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Abstract

This paper addresses the problem of rolling shutter cor-
rection in complex nonlinear and dynamic scenes with ex-
treme occlusion. Existing methods suffer from two main
drawbacks. Firstly, they face challenges in estimating the
accurate correction field due to the uniform velocity as-
sumption, leading to significant image correction errors
under complex motion. Secondly, the drastic occlusion
in dynamic scenes prevents current solutions from achiev-
ing better image quality because of the inherent difficul-
ties in aligning and aggregating multiple frames. To tackle
these challenges, we model the curvilinear trajectory of pix-
els analytically and propose a geometry-based Quadratic
Rolling Shutter (QRS) motion solver, which precisely esti-
mates the high-order correction field of individual pixels.
Besides, to reconstruct high-quality occlusion frames in dy-
namic scenes, we present a 3D video architecture that effec-
tively Aligns and Aggregates multi-frame context, namely,
RSA2-Net. We evaluate our method across a broad range of
cameras and video sequences, demonstrating its significant
superiority. Specifically, our method surpasses the state-
of-the-art by +4.98, +0.77, and +4.33 of PSNR on Carla-
RS, Fastec-RS, and BS-RSC datasets, respectively. Code is
available at https://github.com/DelinQu/qrsc.

1. Introduction
The rolling shutter (RS) mechanism widely integrated in

consumer video cameras continues to gather photos during
the acquisition process, thus effectively increasing sensitiv-
ity [10]. The RS cameras donate CMOS sensors and scan
the scene sequentially instead of instantly taking a snapshot
of the entire scene, like the global shutter (GS) using the
CCD sensor [19]. The time slot between consecutive scan
lines causes motion artifacts called the RS effect, e.g., wob-
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Figure 1: Illustration of the challenges in complex nonlinear
motion and dynamic scenes with occlusion. The proposed
method models the curvilinear trajectory and reconstructs
the high-quality occlusion region from adjacent frames of
the video stream. In contrast, the state-of-the-art fails to
correct the pole and causes significant unaligned artifacts
on the bottom right car.

ble and skew, under extreme motion conditions [1]. In ad-
dition to the detrimental visual artifacts, the RS effect dam-
ages numerous 3D vision algorithms based on GS assump-
tions, such as camera pose estimation [1, 4], structure-from-
motion [34] and SLAM [20, 17]. Therefore, rolling shutter
correction (RSC) is significant in photography and has at-
tracted considerable research attention in the last decades.

Existing works on RS correction are generally cate-
gorized into single-frame and multi-frame methods. The
single-frame methods are based on strict geometric assump-
tions [27, 24] or simplified camera motion [26, 15], thus
obtaining unsatisfied results in complex scenes. In compar-
ison, multi-frame methods are more sensible and achieve
higher performance [36]. Typically, the correction field be-
tween two frames is estimated by a neural block [28] to re-
cover the GS frame [18, 2, 7]. Nevertheless, existing RSC
methods cannot produce satisfying results because of the
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following limitations:
1) Complex higher-order motion: Current methods

based on cost volume [18, 35, 30, 2] face challenges in esti-
mating the accurate correction field since the field cannot be
effectively supervised during training [2]. Besides, RSC so-
lutions depending on optical flow use the uniform velocity
assumption [5, 7, 25], ignoring the nonlinear movements.
However, the motion in real scenes can be complex and
variable, and the inaccuracy of correction fields will accu-
mulate row by row and eventually lead to significant image
correction errors e.g., the distorted pole and house corrected
by AdaRSC [2] in Fig. 1.

2) Scene occlusion: As shown in Fig. 1, object edge
occlusion around the entity and image border occlusion pre-
vent RSC solutions from better image synthetic quality. De-
spite the most recent multiple frames method [7, 2] trying
to compensate for occluded pixels from consecutive frames,
the visual performance cannot satisfy the regular applica-
tion due to the inherent difficulties in aligning and aggre-
gating multiple frames.

