DynaMITe: Dynamic Query Bootstrapping for Multi-object Interactive Segmentation Transformer

Amit Kumar Rana*
Sabarinath Mahadevan*
Alexander Hermans
Bastian Leibe
RWTH Aachen University, Germany
firstname.lastname@rwth-aachen.de
https://vision.rwth-aachen.de/dynamite

Abstract

Most state-of-the-art instance segmentation methods rely on large amounts of pixel-precise ground-truth annotations for training, which are expensive to create. Interactive segmentation networks help generate such annotations based on an image and the corresponding user interactions such as clicks. Existing methods for this task can only process a single instance at a time and each user interaction requires a full forward pass through the entire deep network. We introduce a more efficient approach, called DynaMITe, in which we represent user interactions as spatio-temporal queries to a Transformer decoder with a potential to segment multiple object instances in a single iteration. Our architecture also alleviates any need to re-compute image features during refinement, and requires fewer interactions for segmenting multiple instances in a single image when compared to other methods. DynaMITe achieves state-of-the-art results on multiple existing interactive segmentation benchmarks, and also on the new multi-instance benchmark that we propose in this paper.

1. Introduction

Interactive segmentation algorithms enable a user to annotate the objects of interest within a given image with the help of user interactions such as scribbles and clicks. Such algorithms have several advantages compared to fully-automatic segmentation methods, since they enable a user to select and iteratively refine the objects of interest. Existing interactive segmentation methods [8, 28, 30, 39, 40] formulate this task as a binary instance segmentation problem, where the single object of interest can be segmented and corrected using user clicks.

Most of these approaches use deep neural networks to generate the image features that are conditioned on the user clicks and previous predictions, and they require the image level features to be re-computed for every user interaction. While such a design has been proven to be effective, the runtime for processing each interaction is proportional to the size of the feature extractor used, since a forward pass through the network is needed per interaction [8, 28, 30, 39, 40]. Hence, these methods often have to limit their network sizes in order to achieve a good runtime performance and are thus not scalable in this respect.

In addition, the design decision to model interactive segmentation as a binary segmentation problem forces existing methods to approach multi-instance segmentation tasks as a sequence of single-instance problems, operating on separate (sometimes cropped and rescaled [8]) image regions. Consequently, such methods need additional clicks if there are multiple similar foreground instances in an image, since each of those instances has to be processed separately with a disjoint set of user interactions, specifying the foreground and background. This is inefficient, since it is often the case that one object instance has to be considered as background for a different nearby instance, such that a refinement with a negative click becomes necessary for the current object of focus.

In this work, we improve on both of the above issues by proposing a Dynamic Multi-object Interactive Segmentation Transformer (DynaMITe), a novel multi-instance approach for interactive segmentation that only requires a single forward pass through the feature extractor and that processes all relevant objects together, while learning a common background representation. Our approach is based on a novel Transformer-based iterative refinement architecture which determines instance level descriptors directly from the spatio-temporal click sequence. DynaMITe dynamically generates queries to the Transformer that are conditioned on the backbone features at the click locations. These queries are updated during the refinement process whenever the network receives a new click, prompting the Transformer to output a new multi-instance segmentation. Thus, DynaMITe removes the need to re-compute image-
level features for each user interaction, while making more effective use of user clicks by handling multiple object instances together.

The attention-based formulation of learning object representations from user interactions allows multiple objects to interact with each other and with the common background representations, thus enabling the network to estimate a better context from the input image. Fig. 1 shows a typical example, highlighting DynaMITe’s capability to segment all the relevant objects in the input image using few clicks. An advantage of such a network formulation can be directly seen in the third refinement iteration, where a positive click on the unsegmented camel instance automatically removes the false positive region that was spilled over after segmenting a different camel instance nearby in the previous iteration. Existing approaches that perform sequential single-instance segmentation would have to first add a negative click to remove the false positive as part of the individual object refinement in the third iteration, thereby requiring additional annotation effort.

In order to enable quantitative evaluation, we also propose a novel multi-instance interactive segmentation task (MIST) and a corresponding evaluation strategy. Compared to single-instance segmentation, MIST has the added complexity of requiring decisions which object to click on next, which is significantly harder than just deciding where to click next in a given single-instance error region. In particular, different users may apply different next-object selection strategies, and it is important that an interactive segmentation method is robust to this and always performs well. Hence, we propose to evaluate against a set of several different (but still basic) click sampling heuristics that are intended to span the expected variability of user types.

