from the neural rendering sys-
tems [39, 35, 45], we present a hand-object interaction neu-
ral rendering method using sparse-view images, in which
spatial context between hand and object are modeled by the
SDF representations to reduce penetration and encourage
stable contact. Compared to implicit articulated shape rep-
resentation such as NASA [9], Animatable NeRF [38] and

DD-NeRF [56] that need parametric shape models or skin-
ning weight supervision, our method can learn the geometry
and appearance of hand and object with sparse-view only.

3. Method
Given sparse-view observations of hand-object interac-

tion, we aim to generate free-viewpoint synthesis of the
scene and estimate hand skeleton pose and object 6D pose.
Our framework is divided into two stages: offline model
building and online model fitting. At the offline stage, we
learn the neural models for hand and object individually
based on the pre-captured sparse-view images (Sec. 3.1).
As shown in Fig. 2, our neural hand model is a genera-
tive implicit representation driven by hand skeleton pose,
which can be used to represent geometry and to generate
novel views and our object model can be driven by object
6D pose. At the online stage (Sec. 3.2), given the sparse-
view images, we estimate both hand and object poses using
a rendering-based model fitting under effective geometric
constraints (Fig. 3). For video input, we can further en-
force smooth and stable contact loss to reduce pose jitters
between frames to generate more smooth and consistent
hand-object interaction. Benefited from our offline models
and online fitting method, we can also edit the hand-object
interaction scenes (Sec. 4.5).

3.1. Offline Stage for Hand-Object Model Building

Hand Neural Rendering Model. We aim to build a pose-
driven hand model that can achieve novel view synthesis
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Figure 3: Online stage for joint model fitting. We utilize hand/object pose estimation networks for initialization, and refine
pose with Lfit for single frame and Lfit,video for video sequence.

and recover accurate geometry (Top of Fig. 2). In our hand
model, we convert sampling point on camera ray to local
coordinate system of each hand part through bone transfor-
mation. Then we encode the point into embedding vectors
and feed it to hand model to get the SDF and color value.
We use SDF-based implicit fields for hand geometry rep-
resentation [48], because it enables more accurate surface
than NeRF’s density fields and facilitates geometric con-
straints during model fitting (Sec. 3.2). Our hand model can
be formulated as:

fs
hand(x(t),J) = sdfh, Fh,

f c
hand(x(t),J, F

h,nh) = ch,
(1)

where x(t) = o + td represents the sampling point on
the ray, o ∈ R3 is the camera optical center, d ∈ R3 is
the ray direction, sdfh ∈ R represents SDF value under
hand model, nhand ∈ R3 represents the derivation of sdfh,
ch ∈ R3 represents the color value, f represents the MLP
network and Fh represents the features output by fs

hand.
We define the hand skeleton pose as J ∈ Rnj×3 (nj=21
is the hand joint number), which can be used to calculate
the bone transformation B−1 ∈ Rnj×4×4 and the posi-
tion of each joint in canonical pose T ∈ Rnj×3 as used in
HALO [23]. Thus each sampling point x can be converted
to the local bone coordinate systems by:[

q
1

]
= B−1

[
x
1

]
−
[
T
1

]
. (2)

Inspired by A-NeRF [45], we calculate the components
of the embedding vectors by v = ∥q∥2, h(v) = 1 −
S(τ(v − v̄)) and r = q

v , where S(·) represents the Sig-
moid operation, v̄ represents the cutoff point, τ repre-
sents the sharpness, and γ(·) represents the positional en-
coding. We combine them as embedding vectors esh =
[h(v)γ(v), h(v)γ(r)] and feed it into fs

hand to get SDF

value. Then we add nhand in the embedding vector as ech =
[h(v)γ(v), h(v)γ(r), Fh, γ(nh)] and feed it into f c

hand to
get color value. Similar to NeuS [48], we use sdfh to get
opaque density ρh by:

ρh(t) = max

(
−dΦz

dt (fs
hand(x(t)))

Φz(fs
hand(x(t)))

, 0

)
, (3)

where Φz(x) = (1 + e−zx)−1 and z is a learnable scalar.
More details can be found in the supplementary material.
Object Neural Rendering Model. Our goal is to generate
an object model that can be controlled by the object 6D pose
(Bottom of Fig. 2). We can use object 6D pose Ro ∈ R3×3

and To ∈ R3 to transform the object from the object coordi-
nate to the world coordinate. For each sampling point x, we
first convert it to the object model coordinate system with
inverse transformation qo = R−1

o (x−To), then encode qo

to the embedding vector, and feed it to the object model to
get SDF sdfo and color co values. Our object model can be
formulated as:

fs
obj(x(t),Ro,To) = sdfo, F o,

f c
obj(x(t),Ro,To, F

o,no) = co.
(4)

The ray direction under object coordinate system can
be expressed by lo = R−1

o d, and we define the normal
of x in object model as no. The embedding feature vec-
tor of fs

obj can be formulated as: eso = [γ(qo)] and the
embedding feature vector of f c

obj can be formulated as:
eco = [γ(qo), γ(lo), F

o, γ(no)].
Loss Function in Offline Stage. To learn hand and ob-
ject models, we mainly use color loss and mask loss to en-
courage rendered color Ĉ and mask M̂ to be closed to the
ground truth respectively. We also use Eikonal loss [11] to
regularize the SDF and follow [29] to use VGG loss. There-
fore, the total loss of hand model can be formulated as:

L = λcoLcolor + λmLmask + λeLeik + λvLV GG, (5)
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where Lcolor, Lmask and Leik are similar to NeuS [48],
λco,λm,λe and λv are loss weights.

3.2. Online Stage for Joint Model Fitting

3.2.1 Compositive Volume Rendering

Through the offline stage, we use the shape and appear-
ance priors of hands and objects to build neural models, and
then we fix the parameters of these models and optimize
the poses of hands and objects in the hand-object interac-
tion scene at online stage (Fig. 3). Given sparse-view im-
ages, we first use multi-view-based pose estimation meth-
ods [19, 3, 27] to obtain hand and object poses as initial-
ization. For each sampling point x, it passes through hand
and object models with initial poses to obtain [ρh, ch] for
hand and [ρo, co] for object, respectively. Then the render-
ing color and the foreground mask can be defined as:

Ĉ =

N∑
i=1

(Tiα
h
i c

h
i + Tiα

o
i c

o
i ), M̂ =

N∑
i=1

(Tiα
h
i + Tiα

o
i ),

Ti = exp

−
i−1∑
j

(ρh(j) + ρo(j))∆tj

 , (6)

where αi = 1−exp(−ρ(i)∆ti), ∆t is the sampling distance
between adjacent points along the ray, and N is the number
of sampling points along each ray.

3.2.2 Single-Frame Based Loss Function

We use render loss and pose regularizer loss to stabilize the
positions of objects and hands, and adopt the interaction
loss via SDF representation to avoid the penetration and en-
courage tight hand-object regions to be contact. Therefore,
the loss function in the joint model fitting on single frame
can be formulated as:

Lfit = Lrender + Lpose + Linteract. (7)

Render Loss. The render loss consists of color and mask
loss: Lrender = λcoLcolor + λmLmask.

Pose Regularizer Loss. Inspired by [45], we enforce the
refined pose to be similar to the initial pose as: Lpose =

λh∥J− Ĵ∥2+λo∥V− V̂∥2, where J and V are the refined
3D hand joints and object vertices, the Ĵ and V̂ are the es-
timations of hand poses and object vertices as initialization,
and λh and λo are loss weights.

Interaction Loss. The interaction loss includes penetration
loss for solving the penetration and contact loss for form-
ing reasonable contacts, which is defined as Linteract =
λpLp+λcLc, where Lp and Lc are the penetration loss and
the contact loss, and λp and λc are loss weights.

