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Figure 1 Each image is the original image with an overlayed saliency mask. The first row of every column utilizes the ground truth saliency

mask, the second and third rows overlay with the self-supervised SEMPART-coarse and -fine masks on the same image respectively.

Abstract
Accurately determining salient regions of an image is

challenging when labeled data is scarce. DINO-based self-
supervised approaches have recently leveraged meaningful
image semantics captured by patch-wise features for lo-
cating foreground objects. Recent methods have also in-
corporated intuitive priors and demonstrated value in un-
supervised methods for object partitioning. In this paper,
we propose SEMPART, which jointly infers coarse and fine
bi-partitions over an image’s DINO-based semantic graph.
Furthermore, SEMPART preserves fine boundary details us-
ing graph-driven regularization and successfully distills the
coarse mask semantics into the fine mask. Our salient ob-
ject detection and single object localization findings suggest
that SEMPART produces high-quality masks rapidly without
additional post-processing and benefits from co-optimizing
the coarse and fine branches.

1. Introduction
Identifying salient regions of an image prone to holding

visual attention remains a long-standing fuzzy problem [59]

relying significantly on carefully annotated data [51, 5, 54].

Recently self-supervised (SSL) mechanisms based on large-

scale pre-trained backbones [9, 6, 22], such as DINO [7],

have demonstrated increased capability in segmenting im-

ages [21, 30] and extracting objects in the foreground [41,

39, 54, 4, 42].

The unavailability of labels is limiting to inferring high-

quality object masks. However, many recent methods have

demonstrated that incorporating well-informed priors into

the partitioning process is significantly beneficial to finding

saliency regions and foreground objects in an unsupervised

setting [36, 41, 46, 47, 31, 54, 4, 39].

Different forms of statistical independence of the fore-

ground have driven recent approaches, with the most recent

state-of-the-art focusing on movability [4] of the salient ob-
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Figure 2 Overview of SEMPART: We refine the SSL features into co-

optimized low resolution coarse and high resolution fine masks, based on

graph cut and guided super-resolution respectively.

ject. Distinguishability and predictability of the foreground

from the background have also been successful indicators.

For example, statistical variations such as in color and tex-

ture of the foreground minimally alter the overall distribu-

tion of the population [8]. Furthermore, in-painting models

such as MAE [22] have been particularly effective at mea-

suring predictability [36] and defining movability [4].

Inferring graph signals [32] for partitioning a seman-

tic graph over an image has gained popularity [39, 54, 41,

30, 1], with recent methods establishing surprisingly strong

baselines using traditional techniques. In particular, the so-

lution to the relaxation of the NP-complete discrete normal-

ized cut problem [37] first demonstrated promise in unsu-

pervised image segmentation, which has further translated

to recent findings in [39, 54, 40].

[20, 19] discuss the benefit of learning to predict spec-

tral decomposition for a graph and employ graph neural

networks in a reinforcement learning setup for predictively

performing the normalized cut. More recently, [43] lever-

aged normalized cut for regularizing a convolutional net-

work driven by partial cross entropy loss in a weakly super-

vised setting and demonstrated significant performance im-

provement. More broadly, spectral partitioning of semantic

graphs [39, 54, 30, 1] has become an emerging underlying

theme for detecting salient regions.

Contributions. In this paper, we propose SEMPART, which

builds on ideas from [54, 12, 11] for producing high-quality

foreground masks in an SSL setting. SEMPART learns a

transformer-based encoder that refines the patchwise DINO

features for inferring a relaxation of graph cut that mini-

mizes the expected normalized cut loss [20] over a semantic

graph informed by DINO feature correspondences.

As seen in [54, 41, 7], the foreground masks obtained

abandon the fine boundary details from processing features

at a low resolution. Unlike [39, 54, 41], which perform

successive refinement of the coarse masks post-inference,

SEMPART implements a convolutional fine branch that pro-

cesses and supplements the transformed DINO features

with RGB features at progressively increasing resolutions

for producing original resolution fine masks. Motivated by

[12, 11], SEMPART treats the coarse mask as the source

and the image as a guide for inferring high-quality fine
masks (see Figure 1, Table 1) regularized by weighted

neighborhood-based graph total variation [48].