In summary, we propose DynaMITe, a novel Transformer-based interactive segmentation method which uses a query bootstrapping mechanism to learn object representations from image-level features that are conditioned on the user interactions. We also model the iterative refinement process as temporal update steps for the queries to our Transformer module, which removes the need to re-compute image-level features. We evaluate DynaMITe on the standard interactive segmentation benchmarks and show that it performs competitively in the single-instance setting, while outperforming existing state-of-the-art methods on multi-instance tasks.

2. Related Work

Instance Segmentation. Methods that perform instance segmentation automatically generate masks for every object in the input image. Mask R-CNN [19] is one of the most influential instance segmentation networks, which first generates object proposals and then segments these proposals using a mask head. Several other methods use a single-stage approach, either by grouping the pixels [11, 23, 32–34], or by employing dynamic networks [41] on top of fully convolutional object detectors [42]. After the success of Vision Transformers (ViT) [13] for image-level classification tasks, recent methods leverage Transformer-based architectures for performing instance segmentation. MaskFormer [10] adds a mask classification head to DETR [5] and models instance segmentation as a per-pixel classification task. Mask2Former [9] further extends MaskFormer by using a masked-attention Transformer decoder. Unlike interactive segmentation methods, instance segmentation networks rely on segmenting a fixed set of classes and cannot incorporate user inputs for refinement.

Interactive Segmentation. Earlier methods [4,37,46] that perform interactive segmentation used graph-based optimization techniques to translate user inputs to per-pixel segmentation masks. With the advent of deep learning, recent methods [6,8,24–26,28,30,39,45] have been able to reduce the number of user interactions required for generating object masks. Most of these methods [8, 30, 40] use positive and negative clicks to iteratively segment a foreground object by concatenating the input image with the click maps, along with the previous mask predictions, and then sending this combined representation through a deep network. This enables the network to learn the underlying representation of objects based on the input clicks. iADAPT [24] extends ITIS [30] by considering user corrections as training examples during the testing phase, and updating the network pa-
Figure 2: DynaMITe consists of a backbone, a feature decoder, and an interactive Transformer. Point features at click locations at time t are translated into queries which, along with the multi-scale features, are processed by a Transformer encoder-decoder structure to generate a set of output masks \mathcal{M}^t for all the relevant objects. Based on \mathcal{M}^t, the user provides a new input click which is in turn used by the interactive Transformer to generate a new set of updated masks \mathcal{M}^{t+1}. This process is then iterated τ times until the masks are fully refined.

3. Method

In a typical interactive segmentation process, the model first receives an input image along with the associated foreground (positive) clicks representing the objects that the user intends to segment. Based on this set of inputs, an interactive segmentation model predicts an initial set of segmentation masks corresponding to the clicks. These initial predictions are presented to the user so that they can provide a corrective click (which can be positive or negative) that is used to refine the previous network predictions. This process is repeated until the user receives a set of non-overlapping segmentation masks of satisfactory quality.

Current state-of-the-art interactive segmentation models [8, 24, 30, 39, 40] perform this task sequentially, as their networks can handle only one foreground object at a time. These methods mostly use click maps, which are updated every time a user provides a new click and are then used to obtain a localized feature map from the feature extractor. DynaMITe, on the other hand, can process multiple objects at once, and translates clicks to spatio-temporal data that is processed by an interactive transformer. This makes our model more efficient for mainly three reasons: (i) DynaMITe just needs a single forward pass through the feature extractor to segment all the relevant foreground instances; (ii) the background is modeled jointly, and hence it reduces redundancy in negative clicks; and (iii) by annotating multiple objects jointly, these do not need to be repeatedly modeled as background for other foreground objects.

