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Abstract

This work investigates the functionality of Semantic in-
formation in Contrastive Learning (SemCL). An advanced
pretext task is designed: a contrast is performed between
each object and its environment, taken from a scene. This
allows the SemCL pretrained model to extract objects from
their environment in an image, significantly improving the
spatial understanding of the pretrained models. Downstream
tasks of semantic/instance segmentation, object detection
and depth estimation are implemented on PASCAl VOC,
Cityscapes, COCO, KITTI, etc. SemCL pretrained models
substantially outperform ImageNet pretrained counterparts
and are competitive with well-known works on downstream
tasks. The results suggest that a dedicated pretext task lever-
aging semantic information can be powerful in benchmarks
related to spatial understanding. The code is available at
https://github.com/sjiang95/semcl.

1. Introduction
Within the field of visual representation learning, con-

trastive learning attracts special attention for its inspiring
performance in transfer learning [57, 49, 31, 22, 8, 9]. The
concept of contrastive learning can literally be explained
as discovering the difference between positive and negative
samples. The definition of positive-negative samples is one
of the main subjects of contrastive learning, which directly
determines the pretext task and the corresponding loss func-
tion.

We humans can recognize an object from its even compli-
cated environment because we have learned and bound the
typical geometric feature and the corresponding semantic
concept of the object class. For example, we can recog-
nize a cat in a scene thanks to our knowledge of its ap-
pearance (typical geometric feature) and the concept of cat
(semantic information). Similarly, the target of prevalent
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Figure 1: Perceptual cognition of SemCL. Leveraging se-
mantic information, SemCL separates an object from its
environment. Each sample is divided into objects and sur-
roundings and considered as a contrastive pair. The task is
to maximize the distance between the object and its environ-
ment in the embedding space.

visual tasks, such as semantic/instance segmentation, object
detection, etc., can be summarized as distinguishing and
localizing subjects from surroundings. Inspired by and to
extend the spatial recognition mechanism to CV, we pro-
pose our method SemCL which directly teaches models to
extract a subject from its environment. Utilizing publicly
off-the-shelf datasets providing semantic labels, SemCL can
be considered as a supervised contrastive learning approach
whose samples consist of subjects and their corresponding
surroundings (semantically not the subject). The pretext task
of SemCL is to tell the difference between one subject and
its surroundings. From a representation learning perspec-
tive, the pretext task is to maximize the distance (L2 norm)
between a subject and its environment in the embedding
space (see Figure 1). The pretext task mimics the spatial
recognition mechanism to discriminate objects and surround-
ings, which significantly improves the spatial information
understanding of pretrained models.

In SemCL, contrast is performed pairwise between
positive-negative pairs from one image/scene. Inter-scene
contrast is considered inappropriate: only the contrasts
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among subject-surrounding pairs from one scene are con-
sidered valid. Therefore, paired InfoNCE loss is adopted.
With the mechanism of contrasting only paired samples,
SemCL is characterized by decoupling the number of nega-
tive samples from the batch size. Compared to MoCo [22],
whose performance is positively correlated with batch size
and thus increases hardware cost (e.g. batchsize = 4096
on 128 GPUs for ViT-B in MoCo v3 [9]) for satisfactory re-
sults, SemCL can achieve consistent yet competitive results
on downstream tasks with relatively small batch size (e.g.,
batchsize = 64 @ 224× 224). We adopt the MoCo v3 [9]
as the pretraining framework.

The primary motivation of representation learning is to
pretrain general representations that can be fine-tuned and
transferred to downstream tasks. In this work, the SemCL
pretrained models are benchmarked on semantic segmenta-
tion, object detection and instance segmentation, and depth
estimation tasks. SemCL models substantially outperform
their ImageNet pretrained counterparts due to the improved
ability of spacial information understanding. In a system-
level comparison, SemCL models also show gains over pre-
vious well-known works (e.g. Deeplabv3+ [7] in semantic
segmentation, Mask2Former [10] in instance segmentation
and Binsformer [35] in depth estimation).

2. Related Work

2.1. Contrastive Learning

The seminal idea of contrastive learning dates back at
least to the 1990s [2, 3, 31], but it has become prominent
in recent years thanks to the large pretrained models in the
fields of NLP and CV [31]. As the name suggests, con-
trastive learning mines abstract representations by compar-
ing between “similar” and “dissimilar” samples: minimizing
the representation of “similar” samples and maximizing that
of “dissimilar” samples in the embedding space. Formally,
the “similar” inputs are called positive samples, and the
“dissimilar” inputs are called negative samples.