In summary, our contributions are as follows:

• We propose a novel strategy for co-optimizing coarse
and fine masks, that decouples image partitioning into

semantic separation of rich self-supervised features

and high-frequency detailing, respectively.

• SEMPART outperforms recent state-of-the-art methods

in saliency detection by 3.7% in maxFβ and 2.7% in

IoU on average and emits high-quality bounding boxes

for locating objects.

• SEMPART produces high-quality fine masks rapidly

by eliminating time-consuming post-inference itera-

tive refinement and saving 200ms on average.

2. Related work
Vision systems have historically benefited from seg-

menting a scene into objects constituting salient re-

gions [51]. Supervised mechanisms [33, 58] have domi-

nated the landscape despite the prohibitive costs of obtain-

ing labeled data. Traditional unsupervised approaches [5,

29] have encoded beliefs about the foreground region, such
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as differences in color and contrast and objectness and depth

perception, into partitioning techniques.

Spectral methods. Graph-based techniques have re-

ceived interest wherein spectral partitioning is undertaken

over a graphical representation of an image deduced from

the priors. [37] proposed normalized cut as an improvement

over the min cut criterion [56], for producing clusters that

are well balanced. The relaxation of the discrete problem

involved a spectral analysis of the symmetrically normal-

ized graph Laplacian

L = I −D−1/2WD−1/2. (1)

The unavailability of effective semantic similarity measures

between regions of an image for populating the adjacency

matrix W inhibited the quality of resulting partitions.

Self-supervised representations. With the emergence

of deep techniques for learning contextually aware repre-

sentations [7, 22, 9, 6], many of these traditional prior-

based techniques have demonstrated increased effectiveness

and therefore received renewed interest. The semantically

aware DINO [7] features were used for implementing seed

expansion into salient regions, initialized with patches that

are least similar to other patches as seed in LOST [41]. On

the contrary, FOUND [42] locates a background seed first

and then expands it. In [53], a SOLO [52] model is trained

on coarse masks extracted using SSL features, for instance

segmentation.

The memory bottleneck of attention mechanism [14]

prevents low-resolution deep SSL features from capturing

high-frequency details of an image which often are only

helpful in predicting coarse masks [41, 39, 54]. There-

fore, despite significant performance gains, these methods

require computationally heavy post-processing [3, 25, 26]

to generate high-quality fine masks.

Inpainting as a helpful object detection tool was first

proposed in [36], which hypothesized that it is difficult to

predict the foreground given a background and vice versa.

SSL features from masked autoencoder (MAE [22]) were

also leveraged by recent state-of-the-art MOVE [4] for ad-

versarially training a convolutional mask generator for dis-

tinguishing between real- and fake-inpainted images based

on movability of salient objects. MOVE established su-

periority in detecting both salient regions as well as sin-

gle objects. The movability criterion allows MOVE to di-

rectly predict saliency masks at a high resolution which

is also why it outperformed its counterparts without post-

processing.

SELFMASK [39] uses multi-model SSL features [7, 9,

6] for populating W and constructs pseudo ground truth

saliency masks for a subsequent MaskFormer [10] train-

ing by clustering eigenvectors of the unnormalized graph

Laplacian. Along similar lines, [30] employs clustering

based on normalized Laplacian for semantic segmentation

and object localization.

Our work is most closely related to [54, 20, 12, 11].

TokenCut [54] makes the bi-partitioning mathematically

precise by using the eigenvector with the second smallest

eigenvalue, which corresponds to a relaxation of the nor-

malized cut [37] problem and demonstrates value in pursu-

ing graph-based techniques for detecting salient regions.

Iterative computations during inference with expensive

post-processing [54, 30], or otherwise training in two stages

leveraging multiple SSL models [39] for improving per-

formance, can be limiting. To alleviate this, we follow

MOVE’s approach of training a single bi-partitioning model

as a transformation of the DINO backbone (see Figure 2)

and encode our novel strategies into the loss functions (see

Section 3.2, Section 3.3). The SEMPART architecture in-

volves a fine branch inspired by graph-driven iterative tech-

niques for super-resolution [12, 11] for predicting accurate

high-resolution masks.