To address the challenges, we model the curvilinear tra-
jectory of pixels analytically and propose a geometry-based
Quadratic Rolling Shutter (QRS) motion solver, which pre-
cisely estimates the high-order correction field of individ-
ual pixel based on the forward and backward optical flows.
Benefiting from the rigorous modeling of the RS mecha-
nism, the QRS motion solver demonstrates a strong gener-
alization performance across various datasets and handles
RS temporal super-resolution tasks [5]. Besides, to recon-
struct high-quality occlusion frames in extreme scenes, we
present a 3D video architecture which effectively Aligns
and Aggregates multi-frame context, namely, RSA2-Net.
Tab. 1 exhibits the superiority of the proposed method, and
our contributions can be summarized as follows:

• We analytically model the trajectory in complex non-
linear movements and present a novel geometry-based
quadratic rolling shutter motion solver that precisely esti-
mates the high-order correction field of individual pixels.

• We propose a self-alignment 3D video architecture for
high-quality frame aggregation and synthesis against ex-
treme scene occlusion.

• A broad range of evaluations demonstrates the signif-
icant superiority and generalization ability of our pro-
posed method over state-of-the-art methods.

2. Related Work
Single-frame models. To simplify the RSC problem, many
works apply different geometric assumptions, such as the
straight lines kept straight in [27], vanishing direction
restraint in [24, 23], and analytical 3D straight line RS

Table 1: Comparison of the proposed method vs. the state-
of-the-art RSC solutions.

Method
DSfM
[36]

DSUN
[18]

JCD
[35]

SUNet
[6]

RSSR
[5]

AdaRSC
[2]

CVR
[7] Ours

Dynamic Scene
√ √ √ √ √ √ √

Occlusion Scene
√ √

High-order Motion
√ √

Temporal Super-Resolution
√ √ √

projection model in [15]. Besides, the simplified cam-
era motion is also applied, for instance, the rotation-only
model [26, 24, 15] and Ackerman model [24]. Moreover,
the first learning-based model is proposed in [26] to remove
RS from a single distortion image, and Zhuang et al. [38]
further proposed Convolutional Neural Network (CNN)-
based method to learning underlying geometry and recover
GS image. Recently, Wang et al. [33] present an RS re-
moval model with the global reset feature (RSGR). Never-
theless, single-frame models either rely on strong assump-
tions or depend on inconspicuous features, which causes an
unsatisfactory performance.
Multi-frame models. Multi-frame methods can be catego-
rized into classical and learning-based models. For the clas-
sical multi-frame methods, the works [9, 14] and [32, 37]
modelled the motion between RS frames as a mixture of
homography matrices for general unordered RS images and
two consecutive frames, respectively. Qu et al. [25] pro-
posed a pixel-wise pose-free correction solver that corrects
a single image pixel parametrically by rescaling its corre-
sponding optical flow vector. Besides, Zhuang et al. [36]
developed a solution to estimate relative poses from two
consecutive frames and recover GS images based on the dif-
ferential epipolar constraint under constant velocity and ac-
celeration. However, they either rely on simplified camera
motion models or need prior lens calibration.

The learning model based on multiple frames can be di-
vided into motion-field-based and flow-based methods. The
former usually computes the cost volumes [28] by a corre-
lation layer to obtain the motion field between two frames.
For example, Liu et al. [18] designed a deep shutter un-
rolling network to predict the GS image from two consecu-
tive RS Frames, and Fan et al. [6] present a pyramidal con-
struction to recover the GS image. Besides, Zhong et al.
[35] design an architecture with a deformable attention fea-
tures fusion module handling both RS distortion and blur.
Recently Cao et al. [2] propose an adaptive warping mod-
ule to warp the RS features into the GS one with multiple
displacement fields. Nevertheless, the motion-field-based
methods indirectly estimate the correction field, needing ad-
equate supervision[2]. As for flow-based methods, [5], and
[7] formulate the RS undistortion flows under the constant
velocity assumption indirectly and develop networks to re-
cover RS undistortion from optical flow. However, current
flow-based methods ignore the nonlinear movements, thus,
fail in complex motion scenes.
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Figure 2: Overview of the proposed method. We aim to estimate precise correction fields in nonlinear motion with the QRS
motion solver and synthesize high-quality frames against dynamic scenes with extreme occlusion by a self-alignment 3D
video architecture RSA2-Net.