3.1. Network Architecture

Following the state-of-the-art Transformer-based segmentation methods [2, 9, 10, 47], we use three basic components in our architecture: (i) a backbone network, (ii) a feature decoder, and (iii) a Transformer structure that processes the multi-scale image features from the feature decoder (Fig. 2). Additionally, we also include a feature fusion module that fuses the multi-scale features to generate a fused feature map at the largest scale. Our main contribution lies in the Transformer structure, which learns localized object descriptors directly from the user interactions with-

rameters based on them, thereby aligning the training and testing domains. BRS [22] is another interactive segmentation method that proposes an online update scheme for the network during testing, by constraining user click locations to have the corresponding click label. RITM [40] improves the iterative training procedure introduced in [30], and subsequently demonstrates better performance. The recent FocalClick [8] approach builds upon the RITM [40] pipeline, and uses a focus crop that is obtained based on user corrections during the refinement process. FocalClick achieves the state-of-the-art results on multiple instance segmentation datasets. Unlike DynaMITe, all of these methods are designed to work with single instances, and also need a complete forward pass for each refinement iteration.

Conceptually similar to our approach is that of Agustsson et al. [1], who focus on full image segmentation. This is also a form of interactive multi-instance segmentation; however, every pixel in the image has to be assigned to a segment. Their method is based on a two-stage Mask-RCNN, where the user specifies the object proposals with clicks on extreme object points, followed by scribbles for mask corrections. Our method is more general, allowing the user to click on any object pixel and only requiring a minimum of one instead of four clicks per object.
out the need to pass them through the entire feature extractor. This results in an interactive segmentation network that is not only efficient in processing the user interactions, but also more practical since it can process multiple object instances at once. Since DynaMITe can encode relationships between multiple objects in a given scene, it is naturally capable of segmenting multiple instances at once. Since DynaMITe can encode relationships between multiple objects in a given scene, it is naturally a paradigm shift for interactive segmentation networks.

Fig. 2 shows the overall architecture of our network. It takes as input an RGB image $I \in \mathbb{R}^{H \times W \times 3}$, and the corresponding set of user interactions $S^t = \{c_1, c_2, \ldots, c_t\}$ at timestep $t \in \{1, \ldots, T\}$, where $|T|$ is the maximum number of refinement iterations for I. Following the classic formulation of interactive segmentation that is used by existing works, we model the user interactions as positive and negative clicks, where positive clicks are placed on the foreground objects and the negative clicks on the background. Hence $S^t = \{S^t_+, S^t_-\}$, where $S^t_+ = \{P^1_t, P^2_t, \ldots, P^n_t\}$ denote the positive clicks, and $S^t_- = \{b_1^t, b_2^t, \ldots, b_m^t\}$ denote the set of negative clicks at time t. Here, $P^i_t \in S^t_+$ is a set of positive clicks that belong to object $c_i \in \mathcal{O}$. For existing interactive segmentation methods, $|\mathcal{O}|$ is always 1 since they can process only one object at a time, which need not necessarily be the case for DynaMITe as it is capable of handling multiple objects concurrently. All $P^i_t \in S^t_+$, as well as S^t_- are initialised as empty sets, and then updated when the user inputs a new click. The backbone processes I and extracts low-level features, which are then up-sampled by the feature decoder to produce feature maps $\mathcal{F} = \{f_{12}, f_{16}, f_8\}$ at multiple scales. These feature maps, along with the associated user interactions, up to time t, are then processed by the interactive Transformer.

3.2. Interactive Transformer

The goal of our interactive Transformer is to generate segmentation masks $\mathcal{M}^t = \{M^t_1, M^t_2, \ldots, M^t_L\}$ for all the relevant foreground objects at a given refinement timestep t, given the inputs \mathcal{F} and the corresponding clicks S^t. These masks should be disjoint, i.e., $M^t_i \cap M^t_j = \emptyset$ for all $i \neq j$.

Dynamic Query Bootstrapping. The queries used by the Transformer are dynamically generated using the input features \mathcal{F} and the user clicks S^t. To do this, we first sample the point features at every spatial location represented by each user click in S^t from all the feature scales in \mathcal{F}. Hence, if Q^t denotes the set of queries at time t, then $q_j \in Q^t$ for click c_j in S^t is generated as:

$$q_j = \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} f_{c_j}. \tag{1}$$

During the refinement process, the network receives a new interaction c_{t+1} at the time step $t + 1$, which is used to obtain an updated set of user clicks S^{t+1}. To do this, if c_{t+1} is a positive click then it is added to the corresponding object specific click set P_j to obtain a new set of foreground clicks S^{t+1}_+, else it is added to S_-. Hence, S^{t+1}_+ is then used to obtain the updated queries Q^{t+1}, using the same process as explained above. These queries are then dynamically updated throughout the iterative process without the need to recompute \mathcal{F}, and the entire interactive segmentation process can work with multiple instances at once.