Minimizing expected graph cut losses over a population

was previously evaluated in [20, 19, 1], which proposed to

optimize expected normalized cut using graph neural net-

works. We show that SEMPART exhibits similar benefits

(see Table 1, Table 3) from jointly inferred graph-driven bi-

partitioning and graph regularized guided super-resolution

for generating high-fidelity saliency masks rapidly without

any post-processing or multi-stage training.

3. Approach
In this work, we detect salient regions and localize sin-

gle objects within an image by learning to partition the im-

age into two regions that are semantically less related [54,

21, 39, 1]. We leverage DINO [7], which provides effec-

tive pre-trained SSL feature correspondences [54, 21, 30]

for learning a coarse binary mask that partitions a semantic

graph constructed between image patches as nodes. Moti-

vated by image-guided super-resolution [12] and graph reg-

ularization [11, 48], we co-optimize and infer masks at the

original resolution in parallel, thereby correcting a coarse
mask’s inaccuracies, preserving fine boundary details.

3.1. Background

Normalized Cut. The normalized cut [37] of a weighted

undirected complete graph G = (V,E,w) where wij > 0
denotes the weight of (i, j) ∈ E, is given by a binary graph

signal s : v ∈ V → s(v) ∈ {0, 1} that minimizes

Ncut(A,B) =
w(A,B)

w(A, V )
+

w(B,A)

w(B, V )
(2)

where A := {v|v ∈ V, s(v) = 0}, B := {v|v ∈ V, s(v) =
1} and w(A,B) :=

∑
s(i)=0,s(j)=1 wi,j .

Being NP-complete, Shi et al. [37] first proposed to solve

a relaxation which amounts to solving a generalized eigen-
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system followed by discretization. More recently, the re-

laxation of (4) has been effective at semantically segment-

ing images in a self-supervised manner [54]. Motivated by

[20, 19], non-linear parameterizations of the graph signal

have enabled deep partitioning [1] and regularization [43]

based on normalized cut.

Deep self-supervised feature correspondences. Large-

scale pre-trained self-supervised image embedders such as

DINO [7], MAE [22], MoCo [9], SwAV [6] possess ben-

eficial emergent properties for downstream tasks [41, 54,

4, 39, 21]. These models are based on vision transform-

ers [15], which generate an embedding for each patch.

Specifically, given an image of dimensions C × H × W ,

and an SSL embedder operating with patch size p, we ob-

tain a tensor of size D × (H /p ×W /p + 1 ), including the

embedding for the [CLS] token that represents the entire

image. In this paper, we leverage DINO as it emits seman-

tically relevant embeddings [7, 54, 41, 42, 21].

In particular, [54] computed an affinity matrix using the

feature correspondences from DINO. A graph view of the

output is considered where the graph G = (V,E) contains

patches V , and connections between any two patches are

encoded in the edge list E. Each patch v ∈ V has an asso-

ciated normalized DINO embedding Fv . The affinity matrix

is given by the feature correspondences,

Wij =

{
1 | 〈Fvi , Fvj 〉 > τ

ε | otherwise. (3)

3.2. Self-supervised multi-resolution partitioning
(SEMPART)

We propose SEMPART, which converts an image into

a semantic graph G over non-overlapping patches, which

form the set of nodes V . SEMPART’s architecture (see Fig-

ure 2) has two main branches that infer a coarse and fine
mask jointly, which are informed by normalized cut and

image-guided super-resolution, respectively. We posit that

guided super-resolution not only refines the coarse mask
into a fine mask by preserving high-resolution details. It

also helps regularize the overall learning and justifies our

co-optimization strategy.

Normalized cut for coarse mask. A frozen DINO back-

bone transforms the input image X ∈ R
3×320×320 into low-

resolution SSL features F ∈ R
64×40×40. We apply a sin-

gle layer transformer encoder with two attention heads, fol-

lowed by a coarse branch (see Figure 2) comprised of a

linear classification head, for transforming the low resolu-

tion features into a coarse saliency mask in the form of a

soft partitioning indicator vector Scoarse ∈ [0, 1]|V | where

|V | = 40 × 40. For partitions A and B with their indicator

vectors SA = Scoarse and SB = 1 − SA, (2) is rewritten as

LNcut(X) := Ncut(A,B) =
∑

i∈{A,B}

ST
i W (1− Si)

Si
TW1

. (4)

This results in a coarse mask at 40 × 40, which amplifies

the semantic distinguishability between the two partitions

where the affinity between image patches i and j is com-

puted using the DINO embeddings in (3) and denoted by

Wij . Upon minimizing this heuristic over the entire popula-

tion, we see a significant improvement in performance over

solving the generalized eigensystem in [54] (see Table 1).