3. Methodology

3.1. Overview

Our method aims to estimate precise correction fields
in complex nonlinear motion and synthesize high-quality
frames against dynamic scenes with occlusion. As shown
in Fig. 2, the proposed method receives a video stream, typ-
ically 5 frames, and precisely corrects the RS images with
a geometry-based Multi-QRS motion solver. Then, a 3D
video encoder-decoder architecture extracts the preliminary
multi-scale features of corrected frames. After that, the hi-
erarchical RSAdaCof modules align and warp the features
to produce a final synthetic high-quality GS frame.

3.2. RSC Formulation

As the rolling shutter mechanism shown in Fig. 3, the
CMOS sensor scans the 3D scene sequentially, and every
scanline holds a motion relevant to the row corresponding
to the differential timestamp and readout time ratio γ. Pre-
vious work [18] proposes that the GS frame can be recov-
ered by warping the RS features backwards with predicted
displacement filed from GS to RS frame Ug→r. However,
every single timestamp τ between two consecutive frames
corresponds to a GS frame, so it is more significant to model
the RSC in the entire time series:

Ig(τ)(m) = Ir
(
m+Ug(τ)→r

)
, (1)

where Ig(τ) denotes the potential GS frame at timestamp
τ . Ir is the source RS frame. m is a specific pixel and
Ug(τ)→r is the correction field from GS to RS frame. Re-
lying on many established forward or backward warp tech-
niques (e.g., bilinear interpolation, DFW [18], and softmax
splatting [22]), existing methods achieve pleasing results for
a given precise Ug(τ)→r. Therefore, calculating the correc-
tion field from GS to RS frame is the critical factor of RSC.

ro
w

s

time
0

1
…

h

-1 0

readout ratio

1

exposure time readout time

Figure 3: Illustration of the rolling shutter exposure mecha-
nism among three consecutive frames. The interval time is
normalized to [0, 1], and our goal is to synthesize GS frames
at any time τ ∈ [0, 1].

3.3. Quadratic Rolling Shutter Motion Solver

To address the correction field estimation problem un-
der complex nonlinear motion, we focus on presenting a
precise high-order motion solver for practical variable ve-
locity and dynamic scenes. As the motion scheme shown
in Fig 4, assuming a 3D point P is projected to the con-
secutive three RS image planes IRS

−1, IRS
0 and IRS

1 as im-
age points mRS

−1 = [xRS
−1, y

RS
−1]

⊤, mRS
0 = [xRS

0 , yRS
0 ]⊤, and

mRS
1 = [xRS

1 , yRS
1 ]⊤, respectively. Despite the fact that the

time slot between consecutive frames is extremely tempo-
rary, pixels may still follow complex curvilinear movements
ζ(t). According to the derivative definition, we use the
second-order Taylor expansion around t0 to formulate as:

ζ(t) ≈ ζ (t0) + ζ̇ (t0) (t− t0) +
1

2
ζ̈ (t0) (t− t0)

2
. (2)

Considering the trajectories from mRS
0 to mRS

−1 and mRS
1 ,

respectively, we obtain:[
(ζ(t−1)− ζ (t0))

⊤

(ζ(t1)− ζ (t0))
⊤

]
=

[
(t−1 − t0)

(t−1−t0)
2

2

(t1 − t0)
(t1−t0)2

2

]
M,

M =
[
ζ̇(t0) ζ̈(t0)

]⊤
,

(3)

where t−1, t1 are the timestamp of mRS
−1 and mRS

1 . The ma-
trix M of shape 2 × 2 measures the quadratic motion of
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pixels mRS(t) at t. Note that the optical flow is the pattern
of apparent motion of image objects between two consec-
utive frames. Thus, the differences of trajectory ζ(t) are
equivalent to the flow vectors uRS

0→−1 from mRS
0 to mRS

−1

and uRS
0→1 from mRS

0 to mRS
1 .

uRS
0→−1 = ζ(t−1)− ζ (t0) ,u

RS
0→1 = ζ(t1)− ζ (t0) . (4)

According to the scanning mechanism illustrated in Fig. 3,
the relative time can be expressed as:

t0→−1 = t−1 − t0 = −1 +
γ

h
(yRS

−1 − yRS
0 ),

t0→1 = t1 − t0 = 1 +
γ

h
(yRS

1 − yRS
0 ).