In addition to the dynamic queries, we include a set of $K = 9$ learnable queries for modeling the background without the use of any user guidance. These static background queries learn generic background representations and they reduce the background interactions that a user will have to perform. We also add a 3D positional encoding to q_j, where the first two dimensions represent the spatial location of the corresponding click in the image features and the third dimension represents the refinement timestep t.

Instance Encoder. The DynaMITe instance encoder takes as input the queries Q^t and the multi-scale feature maps \mathcal{F}. The encoder follows the structure of the masked attention Transformer decoder presented in [9] and leverages its capability of processing multi-scale features, which is important for dense pixel prediction tasks. Its main purpose is to enhance the initial click-based queries, such that they become more discriminative. We use $L_e = 9$ layers, which are grouped into 3 blocks, each of which processes successive feature scales from \mathcal{F}. Every Transformer layer in the encoder consists of a masked attention module, a self-attention module and a feedforward network. Hence, our encoder block performs the following operations:

$$Q_t \leftarrow \text{MaskedCrossAtt}(Q_t, \mathcal{F}, \mathcal{M}_{t-1}) + Q_{t-1}, \tag{2}$$
$$Q_t \leftarrow \text{SelfAtt}(Q_t) + Q_t, \tag{3}$$
$$Q_t \leftarrow \text{FFN}(Q_t) + Q_t. \tag{4}$$

Here, Q_t represents the queries at t^{th} layer; \mathcal{M}_{t-1} is the attention mask produced from the binarized mask predictions from $(l-1)^{th}$ layer; SelfAtt is the multi-head self-attention module introduced in [43]; and FFN denotes a feedforward network. MaskedCrossAtt is a variant of cross-attention, where the attention operation is restricted to the foreground region represented by each query in the previous layer. Hence, each masked attention module performs the following operation:

$$Q_t = \text{softmax}(\mathcal{M}_{t-1} + Q_t K_t) V_t + Q_{t-1}, \tag{5}$$

where K_t and V_t are the keys and values derived from \mathcal{F} at the corresponding feature scale.

Decoder. While the goal of the encoder is to update the instance specific queries Q, the decoder updates the fused features \mathcal{F}^M. The fused features are obtained from the feature
fusion module, which takes the multi-scale decoder features F as input and generates a fused feature map at the largest scale of F. The feature fusion module consists of a convolutional layer, followed by an up-sampling layer with skip connections to upsample low resolution features from F, which are then concatenated to generate F^M.

The decoder processes F^M using a set of $L_d = 5$ Transformer layers. Each Transformer layer in our decoder consists of a cross-attention layer, followed by a feedforward network. Hence, each of the DynaMITe decoder layers performs the following operations:

$$F^M_l = \text{softmax}(F^M_l K^T) V^T + F^M_{l-1},$$

$$F^M_l = \text{FFN}(F^M_l) + F^M_l.$$

Here K and V are again keys and values; however, they are obtained from the instance encoder’s output Q^out and not from F^M. To get the final output masks, we take a dot product of the updated mask features $F^M_{l\text{out}}$ with the click specific queries Q^out, as done in [9], and obtain a set of output mask probabilities. Since we have more than one query representing both the objects and the background, we use the per-pixel \max operation over the corresponding set of queries to obtain instance specific masks for all the objects and the background. In the end, the discretized output masks are obtained by taking an argmax per pixel across the different instance predictions.

4. Multi-instance Interactive Segmentation

Existing interactive segmentation approaches address multi-instance segmentation as a sequence of single-instance tasks. I.e., they pick one instance at a time, and then refine it either until the mask has a satisfactory quality, or until they have exhausted a specific click budget τ for that object. If there are multiple foreground objects in a single image, these methods generate overlapping object masks which have to be merged as an additional post-processing step in order to obtain the final masks. Also, since these objects are processed individually with disjoint click sets, some clicks can be redundant at an image-level. Hence, in this work we propose a novel multi-instance interactive segmentation task (MIST), where the goal of a user is to jointly annotate multiple object instances in the same input image.