Guided super-resolution for fine mask. The generated

coarse mask often fails to capture finer high-frequency de-

tails [54, 12] at the original image resolution, which is detri-

mental to the performance in detecting salient regions. Pre-

viously, such methods have employed expensive iterative

post-processing such as Bilateral Filtering [3, 39, 41, 54] or

CRF [25, 21] for every inferenced image. These methods

utilize pixels’ color and positional information to readjust

the generated coarse masks. The possibility of erosion of

the mask has been discussed as a limitation in [4].

By delegating the generation of linearly separable se-

mantic features to the coarse branch, our architecture en-

ables a refinement network to exclusively focus on detailing

and denoising at higher frequencies and around the edges.

We jointly optimize a fine branch (see Figure 2) comprised

of a convolutional mask refinement network inspired by a

recent guided super-resolution technique [12] which trains

a multi-layer perceptron for enhancing the mask with guid-

ance from the image. While [12] performs iterative refine-

ment per image, we co-optimize our refinement network for

predicting a fine mask which aligns with the coarse mask
(see Figure 1).

The output from the transformer encoder layer is grad-

ually scaled up from 40 × 40 to 320 × 320 in 3 steps. In

each step, the image is first scaled up 2× using bilinear

interpolation and processed through a convolutional block

described in Suppl. Note that we also concatenate the ap-

propriately resized input image to the input of each convolu-

tional block. This information is pertinent for conditioning

the fine branch to satisfy the regularization in Section 3.3.

The features F̂ ∈ R
131×320×320 from the last convolu-

tional block are linearly classified into Sfine ∈ [0, 1]320×320

which is subsequently average pooled to Ŝfine ∈ [0, 1]40×40

for aligning with the Scoarse ∈ [0, 1]40×40. The correspond-

ing loss function is given as

LSR(X) := ‖Ŝfine − Scoarse‖22. (5)

3.3. Graph total variation regularization (GTV)

Graph-based regularization has yielded benefits in cap-

turing high-frequency details of an image in [11, 12]. A
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Model
DUT-OMRON [57] DUTS-TE [49] ECSSD [38]

Acc IoU maxFβ Acc IoU maxFβ Acc IoU maxFβ

M
et

h
o

d

LOST [41] .797 .410 .473 .871 .518 .611 .895 .654 .758

TokenCut [54] .880 .533 .600 .903 .576 .672 .918 .712 .803

FreeSOLO [53] .909 .560 .684 .924 .613 .750 .917 .703 .858

MOVE [4] .923 .615 .712 .950 .713 .815 .954 .830 .916

SEMPART-Coarse .932 .640 .755 .956 .727 .864 .961 .837 .943

SEMPART-Fine .932 .668 .764 .959 .749 .867 .964 .855 .947

+
B

F

LOST+BF .818 .489 .578 .887 .572 .697 .916 .723 .837

TokenCut+BF .897 .618 .697 .914 .624 .755 .934 .772 .874

MOVE+BF .931 .636 .734 .951 .687 .821 .953 .801 .916

SEMPART-Coarse+BF .934 .661 .764 .957 .697 .858 .960 .820 .932
SEMPART-Fine+BF .933 .653 .760 .955 .685 .853 .959 .816 .931

+
S

E
L

F
M

A
S

K SELFMASK on pseudo + BF [39] .919 .655 (.774)* .933 .660 (.819)* .955 .818 (.911)*

SELFMASK on MOVE .933 .666 .756 .954 .728 .829 .956 .835 .921

SELFMASK on MOVE + BF .937 .665 .766 .952 .687 .827 .952 .800 .917

SELFMASK on SEMPART-Coarse .936 .675 .773 .958 .743 .872 .962 .843 .938

SELFMASK on SEMPART-Fine .942 .698 .799 .958 .749 .879 .963 .850 .944
* The maxFβ for SELFMASK on pseudo + BF is reported within brackets (), from the reevaluation in [4] upon confirming that it was originally calculated incorrectly [4, 42].