Defining “similar” and “dissimilar” samples is an im-
portant topic in contrastive learning. In instance discrim-
ination [57], which is a ubiquitous approach to define
positive-negative samples in CV, each sample in a mini-
batch x ∈ {x1, . . . , xn} is considered mutually exclu-
sive to the rest. The encoded output θ (·) of each sample
is pushed away from the others in the embedding space,
denoted as θ (x1) ⇔ {θ (x2) , . . . , θ (xn)} (⇔ for push).
Contrastive Predictive Coding (CPC) [49] defines positive-
negative samples in a generative way: Given a sequential
input {. . . , xt−3, xt−2, xt−1, xt}, a context latent represen-
tation Ct is computed to predict the encoded outputs of
future inputs {θ (Xt+1) , θ (Xt+2) , θ (Xt+3) , . . . }. Those
predicted future embeddings are considered as positive sam-
ples to real future embeddings, and exclusive to some other

irrelevant inputs.

2.2. Momentum Contrast

He et al. [22] proposed a momentum contrast frame-
work, MoCo, for contrastive representation learning. MoCo
summed unsupervised visual representation learning [57, 49,
26, 69, 25, 48, 1] up as dictionary look-up: the input data
are represented and sampled by an encoder network θk as
“keys” k = θk

(
xk

)
. The goal of contrastive learning is to

train encoders θq by which a “query” q = θq (x
q) should be

similar to its matching key and dissimilar to others. Since
dictionary consistency is considered crucial for unsupervised
learning with contrastive loss [22], MoCo introduces mo-
mentum updating. In the MoCo framework, the key coder
θk is progressively updated by the weighted average of θk
and the query coder θq .

θk ← mθk + (1−m) θq, (1)

where the momentum coefficient m ∈ [0, 1) is set quite
high (m = 0.999 in [22]) for slower key encoder update.
The MoCo series has proven the power of the Momentum
Contrast framework on feature transferring and is therefore
employed as the basis for this work.

2.3. Labeled Data In Unsupervised Framework

Large networks are quite thirsty for training data, while
labelling the large amount of collected data is a human re-
source consuming challenge. Apart from turning to unsu-
pervised learning, which inherently avoids using labelled
data, using unlabeled data in supervised learning is also a
solution. Pseudo-Label [44, 38, 56] is a trick that uses (usu-
ally supervised) pretrained networks to generate features that
can play the role of labels. And the generated pseudo-labels
participate in the iterations of the target network just like
annotations.

In contrast, Khosla et al. [28] also investigated the
function of labelled data in unsupervised learning. As
a contrastive learning research, Khosla et al. [28] in-
tuitively uses the classification label to define samples
within the same class are mutually positive, and those
from other categories are negative. To exploit the la-
bel information, clusters of points belonging to the same
class are pulled together in the embedding space, while
clusters of samples from different classes are pushed
apart [28]:

{
θ
(
xc0
1

)
⇀↽ θ

(
xc0
2

)
⇀↽ θ

(
xc0
...

)
⇀↽ θ

(
x0
n

)}
⇔{

θ
(
xc1
1

)
⇀↽ θ

(
xc1
2

)
⇀↽ θ

(
xc1
...

)
⇀↽ θ

(
xc1
m

)}
(⇀↽ for pull).

The experimental result shows that supervised contrastive
learning can improve both the accuracy and robustness of
classifiers – [28] achieves a top-1 accuracy of 81.4% on the
ImageNet (IN) dataset, which is 0.8% above the best result
reported by ResNet-200 architecture [24]. Likewise, our
work investigates the effectiveness of semantic information
in unsupervised framework contrastive learning.
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2.4. Semantic Information in Contrastive Learning

Other than [28], there are works that use small amounts of
labelled data in unsupervised representation learning. Wang
et al. [54] proposed a pixel-wise contrastive algorithm for
semantic segmentation: for a pixel i, it is pulled towards
pixels belonging to the same category and pushed away from
pixels in other categories in the embedding space. This
contrast is performed across images from the same dataset.
In the Cityscapes test benchmark, [54] R101 achieves 79.2
mIoU, which is 1.1 points better than Deeplabv3 [6].