For a sampling point x, we calculate its SDF values for
hand model fs

hand(x) and object model fs
obj(x), and penal-

ize the SDF values of points, both the SDF values are neg-
ative, to become zero. The penetration loss Lp can be for-
mulated as: Lp = 1

|Nin|
∑

x∈Nin
−(fs

hand(x) + fs
obj(x)),

where Nin represents the points whose SDF values for both
hand model and object model are negative.

In order to encourage reasonable contact between
hand and object, we use contact loss Lc to en-
force the tight hand-object regions to contact: Lc =
1

|Nc|
∑

x∈Nc
(|fs

hand(x)| + |fs
obj(x)|), where Nc represents

the points with |fs
hand(x)|+ |fs

obj(x)| < ε (ε is set to 0.01).

3.2.3 Video-Based Loss Function

During online stage, our method can be also used for video
sequences. We add smooth loss Lsmo to reduce the pose
jitters between frames. In order to make the contact area
more stable and reduce sliding between hand and object,
we propose a new stable contact loss Lsta. Therefore, the
loss function in the joint model fitting for video sequences
can be formulated as:

Lfit,video = Lfit + Lsmo + Lsta. (8)

Smooth Loss. The smooth loss encourages velocity of hand
joints and object vertices to change smoothly: Lsmo =

1
Nt−1

∑Nt−1
i=1 µh∥Ji+1 − Ji∥2 + µo∥Vi+1 −Vi∥2, where

Nt is the frame number, and µh and µo are loss weights.
Stable Contact Loss. Although the above loss functions
are effective to get reasonable hand-object interaction re-
sults, there are still potential challenges. For example, the
contact loss Lc can effectively encourage contact for each
frame, yet there is sliding between the hand and the object
in the contact area. To address this issue, we design a new
stable contact loss to ensure reasonable and realistic hand-
object contact for input sequences (Fig. 4). We fix mesh
models for each object pre-built in offline stage, and extract
the initial contact vertices on the mesh, then we penalize the
inconsistent contact of the vertices between frames.

For frame i, we collect the initial contact vertices pi
1 =

Ri
ox

i
n +Ti

o on object surface, whose SDF value under the
hand model fs

hand(p
i
1) is negative, where xi

n represents the
contact vertices in object model coordinate. Then the ini-
tial contact vertices are transformed to the other frames us-
ing pj

1 = Rj
ox

i
n + Tj

o, and penalize the vertices whose
fs
hand(p

j
1) are positive (i.e. contact to non-contact) using

the loss L1 = max(fs
hand(p

j
1), 0). In order to avoid the de-

generacy of contact (i.e., a wrongly predicted contact vertex
of a frame could make its transformations in other frames
to be contacted), we also need to refrain the non-contact
object vertices from contacting with hand in other frames.
Specifically, we query the nearest non-contact object ver-
tex d(xi

n) to each contact point in frame i, where d(·) is a
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between two frames.

function to locate the closest object vertex to xi
n that is not

contact with hand. Then transform it to other frames pj
2 =

Rj
od(x

i
n)+Tj

o, and penalize the vertices with negative SDF
values for hand model fs

hand(p
j
2) (i.e. non-contact to con-

tact) using the loss L2 = |min(fs
hand(p

j
2), 0)|. Therefore,

the stable contact loss can be formulated as:

Lsta =
1

M

|Ns|∑
i=1

|Ns|∑
j ̸=i

(µsiL1 + µsoL2), (9)

where Ns represents the frames in which the number of con-
tact points xn is greater than zero, M is the total number of
frame pairs with object contact among the sequence, and
µsi and µso are loss weights.