Given an input image and a common set of user clicks, the MIST expects a corresponding method to generate non-overlapping instance masks for all relevant foreground objects. A major difference in this setting is that the background, and the corresponding negative clicks, are now common for all object instances. The MIST is a more challenging problem compared to the classical single-instance setting, since every refinement step can now lead to a positive click on any of the relevant objects or to a negative (background) click. Thus, extending an existing single-instance interactive segmentation method to the MIST is not trivial.

Automatic Evaluation. It is also important to note that the user click patterns for the MIST may differ considerably between users. As a result, simulating the MIST for automatic evaluation is a challenge of its own. In contrast to single-instance interactive segmentation benchmarks that have converged onto a deterministic next-click simulation strategy [8, 24, 30, 39, 40], the refinement focus in the MIST may jump from one object to another in an arbitrary sequence, unless users are instructed to process the objects in an image according to a specific order. Since it is hard to predict what next-object/next-click selection strategies users will end up using in an actual interactive segmentation application, and since that choice will in turn depend on their impression of which strategies work best with the given segmentation method, it is not practical to assume a single, deterministic next-click simulation strategy. Instead, we postulate that a method that performs the MIST should ideally be robust against varying click patterns and next-object selection strategies. Hence, we propose a multi-fold evaluation based on three different next-object simulation patterns during refinement.

All of these click simulation strategies start by adding a single positive click to each of the foreground objects in that image to get an initial prediction. Based on this initial prediction, we choose an object o_i according to one of the following strategies: (i) **best**: choose the object that has the best IoU, compared to the ground truth mask; (ii) **worst**: choose the object that has the worst IoU; and (iii) **random**: choose a random object. In each of these strategies, only the objects that have not yet achieved the required segmentation quality will be sampled. Next, we place a simulated click c_i on the largest error region of o_i. c_i can now be (i) a positive click on o_i; (ii) a negative click on the background; or (iii) a positive click on another o_j. This process is repeated either until all the relevant objects are segmented, or until the image-level click budget τ is fully spent. We want to emphasize that we make no claim that those strategies (best, worst, random) are close to optimal (in fact, we discuss several more effective strategies in the supplementary material). Instead, we intend for them to span the variability of possible next-object selection strategies to ensure that evaluated approaches generalize well to different users.

Evaluation Metric. The standard metric used by existing interactive segmentation benchmarks [18, 31, 35, 38] is the average number of clicks per object (NoC). Since the MIST is quite different from annotating instances individually, the NoC metric for interactive segmentation per object would not serve as a good evaluation metric. Hence, we propose a new evaluation metric called Normalized Clicks per Image (NCI) for the multi-instance interactive segmentation task.
NCI is an adaptation of NoC, where the number of clicks is now computed per image, instead of per-object, and is then normalized by the number of foreground objects in the image. For NCI, we cap the number of clicks for an image based on the number of foreground objects. If an image has $|O|$ foreground objects, then the total click budget for that image would be $\tau * |O|$. Unlike the NoC metric, this cap is at an image level, and all of these clicks can be spent on a subset of objects if the corresponding algorithm so desires. Similar to the single-instance case, all objects that cannot be segmented to the desired quality level using this budget are marked as failure cases (counted as NFO), and the number of clicks for that image is set to the image-level click budget. In addition, we also mark an image as a failed image (counted as NFI) if there is at least one object within that image that could not be segmented.

5. Experiments

Datasets and Metrics. We evaluate DynaMITe on an extensive range of datasets across two task settings. For the well-established single-instance setting, we mainly use small-scale datasets such as GrabCut [38], Berkeley [31], COCO MVal, and DAVIS [35]. GrabCut and Berkeley are very small datasets with 50 and 96 images, respectively, mostly containing a single foreground object. COCO MVal is a subset of COCO [27] with a total of 800 images, and contains 10 objects from each object category. DAVIS [35] is a video object segmentation dataset, which consists of 50 short videos for training and 20 for validation. Each video frame consists of a single salient foreground region, where object instances that belong together share a common mask. For evaluation, we use the subset of 345 randomly sampled images [22] to be consistent with the existing interactive segmentation methods. Additionally, we also evaluate this task on SBD [18], which is an extension of the PASCAL VOC [14] dataset with 10582 images containing 24125 object instances, with 6671 instances for validation. Although SBD contains multiple instances per image, it is adapted to the single-instance task setting by considering every image-instance pair as a separate data sample.