The attempt and results of works using labels in unsuper-
vised representation learning, such as [28, 54], indicate that
label information can bring gains to a fully unsupervised
representation. It is promising to explore advanced pretext
tasks to improve the performance of pretrained models in
downstream tasks.

3. Method
3.1. SemCL Dataset

The core of this work is to define semantically contrastive
pairs by utilizing off-the-shelf semantic labels, which are
mappings between categories of objects and their coordinates
on the raw image at the pixel level. As decided by the authors
of a dataset, semantic labels can be color or grayscale images.
Each predefined color or grayscale denotes a category, and
the distribution of label pixels reflects the location of pixels
belonging to a particular category in the raw image.

The SemCL dataset is generated by the mechanism shown
in Figure 2, where the raw image and its semantic label are
selected from the PASCAL VOC2012 dataset [14]. From
the semantic label annotating two objects - a motorcycle and
a rider - two binary masks BM0 and BM1 can be extracted
to separately represent two annotated objects. Their inverted
counterparts ¬BM0 and ¬BM1 represent pixels other than
the target object. These binary masks are then bitwisely
applied to the raw image to separate an object (Anchor)
from its environment (¬Anchor), forming a semantically
contrastive pair. Each element in a raw Anchor-¬Anchor
pair is considered to be semantically opposite to the other.

In practice, the SemCL-1M dataset is produced from
training sets of augmented PASCAL VOC2012 [14] (also
known as SBD [20]), Cityscapes [11], ADE20K [67, 68]
and COCO [36] (stuff+thing 2017 [4]) datasets. The compo-
nents of the SemCL dataset are illustrated in Table 1. When
generating the dataset, a threshold t = 0.01 is set to filter
out too small (less than

[√
t× height

]
×

[√
t× width

]
)

objects that are considered semantically unsaturated.

3.2. Paired InfoNCE Loss

Since contrastive learning can be considered as a dictio-
nary look-up task [22], it is assumed that within a set of keys
{k0, k1, k2, . . . } of a dictionary, a query q matches only one

VOC2012 Cityscapes ADE20K COCO Total

# training
samples 10,582 2,975 25,574 118,287 157,418

# SemCL
pairs 14,203 20,280 270,218 712,212 1,016,913

Table 1: Components of the SemCL dataset. The SemCL
datasets spawned from VOC2012(aug), Cityscapes, ADE20k
and COCO 2017 are named SemCL-{VOC, City, ADE,
COCO} respectively.

key k+ of the dictionary [22]. The value of the objective
function should be low if q is similar to its positive key k+
and dissimilar to all negative keys {k0, k1, k2, . . . } \{k+}.
In MoCo [22], the form of a contrastive loss function In-
foNCE [49] is adopted

Lq = − log
exp (q · k+/τ)∑K
i=0 exp (q · ki/τ)

(2)

where τ is a scalar temperature hyperparameter controlling
the strength of penalties on hard negative samples [50], e.g.
in the instance discrimination task [49, 22], there may be
potential positive samples in the randomly chosen negative
samples. Summing over one positive and K negative sam-
ples, Equation (2) is the log loss of a (K+1)-way softmax-
based classifier trying to classify q as k+ [22]. While in
our case an anchor instance q compares only with its own n
augmentations (positive) K+ :=

{
k+1 , k

+
2 , k

+
3 , . . . , k

+
n

}
and

paired n + 1 negatives K− :=
{
k−0 , k

−
1 , k

−
2 , k

−
3 , . . . , k

−
n

}
using paired InfoNCE

Lq = −
n∑

j=t+1

log
exp

(
qt · k+j /τ

)∑K−

i=0 exp
(
qt · k−i /τ

)
+ exp

(
qt · k+j /τ

) .
(3)

For one anchor as query q0 (t = 0), the paired InfoNCE loss
tries to classify it as k+j , j ∈ [1, n]. The next step is to go
forward: classify the first positive q1 (t = 1) of the anchor
as k+j , j ∈ [2, n], and so on, as shown in the algorithm 1, Ap-
pendix A.1. To contrast with the paired InfoNCE, we refer
to the original InfoNCE loss as unpaired InfoNCE hereafter.
The behavior difference between unpaired and paired In-
foNCE losses is compared in Figure 3. The paired InfoNCE
only maximizes the distance between anchors and ¬anchors
in the embedding space, neglecting irrelevant samples. The
implementation of the paired InfoNCE loss is introduced in
detail in Appendix A.2.