(5)

Given the optical flow vectors uRS
0→−1, uRS

0→1 and the rel-
ative times t0→−1, t0→1, we can solve the square system
of linear equations in Eq. (3) and obtain the quadratic mo-
tion matrix M efficiently. Thus, we faithfully compute the
correction vector ucorr

0→τ from mRS
0 to any timestamp τ by

using:
ucorr
0→τ

⊤ =
[
t0→τ

t20→τ

2

]
M,

t0→τ = τ − t0 = τ − γ

h
yRS
0 .

(6)

Prime QRS motion solver: By given three consecutive RS
images IRS

-1 , IRS
0 and IRS

2 , the RS distribution point mRS
0 can

be corrected to corresponding GS image measurement mGS
τ

at any timestamp τ by following transform:

mGS
τ = mRS

0 + ucorr
0→τ

= mRS
0 +M⊤

[
t0→τ

t20→τ

2

]⊤
.

(7)

With the precise correction field calculated by QRS mo-
tion solver, RS frame IRS

0 can be effectively restored to cor-
rected frame IRSC

τ , by adapting a general bilinear interpola-
tion technique mentioned in Sec. 3.2. As the sample IRSC

τ,0

(green box) shown in Fig. 5, the proposed prime QRS mo-
tion solver is significantly superior to the state-of-the-art [7]
according to the visual comparison result without consider-
ing image border occlusion.

3.4. Self-aligning Multi-QRS motion solver

Although the prime QRS motion solver accurately cor-
rects RS pixels to GS pixels, the object edge occlusion and
image border occlusion in Fig. 1 cannot be restored by the
solver. Existing works attempt to compensate these oc-
cluded pixels from consecutive two frames [7] by a masked
linear aggregation or three [2] frames via a self-attention-
based warping module. Nevertheless, except for accurate
corrected vector field estimation, they suffer from inherent
difficulties in aligning and aggregating multiple frames.
Multi-QRS motion solver: In order to address the above
problem, we design a self-aligning algorithm by extending

Relative Time:

Figure 4: Illustration of the quadratic motion solver mech-
anism among three consecutive RS frames. The object
moves at variable velocity and has a complex curvilinear
trajectory. Note that the object has only 2 Dof in the image
plane, and the time interval between frames is very small.
Thus, we use a quadratic motion model to formalize the
curvilinear trajectory of the pixel.

the QRS motion solver to a video sequence. Considering
a consecutive RS video sequence I{0,1,··· ,N−1} consisting
of N frames, we aim to correct all the pixels mRS

i from
the neighbour frames IRS

i , IRS
i ∈ I{0,1,··· ,N−1} to time τ ,

usually in the intermediate, for occlusion elimination and
obtain IRSC

τ,i . Replacing −1, 0 and 1 with i − 1, i and i + 1
at Eq. (2-6) in order we obtain:

mGS
τ,i = mRS

i +M⊤
i

[
ti→τ

t2i→τ

2

]⊤
,

ti→τ = τ − ti = τ − γ

h
yRS
i , i ∈ [1, N − 2] ,

(8)

where ti→τ is the relative time from time ti to τ . The matrix
Mi denotes the quadratic motion of mRS

i . And the mGS
τ,i is

the corrected GS pixel from mRS
i = [xRS

i , yRS
i ]⊤. The Multi-

QRS motion solver corrects pixels on different RS frames
and naturally aligns pixels to time τ by Eq. (8), which ac-
curately models the timeline of the consecutive frames. As
shown in Fig. 5, RS frames IRS

−1, IRS
0 and IRS

1 are warped to
time τ to obtain IRSC

τ,−1, IRSC
τ,0 and IRSC

τ,1 . By contributing a
simple average fusion, we achieve a seamless and complete
composite overlayed image.