4. Experiment
4.1. Datasets and Evaluation Metrics

HandObject. Since there is no real-world dataset that can
be used to train and evaluate our model, we use a multi-
camera system with 8 cameras to collect a hand-object inter-
action dataset named HandObject. It contains 85k images
with the resolution of 266× 230.
Synthetic DexYCB. There are no images taken only for
hand and object in the original DexYCB [5], which makes
it impossible to train our offline model. So we utilize
DexYCB to generate a synthetic dataset named Synthetic

DexYCB. We use Pytorch3d [43] to render images of 400×
400 and use the parametric hand texture model HTML [41]
to add texture on hands.

Evaluation Metrics. 1) We use the mean per joint position
error (MPJPE) to measure the accuracy of hand skeleton
pose. We follow [18] to use the average distance (ADD), av-
erage closest point distance (ADD-S) [52] and the value of
average distance (AD) for evaluation of object pose estima-
tion. We set ADD and ADD-S to be 15mm. 2) Rendering
quality is evaluated with PSNR, SSIM and LPIPS metrics
as [31]. 3) We follow [17] to use Penetration depth (mm)
and Intersection volume (cm3) to evaluate the interpenetra-
tion level. 4) To evaluate the effectiveness of smooth loss,
we use Acceleration error (mm/s2) [22] to measure the av-
erage difference between ground truth 3D acceleration and
predicted 3D acceleration of each hand joint (Acc-J) and
each object vertex (Acc-V) respectively. To evaluate the
effectiveness of our stable contact loss, we use the percent-
age of contact points IoU (PCI) as a new metric. We fix the
mesh model for each object, and calculate PCI by averaging
IoU of the contact vertices between adjacent frames.

Implementation Details. During offline stage, we train
hand/object models with a single GeForce RTX 3080 Ti,
costing 20 hours with 11.0 GB memory and 8 hours with
6.0 GB memory, respectively. We set λco, λm, λe to 1,
and set λv to increment from 0 to 1 after 10k iterations and
then keep it at 1 in Eq. 5. We form a training batch by ran-
domly sampling 441 rays from an image, with 64 coarse
sampling points and 64 fine sampling points. In the single-
frame model fitting part of the online stage (Sec. 3.2), we
first use render loss and pose regularizer loss to iterate over
each image 30 times, and the loss weights λco, λm, λh, and
λo are set to 1, 0.5, 100, and 5. Then the interaction loss
is added and iterates 25 times, where λh, λo, λp, and λc

are set to 30, 20, 20 and 30. We use the single-frame op-
timized pose as the initialization, and then add smooth loss
and stable contact loss for video-based model fitting. The
loss weight λco, λm, µh, µo, µsi, µso are set to 0.5, 0.25, 50,
50, 100 and 5. During the online stage, we sample 64 coarse
sampling points and 128 fine sampling points on a ray. The
optimization and rendering times for one frame are 3 min-
utes and 30 seconds, respectively.

4.2. Novel View Synthesis and Reconstruction

We show novel view synthesis and reconstruction of
hand and hand-object interaction in Fig. 5. Our models
contain realistic appearance and geometry details and can
achieve full 360 degree free-viewpoint rendering.

4.3. Comparison to State-of-the-art Methods

Pose Estimation. In hand pose estimation, we compare
with the state-of-the-art (SoTA) multi-view pose estimation
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Ground Truth Rendering Novel view synthesis Reconstruction

Figure 5: Novel view synthesis and reconstruction of hand and hand-object interaction scenes.

(a) Pose optimization

Initial pose Optimized pose

Penetration

(b) Optimization for a reasonable interaction

w/o 𝐿𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 w 𝐿𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡

(c) Scene editing

Input Rendering results

Replace hand Replace objectInputInput

Separation

Figure 6: (a) Effect of pose optimization in online stage with joint model fitting. Optimization can improve the pose accuracy.
(b) Effect of interaction loss. Interaction loss can facilitate to achieve reasonable hand-object interaction. (c) Editing of hand-
object interaction scenes. We can replace the hand, object models and change the poses to get realistic rendering results.