3.3. Pretext Task

Since the aim of this work is to enable networks to strip
targets (anchors) from their surroundings (¬anchors), we
use a restricted instance discrimination task [57]: a query
and a key are positive pairs if they are different views (by
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Figure 2: SemCL dataset. The semantic label of a sample is utilized to generate binary masks. Each binary mask depicts the
pixel-level information of one object (anchor) in the raw image. Those binary masks, together with their inverts, are applied on
the raw image to extract objects (anchors) and corresponding surroundings (¬anchors).

Anchor

Positive

Embedding 
Space

Push
Pull Anchor

Positive

Embedding 
Space

Negative �

Negative �

Negative �

Negative �

Negative n

···

Figure 3: Comparison between unpaired (left) and paired InfoNCE losses (right). Left: a sample (anchor) is positive only to its
own augmentations, while negative to others in the same mini-batch. Right: A sample (anchor) is positive only to its own
augmentations, while negative only to its paired counterparts.

data augmentation) of the same anchor, and are negative
pairs if they originate from an anchor and its corresponding
surroundings (¬anchors). A PyTorch-style pseudocode is
given in the Appendix A.2. The inputs are encoded by base
encoder fb and momentum encoder fm, producing queries
and keys. Theoretically, the backbone of fb and fm can be
any architecture. In practice, we use ResNet [23] and Swin
Transformer [37] because they are the most representative
architectures in recent years. All keys are stacked along

dimension 1 for paired InfoNCE loss.

4. Experiments

Considering the enormous scale difference between Ima-
geNet and SemCL dataset, all SemCL models are initialized
by corresponding IN pretrained weights, which are compared
as counterparts in downstream tasks. The total number of
pretraining iterations is set to 30k to minimize the significant
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variation in training time caused by scale differences among
SemCL sub-datasets. We adopt AdamW [40] with wd = 0.1,
and the OneCycle [46] learning rate schedule consisting of
warmup [17] for the initial 3, 750 (warmup ratio 0.125) steps
and cosine annealing [9, 39]. Following [9], the base lr is
set to 1.5× 10−4 and scaled linearly by lr× batchsize/256
and temperature τ = 0.2. The initial MoCo momentum is
0.99 and is gradually increased to 1 with a half cycle cosine
schedule. The data augmentation strategy includes 224×224
random crops after random rescaling the original image with
an area ratio in the range [0.08, 1.0], followed by random
color jitter, random grayscale, random Gaussian blur, and
random horizontal flip. All batch norm (BN) layers are syn-
chronized across GPUs (SyncBN [41]). Limited by the two
dual-GPU nodes (RTX3090×2+Titan RTX×2) we use, a
native batch size of 64 can be applied to all ResNets and up
to Swin-B for Swin Transformers with crop size 224× 224.
For Swin-L in particular, we compromise by using a batch
size of 32 with gradient accumulation over 2 iterations to
achieve an equivalent batch size of 64.

SemCL aims to improve the understanding of spatial in-
formation of models for which downstream tasks of semantic
segmentation, object detection and depth estimation are con-
ducted. Unless otherwise stated, all SemCL backbones are
pretrained on the corresponding SemCL sub-datasets. The
implementation details of downstream tasks are listed Ap-
pendix A.3.

4.1. Semantic Segmentation

Backbone comparison. In the semantic segmentation
benchmark on validation sets of VOC2012, Cityscapes,
ADE20K and COCO 2017, SemCL models pretrained on
the corresponding SemCL sub dataset are compared with
ImageNet pretrained counterparts in Table 2. For VOC2012
and COCO, SemCL outperforms its IN counterparts by a
maximum of 0.83 and 0.66 points respectively. SemCL can
comprehensively outperform its IN counterparts on all back-
bones in the Cityscapes and ADE20k benchmarks.

System-level comparison. SemCL pretrained backbones
are compared with other methods on semantic segmentation
tasks in Table 3. On VOC2012, SemCL R50/R101 outper-
form Deeplabv3+ [7] by 2.37/3.12 points. The Deeplabv3+
[7] X-71 is 0.55 points behind SemCL R101 on Cityscapes.
For CP2 [51] ViT-S/16, SemCL Swin-S significantly outper-
forms it on all benchmarks by 4.97, 4.53 and 6.71 points.
Compared to MAE [21] ViT-B, SemCL Swin-B achieves a
gain of 0.58 points. A qualitative comparison between MAE
[21] ViT-B and SemCL Swin-B is shown in Figure 4.