3.5. 3D Video RSA2-Net

Given the corrected frames IRSC
τ,1 , IRSC

τ,2 , · · · , IRSC
τ,N−2,

we aim to eliminate extreme occlusions and synthesize a
high-quality GS frames IGS∗

τ through the multi-frame fusion
function:

IGS∗
τ = f(IRSC

τ,1 , IRSC
τ,2 , · · · , IRSC

τ,N−2;θ), (9)

where θ is the parameters of function f . We developed a 3D
RS video encoder-decoder architecture RSA2-Net, which
receives a video RSC stream and correction fields, to seek
the fusion function f for extreme occlusions elimination
and high-quality GS frames synthetic.
Model Architecture: As shown in Fig. 2, the RSA2-Net
comprises a 3D video encoder (which is a 3D-transformer
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Overlayed ImagesCVRRS

Figure 5: An example of the proposed Multi-QRS motion
solver correcting from 5 frames. The overlapping image is
directly average from three RSC image pixels.

in our model), the sequentially arranged Decode Layer, and
iterative RSAdaCof modules. The encoder receives the se-
quence input of shape B × T × C ×H ×W , which is con-
catenated from consecutive frames and the corresponding
correction field ucorr

i→τ obtained by the Multi-QRS motion
solver. Then 3D video encoder encodes the input in four
stages to obtain the multi-scale features, where B, C, T , H ,
and W respectively denote the batch size, channel, time,
height, and width dimensions. The Encoded features are
decoded with three times 2× upsampling, and then hierar-
chically warped by the RSAdaCof model at scale l, where
l ∈ {1, 2, 3}, to produce a final synthetic high-quality GS
Frame IGS∗

τ .
RSAdaCof Warping: Multi-frames are aligned to a spe-
cific time τ , as shown in Fig. 6. However, slight horizontal
or vertical offsets might exist between the RSC pixel and
GS pixel in extreme motion, which is not fully modeled
by the QRS motion solver. Inspired by the AdaCof [16]
and [29], we adopt three CNN-based offset Nets to obtain
the per-pixel deformable kernels, which represent offsets
αl

i(k, x, y) and βl
i(k, x, y), and the weights W l

i (k, x, y), for
frame IRSC

τ,i,l at scale l. Thus, the intermediate pixel Ol
i(x, y)

at position [x, y]⊤ of frame IRSC
τ,i,l is:

Ol
i(x, y) =

∑K
k=1 W

l
i (k, x, y)I

RSC
τ,i,l

(
x+ αl

i(k, x, y), y + βl
i(k, x, y)

)
, (10)

where K is the number of sampling locations of each ker-
nel. To align and aggregate the incomplete pixel region and
the complete pixel region shown in Fig. 6, we use a CNN
with softmax layer to predict the mask M l

i corresponding to
frame IRSC

τ,i,l . However, considering the RS scanline mech-
anism, different pixels hold individual relative positions,
and the quadratic model degrades gradually with increasing
temporal distance (imagine using RS Frames at t to recover
GS frames at infinity time τ ). Thus, we propose to dilute
the degradation using the nearest neighbor principle, which
uses completely independent differential temporal distances

… …

… …

Complete pixel region Incomplete pixel region

Figure 6: Illustration of the multi-frames alignment and fu-
sion scheme. Slight offsets exist between the aligned pixels
in extreme motion, and incomplete regions cover only pix-
els from the individual frame.

(time grid tgl) to weigh the intensities of different pixels:

Ol =
∑
i

(1− tgl

Sl
tg

)M l
i ·Ol

i, tgl =

∣∣∣∣τ +

⌊
N − 2

2

⌋
− i− γ

hl
yl
∣∣∣∣ ,

Sl
tg =

N−2∑
i

tgl, i ∈ [1, N − 2] ,

(11)

where hl and yl denote the image height and differential
time grid at scale l. Note that the BS-RSC [2] dataset retains
the γ = 0.45, meaning there are 55% blank rows between
two consecutive frames. And this ultra-long time distance
is a huge challenge for network training, so in general, we
fix γ = 1 in RSAdaCof for rapid convergence.

3.6. Loss Functions

Following [35, 2], we use the Charbonnier loss Lc and
perceptual loss Lp to ensure the synthetic visual quality,
and the MSE Lmse to avoid the extreme pixels. A simple
but effective multi-loss balancing technique is adapted, i.e.
scaling them to the same scale as the first. Thus total loss
can be formulated as follows:

L = Lc + λpLp + λmseLmse,

λp =
|Lc|
|Lp|

, λmse =
|Lc|

|Lmse|
.