Method MPJPE ↓ AD ↓ ADD ↑ ADD-S ↑
CosyPose (CP) [27] - 21.10 60.46 84.20

I2L [32] 18.39 - - -
I2L+CP+Mesh Fitting 20.60 21.10 60.54 84.25

GHPT [3] 13.28 - - -
GHPT+CP+Ours 10.80 15.78 71.09 93.67

LT [19] 9.66 - - -
LT+CP+A-NeRF 9.22 20.94 61.01 84.39

LT+CP+Ours 9.09 15.95 70.73 93.20

Table 1: Comparison on pose estimaion with SoTA meth-
ods. High-quality rendering results with our method
are conducive to obtaining more accurate poses in the
rendering-based optimization.

methods including LT [19] and GHPT [3], a single view
pose estimation method I2L [32] and a fitting method based
on A-NeRF [45]. In object 6D pose estimation, we compare

with the SoTA multi-view method CosyPose [27]. During
comparison, we optimize the pose initialized by LT, GHPT
and CosyPose, and replace our hand model with A-NeRF
based hand model for pose refinement (i.e. ’LT+CP+A-
NeRF’). We also compare with the mesh-based fitting meth-
ods. I2L predicts the MANO parameters, and we use the un-
textured MANO hand mesh and the object mesh obtained
in the offline stage to optimize the pose by fitting without
color loss (i.e. ’I2L+CP+Mesh Fitting’). We show the re-
sults on HandObject under eight views in Table 1. We also
test the accuracy of pose estimation under different num-
ber views on HandObject and Synthetic DexYCB. Table 3
shows the hand pose estimation results compared with LT,
and the qualitative comparisons are demonstrated in the first
row of Fig. 6(a). Table 2 shows object pose estimation re-
sults compared with CosyPose, and the qualitative compar-
isons are shown in the second row of Fig. 6(a). We observe
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Ground Truth IBRNet InfoNeRF A-NeRF A-NeRF

(Zoom in)

Ours Ours 

(Zoom in)

Figure 7: Rendering quality comparison on the HandObject dataset. We zoom in the rendering results for demonstration. Our
method can achieve high-quality rendering results. Compared with A-NeRF [45] based hand model, our method preserves
more realistic details.

Object
8 views 6 views 3 views

CosyPose [27] Ours CosyPose [27] Ours CosyPose [27] Ours
AD ↓ ADD ↑ ADD-S ↑ AD ↓ ADD ↑ ADD-S ↑ AD ↓ ADD ↑ ADD-S ↑ AD ↓ ADD ↑ ADD-S ↑ AD ↓ ADD ↑ ADD-S ↑ AD ↓ ADD ↑ ADD-S ↑

Sy
nt

he
tic

D
ex

Y
C

B

002-master-chef-can 10.40 77.48 100.00 5.56 90.73 100.00 12.48 65.56 100.00 8.23 80.79 100.00 10.71 90.07 100.00 7.08 95.36 100.00
003-cracker-box 15.15 70.95 89.86 3.57 97.97 100.00 16.98 60.81 91.89 5.94 90.54 100.00 15.98 72.97 89.86 6.73 93.24 97.30

006-mustard-bottle 45.10 6.54 73.20 31.93 53.59 97.39 48.81 13.73 60.13 35.63 43.14 87.58 45.99 7.84 67.97 34.37 38.56 91.50
010-potted-meat-can 27.58 23.02 90.65 11.38 76.98 100.00 37.47 8.63 84.89 26.95 48.92 99.28 28.27 28.06 78.42 15.88 69.78 99.28

011-banana 29.29 36.55 60.00 13.53 69.66 95.86 33.91 26.90 51.72 19.17 45.52 87.59 46.85 22.07 42.76 44.01 37.24 73.10