4.2. Object Detection and Instance Segmentation

Backbone comparison. In the benchmark for object de-
tection and instance segmentation on the test set of VOC07
and validation sets of Cityscapes and COCO 2017, SemCL

Figure 4: Qualitative comparison of semantic segmentation
between MAE [21] ViT-B (top) and SemCL Swin-B (bottom)
on ADE20K semantic segmentation validation set. Both
decoders are UPerNet[58].

models pretrained on the corresponding SemCL subset are
compared with IN pretrained counterparts in Table 4. SemCL
comprehensively outperforms its IN counterparts on the
Cityscapes and COCO benchmarks. In particular, on the
instance segmentation task, SemCL improves by a maximum
of 0.5 and 0.3 points on Cityscapes and COCO respectively.
However, SemCL performs worse than its IN counterparts
in VOC detection, which is considered to be a result of in-
sufficient training samples in the SemCL-VOC dataset and
is further investigated in the ablation study (see Appendix
A.4).

Method VOC2007 Cityscapes† COCO
AP50 APbox APmask APbox APmask

MoCo v3[9] IN-1k 81.88 42.7 37.5 42.6 37.9
SemCL 81.57(−0.31) 42.9(+0.2) 38.0(+0.5) 42.8(+0.2) 38.0(+0.1)

(a) R50

Method VOC2007 Cityscapes† COCO
AP50 APbox APmask APbox APmask

Swin[37] IN-22k 86.58 45.9 39.8 49.2 43.0
SemCL 86.53(−0.05) 46.0(+0.1) 40.2(+0.4) 49.0(−0.2) 43.3(+0.3)

(b) Swin-T

Table 4: Results of object detection and instance segmenta-
tion on various backbones w/ Cascade Mask R-CNN. All
results are from our implementation. †: Sync BN is disabled
due to gradient accumulation.

System-level comparison. Table 5 compares the ob-
ject detection and instance segmentation results of SemCL
backbones with other models. On Cityscapes and COCO,
SemCL backbones comprehensively outperform their twin-
born MoCo Specifically, SemCL ResNet50 backbones
achieve +1.7 over MoCo IG-1B [22] in COCO detection and
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Backbone Method VOC2012 Cityscapes ADE20K COCO

R50 MoCo v3[9] IN-1k† 79.65 79.01 42.71 40.59
SemCL 79.57(−0.08) 79.13(+0.12) 42.96(+0.25) 40.80(+0.21)

R101 timm[55] IN-1k 81.82 79.87 44.43 41.43
SemCL 81.97(+0.15) 80.10(+0.23) 44.66(+0.23) 41.58(+0.15)

Swin-T Swin[37] IN-22k 80.90 78.67 44.60 42.39
SemCL 81.73(+0.83) 78.91(+0.26) 44.72(+0.12) 42.53(+0.14)

Swin-S Swin[37] IN-22k 83.71 81.25 47.62 44.75
SemCL 84.47(+0.76) 81.53(+0.28) 47.91(+0.29) 44.57(−0.18)

Swin-B Swin[37] IN-22k 84.64 81.61 48.21 44.81
SemCL 84.67(+0.03) 81.94(+0.33) 48.68(+0.47) 45.47(+0.66)

† Although MoCo v3 [9] is originally based on ViT, R50 pretrained models are provided in their repo https://github.
com/facebookresearch/moco-v3.

Table 2: SemCL vs. ImageNet pretrained backbones on VOC2012, Cityscapes, ADE20K and COCO semantic segmentation
(mIoU). All results are from our implementation.