(12)

4. Experiment
4.1. Experimental Setup

Datasets. We evaluate the proposed RSC method on the
Carla-RS, Fastec-RS [18], BS-RSC [2], and ACC datasets.
The synthetic Carla-RS contains general 6-DoF camera mo-
tions, and Fastec-RS holds multiple challenging dynamic
scenes. Besides, the lately released real-world dataset BS-
RSC [2] consists of nonlinear movements. Moreover, we
derived the ACC dataset, which comprises more challeng-
ing variable movements, by excluding frames with con-
stant general motions from the BS-RSC dataset (details can
be found in the supplementary material). In addition, we
provide more visual comparisons on other datasets in the
supplementary material, including GPark [11], Seq77 [13],
3GS and House [8].
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Table 2: Quantitative comparison against the state-of-the-
art RSC methods on the Carla-RS dataset.

PSNR ↑ (dB) SSIM ↑(dB) LPIPS ↓Method CRM CR CR CR

DSfM [36] 24.20 21.28 0.775 0.1322
DiffHomo [37] 19.60 18.94 0.606 0.1798

DSUN [18] 26.90 26.46 0.807 0.0703
SUNet [6] 29.28 29.18 0.850 0.0658
RSSR [5] 30.17 24.78 0.867 0.0695
VideoRS [21] 31.84 31.43 0.919 ——–
CVR [7] 32.02 31.74 0.929 0.0368

Ours 37.00 32.01 0.933 0.0253

Evaluation Metrics and Comparison methods. We use
the PSNR, SSIM, and LPIPS to evaluate the quantitative re-
sults of RSC methods. In Sec. 4.2, we report the Carla-RS
with the mask (CRM), Carla-RS without the mask (CR),
Fastec-RS (FR), BS-RSC (BR), and ACC. Note that to
force our method to fully integrate information among ad-
jacent frames, the GS frames corresponding to the mid-
dle row are donated as supervision, and τ is set to 0.5 γ.
We compare the proposed method with state-of-the-art RSC
methods, including geometry-based methods DSfM [36],
DiffHomo [37], and learning-based methods DSUN [18],
SUNet [6], JCD [35], RSSR [5], VideoRS [21], CVR [7]
and AdaRSC [2]. The models of most methods are unavail-
able on BS-RSC as it’s recently released, so we collected
the models of DSUN and JCD provided by Cao et al. [2] and
trained CVR [7] model on BS-RSC dataset using official re-
leased code. (Experiments of temporal super-resolution can
be found in the supplementary material).
Implementation Details. We use RAFT [31] and
GMA [12] of OpenMMLab Optical Flow Toolbox [3] to
predict optical flow from the N = 5 consecutive RS frames,
followed by Multi-QRS motion solver to predict the correc-
tion fields and obtain the latent occluded three RSC frames.
Besides, we set the image readout ratio γ for Carla-RS,
Fastec-RS, BS-RSC, and ACC datasets to 1.0, 1.0, 0.45,
and 0.45, respectively, based on the intrinsic parameters of
each dataset. The model is trained for 80 epochs using the
Adam optimizer with learning rate 1e−4, batch size 4, and
StepLR scheduler with gamma 0.1 and step size 25.

4.2. Quantitative Analysis

Results on Carla-RS and Fastec-RS. The results reported
in Tab. 2 and Tab. 3 show that the proposed method out-
performs the other eight RSC methods by large margins
on both datasets, especially 37.00 (PSNR) compared to
32.02 on CRM and 0.0814 (LPIPS) against 0.1107 on FR
achieved by CVR [7]. These superior performances signif-
icantly demonstrate the effectiveness of our model on gen-
eral 6 Dof and highly dynamic scenes with occlusion.

Table 3: Quantitative comparison against the state-of-the-
art RSC methods on the Fastec-RS dataset.

Method PSNR ↑ (dB) SSIM ↑(dB) LPIPS ↓
DSfM [36] 20.14 0.701 0.1789
DiffHomo [37] 18.68 0.609 0.2229

DSUN [18] 26.52 0.792 0.1222
SUNet [6] 28.34 0.837 0.1205
JCD [35] 24.84 0.778 0.1070
RSSR [5] 21.23 0.776 0.1659
VideoRS [21] 28.57 0.844 ——–
AdaRSC [2] 28.56 0.855 0.0793
CVR [7] 28.72 0.847 0.1107

Ours 29.49 0.872 0.0814

Table 4: Quantitative comparison against the state-of-the-
art RSC methods on the BS-RSC and ACC datasets.