For evaluating the MIST, we use the large-scale instance segmentation dataset COCO [27] in conjunction with DAVIS17 [36], and SBD [18]. COCO is an image dataset with annotations for multiple image level tasks with 5k images for validation. DAVIS17 is an extension of the single-instance DAVIS [35] dataset, which contains 30 validation videos with multiple segmented objects per-frame. In addition, we also use the annotations from LVIS [16] for training DynaMITe, where LVIS consists of a subset of COCO images with additional high-quality segmentation masks.

Implementation Details. For most experiments, we use a Swin Transformer [21] as backbone, with a multi-scale deformable-attention Transformer [47] on top to extract multi-scale features at 1/8, 1/16 and 1/32 scales. The encoder for our interactive Transformer follows the structure of the Transformer decoder in [9]. Specifically, there are 3 Transformer blocks in the encoder, each with 3 layers to process the feature maps at subsequent scales. For the interactive Transformer decoder, we use 5 layers of the cross-attention blocks as defined in Sec. 3.2.

The backbone is initialized with ImageNet [12] pre-trained weights, while the feature decoder and the Transformer weights are initialized randomly. The entire network is trained end-to-end on the combined COCO+LVIS [40] dataset with an input resolution of 1024×1024 px for 50 epochs, and a batch size of 32 on 16 Nvidia A100 GPUs. We follow the iterative training strategy used in [40]: we run a maximum of 3 iterative refinement steps to generate corrective clicks, based on the network output, for each object in an image during training.

5.1. Comparison with the State-of-the-art

Single Instance Setting. Although our model is designed to perform multi-instance interactive segmentation, we also apply it to the standard single-instance benchmark without any adaptations or re-training. In Tab 1 we compare our results against previous methods, which are grouped based on the underlying network architecture and the used training data. For this setting, we follow the same evaluation setting and the click sampling strategy adopted in previous works [8, 30, 39, 40] and also set the click budget τ to 20.

Early deep learning models [3, 24, 30] used larger backbones such as DeepLabV3+ [7], and were trained with small-scale image datasets such as PascalVOC [14], while state-of-the-art interactive segmentation models mostly use HRNet [44]. To be consistent with these methods, we report the results for DynaMITe using different commonly used backbone networks. Methods with comparable architectures are grouped together, and the corresponding best results within each group are marked in red. Although none of the DynaMITe models were specifically trained to perform single-instance interactive segmentation, it outperforms comparable state-of-the-art networks for a majority of the datasets. Since vision transformers have recently emerged as a competitive alternative to CNNs, we additionally report DynaMITe results with a Swin transformer [29].

Multi-instance Interactive Segmentation (MIST). For this experiment, we follow the MIST evaluation strategy described in Sec. 4 and use the proposed metrics (NCI, NFO, and NFI). In addition, we also report the average image-level IoU achieved after segmenting all the objects in an image. We use the validation sets of COCO [27], SBD [18], and DAVIS17 [36] to evaluate our models and set $\tau = 10$.

As a baseline, we adapt FocalClick [8] to the MIST setting. FocalClick is designed to work with a single object
instance at a time, and processes objects sequentially to generate overlapping binary masks for each instance in an image. Hence, it cannot be directly used for automatic evaluation on the MIST, since the MIST click sampling strategy requires multi-instance segmentation masks to choose the object to refine in each iteration, and the MIST expects a non-overlapping instance map as final output. We fix these issues by adapting the evaluation pipeline of FocalClick to: (i) process all relevant objects sequentially using an initial click to obtain the initial predictions for all objects in an image; (ii) store both the intermediate IoUs and predictions at each refinement step, which are then used to choose the next object to refine and the corresponding simulated next click; and (iii) fuse the final predictions by performing an argmax operation on the set of final predicted probabilities. We also tried to fuse the predictions at each intermediate refinement step but found it to perform worse.

Tab. 2 shows the results of evaluating both FocalClick and DynaMITe on the MIST using the three object sampling strategies (best, worst, and random) explained in Sec. 4. DynaMITe outperforms FocalClick on all metrics and across all three datasets by a large margin. Additionally, the variance in performance across different sampling strategies is much smaller for DynaMITe, demonstrating that it is more robust to variable user click patterns. DynaMITe also generates segmentation masks of higher quality, as shown by the IoU values reported in Tab. 2.