H
an

d-
O

bj
ec

t bean-can 19.43 62.65 90.62 16.86 66.83 93.80 23.84 49.92 87.10 20.91 57.45 91.12 21.46 58.63 87.94 21.06 59.30 88.44
box 20.59 59.39 87.43 14.95 76.55 95.57 23.47 51.65 80.10 18.35 66.16 91.54 35.44 26.35 53.26 32.75 33.28 59.31
cup 25.72 52.07 74.01 17.79 61.76 90.13 18.10 60.53 92.25 14.18 76.04 96.74 27.19 33.92 73.39 24.76 39.03 79.82

meat-can 15.35 75.64 90.13 13.74 79.14 93.47 15.21 71.97 92.52 13.71 77.23 94.11 21.03 47.29 86.46 19.56 54.14 89.49

Table 2: Comparison of object pose estimation under different camera views on HandObject and Synthetic DexYCB.

that our method outperforms the SoTA methods. Benefit-
ing from the pre-built models, our method can exploit more
dense supervision on image pixels than sparse keypoint su-
pervision in LT, I2L, GHPT and CosyPose. Compared with
A-NeRF hand model based fitting, our high-quality render-
ing models are conducive to obtaining more accurate poses.
Compared with untextured mesh based fitting, we find that
it is inferior to the color loss to provide sufficient constraints
to achieve accurate pose.

Object 8 views 6 views 3 views
LT [19] Ours LT [19] Ours LT [19] Ours

Sy
nt

he
tic

D
ex

Y
C

B

002-master-chef-can 9.61 7.84 10.08 8.21 15.57 13.65
003-cracker-box 10.72 9.87 12.09 11.25 12.06 11.03

006-mustard-bottle 9.15 7.73 10.22 8.58 10.74 9.31
010-potted-meat-can 8.27 7.08 8.68 7.62 12.06 10.62

011-banana 11.21 10.53 11.67 10.98 13.50 13.47

H
an

d-
O

bj
ec

t bean-can 8.85 8.07 9.31 8.17 14.05 11.98
box 9.63 9.29 10.25 9.89 17.81 16.73
cup 10.51 9.89 11.12 10.45 16.19 15.29

meat-can 8.97 8.20 9.46 8.50 15.33 13.50

Table 3: MPJPE (mm) of hand pose estimation under differ-
ent view numbers on HandObject and Synthetic DexYCB.

Method PSNR ↑ SSIM ↑ LPIPS ↓
IBRNet [49] 17.02 73.75 0.291

InfoNeRF [25] 18.70 87.92 0.161
A-NeRF [45] 21.99 93.40 0.066

Ours 22.20 93.71 0.059

Table 4: Quantitative comparison of rendering quality.

Rendering Quality. We compare the rendering quality
in hand-object interaction scenes with A-NeRF [45], IBR-
Net [49] and InfoNeRF [25] on HandObject dataset under
five test views. Table 4 shows quantitative comparison, and
Fig. 7 shows qualitative comparison. We replace our hand
model with A-NeRF based hand model and use the same
object model for fitting and rendering (i.e. ’A-NeRF’). The
rendering results with our method perform better than oth-
ers, because our offline models provide strong shape and
appearance priors which are more suitable for few-shot neu-
ral rendering. Compared to the density representation in A-
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Object Lrender + Lpose Lrender + Lpose + Linteract

MPJPE ↓ AD ↓ Int-Vol ↓ Pen-Dep ↓ MPJPE↓ AD ↓ Int-Vol ↓ Pen-Dep ↓

Sy
nt

he
tic

D
ex

Y
C

B

002-master-chef-can 8.60 6.06 8.54 9.65 7.84 5.56 4.87 6.09
003-cracker-box 9.97 4.43 5.84 13.09 9.87 3.57 3.60 6.36

006-mustard-bottle 8.16 32.71 6.68 8.73 7.73 31.93 2.07 3.08
010-potted-meat-can 7.19 12.09 4.39 9.22 7.08 11.38 1.58 1.88

011-banana 10.71 14.19 2.17 5.34 10.53 13.53 0.93 1.54

H
an

d-
O

bj
ec

t bean-can 7.72 16.92 4.95 6.28 8.07 16.86 3.17 3.52
box 9.23 15.18 6.91 11.12 9.29 14.95 5.79 8.68
cup 9.77 17.89 5.00 9.14 9.89 17.79 4.26 6.82

meat-can 7.90 13.81 4.26 6.50 8.20 13.74 3.23 3.85

Table 5: Effect of interaction loss on Interpenetration level.