Method PSNR ↑ (dB) SSIM↑(dB) LPIPS↓
BR ACC BR ACC BR ACC

DSfM [36] 19.80 15.74 0.698 0.551 0.2437 0.2544
DSUN [18] 23.60 22.39 0.808 0.780 0.1035 0.1145
JCD [35] 24.86 23.73 0.820 0.808 0.1897 0.1961
CVR [7] 24.58 24.07 0.823 0.816 0.0795 0.0822
AdaRSC [2] 29.17 28.73 0.896 0.892 0.0617 0.0637

Ours 33.50 33.36 0.946 0.945 0.0299 0.0303

Results on BS-RSC and ACC. The quantitative compar-
ison on the real-world curvilinear movement BS-RSC and
ACC datasets is shown in Tab. 4. The proposed method
dramatically surpasses the existing five RSC methods with
a PSNR score of 33.50 and an SSIM score of 0.946 com-
pared to 29.17 and 0.896 achieved by the second-best entry
AdaRSC on the BS-RSC dataset. Note that all the other
methods produce a significant drop when testing on ACC,
but our method remains stable. It demonstrates the effec-
tiveness and robustness of our method in handling complex
motion and acceleration trajectories.

4.3. Visual Comparisons

Dynamic and occlusion scenes: The comparisons of dy-
namic and highly occluded scenes are reported in Fig. 7
containing various moving objects with different depths and
motions. Only the proposed method rectifies the poles back
to the right position naturally, while the others either fail in
correction (DSfM and DSUN) or produce artifacts on the
occlusion areas (AdaRSC and CVR), although CVR was
designed to handle occlusion.
Nonlinear Movements: As the results shown in Fig. 8, the
proposed method precisely restored the GS images in curvi-
linear motion. Similarly, all existing RSC solutions fail in
such a nonlinear scene because of the incorrectly estimated
correction fields. For example, the tree on the first row and
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Figure 7: Visual comparison against the state-of-the-art RSC methods in dynamic and occlusion scenes on Fastec-RS datasets.
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Figure 8: Visual comparison against the state-of-the-art RSC methods in nonlinear motion scenes of BS-RSC dataset.

pole on the third row are inaccurately corrected by DSfM,
JCD and CVR, and AdaRSC produces noticeable artifacts.
Besides, the sota methods CVR and AdaRSC cause signifi-
cant unaligned shadow when handling occlusion in nonlin-
ear scenes, e.g., the bottom right car of the third row (more
results can be found in the supplementary material).

4.4. Generalization Ability

To validate the generalization capability of the proposed
method, we performed cross-tests on three datasets and do-
nated a relative decline rate rde(i, k) for evaluation:

rdei,k = 1− scorei,k
scorek,k

, (13)

where rdei,k and scorei,k respectively denote the rde and
metric score (PSNR, SSIM, and LPIPS), which is trained
on dataset i and tested on dataset k. The confusion ma-
trixes in Fig. 9 show that DSUN and CVR cannot accom-
modate numerous datasets, especially across the BS-RSC
dataset. This is because the intrinsic readout ratio γ signif-
icantly changes from 1 (Carla-RS or Fasstec-RS) to 0.45
(BS-RSC). In contrast, benefiting from the QRS motion
solver, which analytical modeling of the RS mechanism, the
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Figure 9: Generalization capability comparisons on SSIM
of our method with existing RSC algorithms DSUN [18]
and CVR [7] across Carla-RS, Fastec-RS and BS-RSC
datasets.

proposed method demonstrates strong generalization per-
formance with rde less than 0.1, despite the massive bias
among three datasets.

5. Ablation Study
Linear Model vs Quadratic Model. This experiment
compares the proposed quadratic and the linear model (the
first-order form of QRS motion solver) with and without
RSA2-Net f , respectively. Noting the solver generates RSC
frames containing image occlusion, thus, it is more mean-
ingful to focus on PSNR scores with Mask. As Fig. 10
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Table 5: Ablation study results for RSAdaCof, correction field u, 3D video encoder, number of input frames (NF).