5.2. Ablations

Tab. 3 reports the results of different ablations to analyze the impact of our network design choices (first group), and the positional encodings (second group) for DynaMITe. For
all of our ablation experiments, we use a Swin-T [20] backbone with batch size 128, and evaluate it on the SBD [18] dataset for the MIST. Ablations on additional datasets are available in the supplementary.

Transformer Decoder. We ablate the effect of adding a Transformer decoder to the interactive transformer module. The decoder updates the fused image feature map at the highest resolution based on the instance queries. Discarding the Transformer decoder increases DynaMITe’s NCI from 2.72 to 2.90. It also adds an additional 100 failed objects, increasing the NFO from 557 to 657.

Static Background Queries. As mentioned in Sec. 3, we use a common set of 9 learnable queries that model the background in an image. These queries learn generic background representations and help in reducing the number of background clicks required for performing interactive segmentation. As seen in Tab 3, adding the static background queries reduces the NCI from 2.79 to 2.72 and also the NFO from 639 to 557.

Positional Encoding: As clicks are interpreted as spatio-temporal data, we add a 3D positional encoding to the query features Q and ablate its effect on the network performance on the MIST in the second section of Tab. 3. Removing the spatial and temporal positional encoding worsens the network performance by 0.18 and 0.22 NCI respectively. Not having any temporal encoding performs the worst with 2.94 NCI as compared to 2.72 for the full network. Temporal positional encodings seem to have a more significant impact compared to the spatial counterpart. This can be partly attributed to the fact that refinement clicks are often spatially close to each other, and hence the spatial positions alone do not provide good separation.

5.3. Qualitative Results

Fig. 3 shows several qualitative results produced by DynaMITe. The first row shows examples where a single click per object suffices to create well-defined segmentations for all objects. The second and third row show examples where some refinement clicks are needed to arrive at the final masks. While manually annotating images, one can notice that DynaMITe mostly works with few clicks to create sharp masks and potential mistakes are often fixed with very few refinement clicks. Notice for example the single refinement click on one of the zebra’s occluded legs in Fig. 3(b) correctly fixed both legs.

5.4. Limitations

Fig. 4 shows how the failure cases are distributed as a function of the relative area of an image they cover. It can clearly be seen that the remaining failure cases of DynaMITe mostly occur on objects covering a small image...
area. One reason for this is that the highest resolution features map is downsampled by a factor of 4, making it harder to obtain very sharp masks. Coarser object boundaries have a larger impact on the IoU for smaller objects. Here, state-of-the-art single-instance segmentation approaches have the clear advantage that they process a zoomed-in crop around the object [8, 39] and even additionally run a per-object mask refinement. Such a high-resolution refinement step is orthogonal to our approach and could potentially be integrated into our pipeline, which we leave as future work.

6. Conclusion

We have introduced DynaMITe, a novel Transformer-based interactive segmentation architecture that is capable of performing multi-instance segmentation, and a subsequent evaluation strategy. DynaMITe dynamically generates instance queries based on the user clicks, and uses them within a Transformer architecture to generate and refine the corresponding instance segmentation masks. Unlike existing works, DynaMITe can process user clicks for multiple instances at once without the need to re-compute image-level features. Our method achieves state-of-the-art results on multiple single-instance datasets and outperforms image-level features. Our method achieves state-of-the-art performance at once without the need to re-compute fine the corresponding instance segmentation masks. Un-them within a Transformer architecture to generate and re-creates instance queries based on the user clicks, and usesquent evaluation strategy. DynaMITe dynamically generates instance queries based on the user clicks, and uses them within a Transformer architecture to generate and refine the corresponding instance segmentation masks. Unlike existing works, DynaMITe can process user clicks for multiple instances at once without the need to re-compute image-level features. Our method achieves state-of-the-art results on multiple single-instance datasets and outperforms the FocalClick baseline on our novel MIST.

Acknowledgements. This project was funded, in parts, by ERC Consolidator Grant DeeVise (ERC-2017-COG-773161) and BMBF project NeuroSys-D (03ZU1106DA). Several experiments were performed using computing resources granted by RWTH Aachen University under project rwh7239, and by the Gauss Centre for Supercomputing e.V. through the John von Neumann Institute for Computing on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre. We would like to thank Ali Athar, and Idil Esen Zulfikar for helpful discussions.

References