Method Backbone mIoU

Deeplabv3+[7] R50 77.2
Supervised-IN[22] R50 74.4
MoCo IG-1B[22] R50 75.5

BYOL[18] R50 76.3
SemCL R50 79.57

Deeplabv3+[7] R101 78.85
Res2Net[15] Res2Net-101 80.2

DFN[61] R101 80.60
SemCL R101 81.97

CP2[51] ViT-S/16 79.5
SemCL Swin-S 84.47

Leopart[70] ViT-B/8 76.3
SemCL Swin-B 84.67

(a) VOC2012

Method Backbone mIoU

MoCo IN-1M[22] R50 72.5
MoCo IG-1B[22] R50 73.6

Supervised-IN[22] R50 74.6
CP2[51] R50 76.5
SemCL R50 79.13

Deeplabv3+[7] X-71 79.55
SemCL R101 80.10

Trans4Trans-T[62] PVTv2-B1 78.23
SemCL Swin-T 78.91

CP2[51] ViT-S/16 77.0
Trans4Trans-S[62] PVTv2-B2 80.02

SemCL Swin-S 81.53

(b) Cityscapes

Method Backbone mIoU

CP2[51] R50 39.2
PSPNet[66] R50 42.78

SemCL R50 42.96

PSPNet[66] R101 43.29
SemCL R101 44.66

CP2[51] ViT-S/16 41.2
Seg-S/16[47] ViT-S 45.37

SemCL Swin-S 47.91

Seg-B/16[47] Vi-B/16 48.06
MAE[21] ViT-B 48.1

SemCL Swin-B 48.68

(c) ADE20K

Table 3: Comparison with previous best results on validation sets of VOC2012, Cityscapes, and ADE20K semantic segmenta-
tion (mIoU). Best results are bolded.

+5.1/+0.6 in Cityscapes/COCO instance segmentation tasks.
For SemCL Swin-T backbones, SemCL achieves +1.2/+0.1
over Focal [60] on COCO detection/instance segmentation.
Figure 5 demonstrates a qualitative comparison between
Mask2Former [10] and SemCL Swin-T on Cityscapes vali-
dation set. With the improved spatial information understand-
ing, SemCL model clearly discriminates (even overlapped)
instances in Figures 5a and 5b and successfully classify part
of an instance to a defined category as in Figure 5c.

4.3. Depth Estimation

Backbone comparison. SemCL pretrained backbones
are compared with corresponding IN pretrained ones in Ta-
ble 6. For cityscapes, SemCL comprehensively outperforms
its IN pretrained counterparts. In particular, the ResNet50
backbones improve the RMSE by 0.138 points. For KITTI

and NTUv2, all SemCL backbones show improvements
over the IN pretrained ones. The SemCL pretrained Swin-
L model achieves improvements of 0.001/0.026 points on
KITTI AbsRel/RMSE, and the SemCL pretrained ResNet50
model achieves improvements of 0.003/0.005 points on
NYUv2.

System-level comparison. We report the comparison
of SemCL pretrained backbones with the previous state-of-
the-art method Binsformer[35] and other works in Table 7.
As for the Cityscapes results shown in Table 7a, SemCL
pretrained ResNet50 significantly outperforms SDC [53]
by −0.089 and −2.218 points on AbsRel and RMSE re-
spectively. And SD-SSMDE [43] lags behind SemCL by
0.005/3.742 points. Meanwhile, the test on KITTI (Eigen
split [13]) is shown in Table 7b, SemCL pretrained ResNet50
and Swin-T comprehensively outperform the previous SOTA
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Method Backbone AP50

Supervised-IN[22] R50 81.3
MoCo IN-1M[22] R50 81.5
MoCo IG-1B[22] R50 82.2

MoCo v2 800ep[8] R50 82.5
SemCL R50 81.57

UP-DETR/300[12] * 80.1
OW-DETR[19] DDETR 82.1

SemCL Swin-T 86.53

(a) Object det. on VOC2007 test.

Method Backbone APmask

MoCo IN-1M[22] R50 32.3
MoCo IG-1B[22] R50 32.9

Supervised-IN[22] R50 32.9
Mask2Former[10] R50 37.4

SemCL R50 38.0

BoundaryFormer[30] * 38.3
Mask2Former[10] Swin-T 39.7

SemCL Swin-T 40.2

(b) Instance seg. on Cityscapes val.

Method Backbone APbox APmask

Supervised-IN[22] R50 40.6 36.8
MoCo IN-1M[22] R50 40.8 36.9
MoCo IG-1B[22] R50 41.1 37.4

SemCL R50 42.8 38.0

MST[34] Swin-T 42.7 38.8
VSA[63] Swin-T 46.9 42.1
Focal[60] Focal-Base 47.8 43.2

SemCL Swin-T 49.0 43.3

(c) Object det. and instance seg. on COCO val2017.

Table 5: System-level comparison on object detection and instance segmentation. The best results are bolded. * claims their
backbones are CNN-based, but are considered and compared as transformer-based networks, since transformer blocks are
massively used.