Settings PSNR↑ (dB) SSIM↑ (dB) LPIPS↓
CRM CR FR BR CR FR BR CR FR BR

W/o correction field u 36.00 30.92 28.72 32.36 0.922 0.872 0.938 0.0304 0.0878 0.0331
W/o RSAdaCof 35.90 30.84 28.70 32.75 0.923 0.863 0.943 0.0266 0.0881 0.0314
QRS motion solver + 3DUNet 36.15 31.06 28.51 33.41 0.929 0.865 0.946 0.0267 0.0827 0.0306
Full model 37.00 32.01 29.49 33.50 0.933 0.872 0.946 0.0253 0.0814 0.0299

3NF input 35.64 29.81 28.18 31.92 0.919 0.8530 0.942 0.0313 0.0912 0.0320
4NF input 35.95 30.98 28.26 32.40 0.925 0.8538 0.944 0.0282 0.0901 0.0303
5NF input 37.00 32.01 29.49 33.50 0.933 0.872 0.946 0.0253 0.0814 0.0299
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Figure 10: Ablation study of Linear and Quadratic Models.

shows, they all achieve high metric scores in the Carla-RS
dataset. And the quadratic model outperforms the linear
model, especially on the Fastec-RS and BS-RSC datasets
containing complex variable velocity scenes, illustrating the
validity of higher-order models under nonlinear motion.
QRS motion solver and RSA2-Net. We remove the RSA2-
Net f or QRS motion solver from the pipeline to validate
the capability of correction field estimation and occlusion
elimination. As shown in Fig. 11, the QRS motion solver
achieves ultra-high PSNR (32.31, CM), SSIM (0.913, BR),
and lower LPIPS (0.0517, BR), and even outperform 32.02,
0.896 and 0.0617 achieved by the state-of-the-art. Besides,
the single RSA2-Net performs fairly high metric scores on
all three datasets, displaying the strong ability of content ag-
gregation. In addition, the performance is significantly im-
proved once the QRS motion solver and RSA2-Net are com-
bined, especially on the Fasstec-RS and BS-RSC datasets
containing complex motion.
RSAdaCof and correction field. This experiment elimi-
nated the RSAdaCof and correction field u to validate their
effectiveness separately. The results reported in Tab. 5 show
significant performance degradation after removing module
RSAdaCof due to the lack of alignment and aggregation
capabilities. Similarly, our method achieves a lower score
without correction field u because it helps the model map
RSC pixels back to RS planes.
3D-Transformer vs 3D-UNet. In this experiment, we fur-
ther replace the 3D-Transformer in 3D Video RSA2-Net
with a quite simple 3D-UNet to determine the effectiveness
of the proposed QRS motion solver and RSAdaCof. The re-
sults in Tab. 5 show that even the simple 3D-UNet with QRS
motion solver significantly outperforms the state-of-the-art
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Figure 11: Ablation study of QRS solver and RSA2-Net.

methods and achieves similar scores with the Full model. It
illustrates that our method does not rely on the ability of the
Transformer architecture and confirms the effectiveness of
the QRS motion solver and RSAdaCof module.
Number of Input Frames. We argue that exquisite align-
ment and fusion techniques based on the video sequence
can solve the object edge and image border occlusion. Ac-
cording to the performance in Tab. 5, the evaluation score
increases with the number of input frames, especially in
extreme scenes. However, we did not test more than five
frames due to computational limitations.

6. Conclusion and Limitation
This paper proposes a geometry-based quadratic rolling

shutter motion solver and the 3D video stream-based struc-
ture RSA2-Net for RSC in complex nonlinear scenes with
occlusion. A broad range of evaluations demonstrates
the significant superiority of our proposed method over
state-of-the-art methods. However, the proposed method
requires dense matching between multiple consecutive
frames, which can be expensive in some application scenes.
This limitation is a common constraint among the most
state-of-the-art RSC solutions. In future work, we aim to
extend the QRS motion solver to sparse keypoint correction,
serving for the 3D vision algorithm instead of the dense vi-
sual correction, which allows GS SfM/SLAM solutions to
handle RS input in real time.
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