Datasets Lfit Lfit + Lsmo Lfit + Lsmo + Lstable

Acc-J↓ Acc-V↓ PCI↑ Acc-J↓ Acc-V↓ PCI↑ Acc-J↓ Acc-V↓ PCI↑
Synthetic DexYCB 8.04 26.76 10.98 6.78 19.51 17.38 7.51 19.18 35.02

HandObject 6.28 10.07 29.68 6.20 6.35 36.37 6.25 6.10 51.18

Table 6: Effect of smooth loss and stable contact loss. Smooth loss will reduce pose jitters with lower acceleration error, and
stable contact loss will make the contact area more stable with higher PCI.

NeRF, the SDF representation in our model makes the shape
sharper.

4.4. Ablation Study

Effect of Interaction Loss. We compare the interpene-
tration level as shown in Table 5 and Fig. 6(b). We ob-
serve that our model with interaction loss can achieve ex-
cellent performance on Penetration depth (Pen-Dep) and
Intersection volume (Int-Vol), i.e., while only sacrificing
negligible performance drop in hand pose. We also com-
pare the rendering quality on the HandObject dataset as
shown in Table 7. After fitting (i.e. ’Lrender + Lpose’,
’Lrender + Lpose + Linteract’), the rendering quality be-
comes better. The interaction loss Linteract can further
improve the rendering quality, because the incorrect color
caused by unreasonable interactions such as penetration can
be reduced by the loss.

Method PSNR ↑ SSIM ↑ LPIPS ↓
w/o Lfit 22.07 93.32 0.0622

Lrender + Lpose 22.17 93.54 0.0607
Lrender + Lpose + Linteract 22.25 93.57 0.0605

Table 7: Effect of interaction loss on rendering quality.

Effect of Smooth Loss and Stable Contact Loss. Table 6
shows the results on acceleration error and PCI. Compared
with applying Lfit only, we observe that the smooth loss
can reduce pose jitters and lead to smoother pose change

with lower acceleration error. After adding stable contact
loss, the PCI values increase, indicating the contact regions
tend to be stable, and acceleration error on object pose is
also reduced, indicating a further reduction in object jitters.

4.5. Hand-Object Interaction Editing

Our model can be driven by controllable variables such
as hand pose J, object pose Ro and To. We can edit hand-
object interaction scenes, including replacing hand or object
models, and poses as shown in Fig. 6(c).

5. Conclusion

We propose a novel neural rendering and pose estima-
tion system for hand-object interaction from sparse view
images. We design a two-stage approach (i.e. offline model
building and online model fitting) to achieve accurate hand-
object pose estimation and photo-realistic novel view syn-
thesis. We utilize effective geometric constraints to conduct
rendering-based online model fitting. Various experiments
demonstrate that our method outperforms the SoTA pose
estimation and few-shot neural rendering methods. In the
future work, we will take into account lighting conditions
to reduce unrealistic results caused by shadows from differ-
ent illuminations and improve the efficiency of our method
with Instant-NGP [33].
Acknowledgments. This work was supported in part by
National Key R&D Program of China (2022ZD0117900).

15108



References
[1] Sridhar Pandian Arunachalam, Sneha Silwal, Ben Evans, and

Lerrel Pinto. Dexterous imitation made easy: A learning-
based framework for efficient dexterous manipulation. arXiv
preprint arXiv:2203.13251, 2022.

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5855–5864,
2021.

[3] Kristijan Bartol, David Bojanić, Tomislav Petković, and
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