Backbone Method Cityscapes KITTI NYUv2
AbsRel RMSE AbsRel RMSE AbsRel RMSE

R50 MoCo v3[9] IN-1k 0.138 4.837 0.059 2.337 0.120 0.405
SemCL 0.138 4.699(−0.138) 0.058(−0.001) 2.337 0.117(−0.003) 0.400(−0.005)

Swin-T Swin[37] IN-22k 0.134 4.643 0.057 2.247 0.114 0.386
SemCL 0.133(−0.001) 4.577(−0.066) 0.057 2.237(−0.010) 0.112(−0.002) 0.381(−0.005)

Swin-L Swin[37] IN-22k 0.130 4.536 0.053 2.130 0.095 0.329
SemCL 0.128(−0.002) 4.426(−0.110) 0.052(−0.001) 2.104(−0.026) 0.094(−0.001) 0.329

Table 6: SemCL vs. ImageNet pretraining on Cityscapes, KITTI and NYUv2 depth estimation (lower is better). All results are
from our implementation.

(a)

(b)

(c)

Figure 5: Qualitative comparison of instance segmentation
between Mask2Former [10] (left) and SemCL (right) Swin-T
on Cityscapes validation set.

Binsformer. In particular, SemCL ResNet50 achieves a gain
of −0.003/−0.089 over Binsformer, and SemCL Swin-L
is on par with Binsformer Swin-L. On NYUv2 (see Ta-
ble 7c), the gains of SemCL pretrained ResNet50 are also
high with −0.010 AbsRel and −0.173 RMSE. The SemCL

RGB Binsformer[35] SemCL Ground truth

Figure 6: Qualitative comparison of depth estimation be-
tween Binsformer[35] and SemCL Swin-T on the NYUv2
test set.

Swin-L RMSE is 0.001 points lower than the SOTA Bins-
former. Qualitative comparison between Binsformer [35]
and SemCL Swin-T is given in Figure 6.
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Method Backbone AbsRel RMSE

UpProj[29] R50 0.257[53] 7.273[53]
Pad-net[59] R50 0.246[53] 7.117[53]

TRL[64] R50 0.234[53] 7.104[53]
Pilzer, et al.[45] - 0.440 5.443
SDC-Depth[53] R50 0.227 6.917
DTS-Depth[27] MobileNetv2 0.167 7.785
struct2depth[5] - 0.151 7.024

SD-SSMDE[43] R50 0.143 8.441
SemCL R50 0.138 4.699

(a) Cityscapes

Method Backbone AbsRel RMSE

EPCDepth [42] R50 0.091 4.207
Binsformer[35] R50 0.061 2.426

SemCL R50 0.058 2.337

MonoViT[65] - 0.098 4.333
Binsformer [35] Swin-T 0.058 2.286

SemCL Swin-T 0.057 2.237

DepthFormer [33]
Swin-L
+R50C1

0.052 2.143

Binsformer[35] Swin-L 0.052 2.098
SemCL Swin-L 0.052 2.104

(b) KITTI

Method Backbone AbsRel RMSE

Pad-net [59] R50 0.214 0.792
TRL [64] R50 0.144 0.501

SDC-Depth [53] R50 0.128 0.497
UpProj [29] R50 0.127 0.573

SemCL R50 0.117 0.400

Binsformer [35] Swin-T 0.113 0.379
SemCL Swin-T 0.112 0.381

Binsformer [35] Swin-L 0.094 0.330
SemCL Swin-L 0.094 0.329

(c) NYUv2

Table 7: System-level comparison on depth estimation. Best results (lower is better) are bolded.

4.4. Attention Map Visualization

To improve the qualitative understanding of the SemCL
representation, we visualize attention maps of Swin-T pre-
trained on SemCL-VOC and ImageNet using PyTorch

library for CAM methods [16] with the Score-CAM
method [52]. These samples in Figure 7 selected from
VOC2012 val and have not been seen by the pretrained mod-
els are characterized by simple centered subjects (Figure 7a),
complex scene with occlusion (Figure 7b) and multiple sub-
jects (Figures 7c and 7d).

In Figure 7a, the IN pretrained model failed to focus on
the subject, while the SemCL model accurately depicted the
area of the main subject. Meanwhile, SemCL performs better
in complex scenes containing foreground-background rela-
tionships, as shown in Figure 7b. The IN pretrained model
pays no attention to an occluded object, but the SemCL
model recognizes that the occluded part also belongs to the
horse, as shown in Figure 7b. In Figure 7c, the IN model
directly ignores the distant person, but the SemCL model
not only annotates two people but also focuses more on the
nearby one, suggesting that the SemCL model can under-
stand the spatial distribution of subjects in an image. Also,
in Figure 7d, the SemCL model successfully recognizes one
plant and its pot as one object.

Summary. SemCL pretrained backbones can substan-
tially outperform ImageNet pretrained counterparts on se-
mantic segmentation, object detection, instance segmenta-
tion and depth estimation tasks. Using semantically con-
trastive pairs generated from off-the-shelf datasets, SemCL
significantly improves the spatial information understand-
ing of pretrained models. Such an improvement is also
promising to benefit more challenging tasks including gener-
ative ones [32]. Ablation study concerning paired/unpaired
InfoNCE loss, pretraining batch size, training length and
dataset scale are given in Appendix A.4.

5. Conclusion
We investigate the effectiveness of semantic information

in the contrastive learning pretext task on the spatial un-

(a)

(b)

(c)

(d)

Figure 7: Swin-T attention map visualization. Left: raw
image. Middle: attention maps of the IN pretrained model.
Right: attention maps of the SemCL pretrained model.

derstanding ability of models. Tests are conducted on se-
mantic/instance segmentation, object detection and depth
estimation tasks with both ResNets and Swin Transformers,
and SemCL pretrained backbones substantially outperform
their ImageNet pretrained counterparts. By supporting small
batch sizes and fast pretraining, SemCL is a lightweight yet
effective approach. In contrastive representation learning, if
dedicated pretext task is designed properly, four ounces can
move a thousand pounds. We hope that SemCL will inspire
more advanced pretext tasks for contrastive learning.
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strikes back: An improved training procedure in timm. arXiv
preprint arXiv:2110.00476, 2021. 6

[56] Hao Wu and Saurabh Prasad. Semi-supervised deep learning
using pseudo labels for hyperspectral image classification.
IEEE Transactions on Image Processing, 27(3):1259–1270,
2017. 2

[57] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3733–3742,
2018. 1, 2, 3

[58] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian
Sun. Unified perceptual parsing for scene understanding. In
Proceedings of the European Conference on Computer Vision
(ECCV), September 2018. 5

[59] Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. Pad-
net: Multi-tasks guided prediction-and-distillation network for
simultaneous depth estimation and scene parsing. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 675–684, 2018. 8

[60] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai,
Bin Xiao, Lu Yuan, and Jianfeng Gao. Focal attention for long-
range interactions in vision transformers. Advances in Neural
Information Processing Systems, 34:30008–30022, 2021. 6, 7

[61] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang
Yu, and Nong Sang. Learning a discriminative feature net-
work for semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
1857–1866, 2018. 6

[62] Jiaming Zhang, Kailun Yang, Angela Constantinescu, Kunyu
Peng, Karin Müller, and Rainer Stiefelhagen. Trans4trans: Ef-
ficient transformer for transparent object and semantic scene
segmentation in real-world navigation assistance. IEEE Trans-
actions on Intelligent Transportation Systems, 23(10):19173–
19186, 2022. 6

[63] Qiming Zhang, Yufei Xu, Jing Zhang, and Dacheng Tao. Vsa:
learning varied-size window attention in vision transformers.
In Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXV,
pages 466–483. Springer, 2022. 7

[64] Zhenyu Zhang, Zhen Cui, Chunyan Xu, Zequn Jie, Xiang
Li, and Jian Yang. Joint task-recursive learning for semantic
segmentation and depth estimation. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
235–251, 2018. 8

[65] Chaoqiang Zhao, Youmin Zhang, Matteo Poggi, Fabio Tosi,
Xianda Guo, Zheng Zhu, Guan Huang, Yang Tang, and

Stefano Mattoccia. Monovit: Self-supervised monocular
depth estimation with a vision transformer. arXiv preprint
arXiv:2208.03543, 2022. 8

[66] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 6

[67] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through ade20k
dataset. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 633–641, 2017. 3

[68] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. International
Journal of Computer Vision, 127(3):302–321, 2019. 3

[69] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 6002–6012, 2019. 2

[70] Adrian Ziegler and Yuki M Asano. Self-supervised learning
of object parts for semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14502–14511, 2022. 6

5696