Table 1 Quantitative comparison of SEMPART with state-of-the-art MOVE and other related works for saliency detection. SEMPART-Coarse and -Fine

outperform MOVE significantly in all three evaluation categories (Method, +BF, +SELFMASK) across all datasets. The best-performing method in a

category and across categories is in bold and underlined, respectively.

similarity metric between pixels of an image X is used to

populate the affinity matrix A > 0, which is then used

to compute the degree matrix D. The graph Laplacian

L = D − A is used to compute the graph regularizer as

the quadratic form for a graph signal [32] s, given by

Lreg =
1

2

∑
(i,j)∈E

Aij(s(i)− s(j))2. (6)

Considering significant computational complexity from

the total number of pairs of pixels, we enforce Aij = 0
when pixels Xi and Xj are not vertically or horizontally

adjacent, also known as the pixel neighborhood N . This is

equivalent to a weighted version of the total variation (TV)

loss [28, 16], which has been previously used for denoising

images and other signals [2, 23, 16, 34]. A natural extension

to graphs is discussed in [48].

GTV fine. The guided super-resolution can result in more

than one fine mask for a given coarse mask, which is where

our graph total variation (GTV) loss not only works as a

denoiser but plays a more important role as a regularizer.

More specifically, Aij = exp
(−‖Xi −Xj‖22/σ

)
is given

by the euclidean similarity between the pairwise pixels. As

a result, the LGTV-fine loss encourages the upsampler along

the fine branch in Figure 2 to leverage the color information.

GTV coarse. We also implement a similar graph TV regu-

larizer denoted by LGTV-coarse for the coarse mask based on

Aij = Wij1{i ∈ N (j)} where Wij is as defined in (3).

This is responsible for denoising and predicting a smooth

coarse mask.

3.4. Loss formulation

The SEMPART losses in Section 3.2 together with the

GTV losses in Section 3.3 drive the joint learning of coarse
and fine masks. While the SEMPART losses are driven by

DINO feature correspondences for inferring accurate im-

age partitions, the GTV losses are significantly involved in

denoising the predicted masks and regularizing the overall

learning process. The loss functions for the coarse and fine
branches, respectively, are,

Lcoarse(x) = LNcut(x) + λGTV-coarseLGTV-coarse(x)

Lfine(x) = λGTV-fineLGTV-fine(x)

Ljoint(x) = λSRLSR(x). (7)

This gives us our final expected self-supervised loss func-

tion LSEMPART = E
x∼P(X)

[Lcoarse(x) + Lfine(x) + Ljoint(x)].

4. Experiments
As done in [54, 4], we evaluate SEMPART on unsuper-

vised saliency segmentation and single object detection.

4.1. Implementation

In our work, we use the self-supervised [7] ViT-s/8

transformer from the official implementation of DINO [7].

DINO uses an 8×8 non-overlapping patch on a 3×320×320
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Figure 3 Qualitative comparison of SEMPART-coarse and -fine with TokenCut [54] and MOVE [4] for samples from DUT-OMRON [57].

input and emits 384 × 40 × 40 output which is provided

to our simple transformer encoder layer and then routed

through both the coarse and fine branches in Figure 2. We

employ Adam optimizer [24] with a learning rate of 0.0001
and β = (0.9, 0.999). We implemented SEMPART in Py-

Torch and trained our models for 20 epochs with a batch

size of 8 on a single NVIDIA Tesla P40 GPU. Follow-

ing careful consideration, hyperparameters λGTV-coarse =
0.0006, λSR = 20, λGTV-fine = 0.0002 have been applied

for all results of SEMPART.

Graph affinity. (a) Normalized cut. Our implementation

follows [54] in computing the affinity matrix W based on

(3) with a minor deviation. We set Wii = 0 to discard

self-loops that do not belong to a graph cut. We show em-

pirically that this improves model performance. Addition-

ally we set τ = 0.2 and ε =1e-6 in (3) for the LNcut loss.

(b) GTV Coarse. In addition to details provided in Sec-

tion 3.3, we set τ = 0 and ε =1e-6 for numerical stability.

(c) GTV Fine. LGTV-fine regularizes the fine mask by limit-

ing the possible solutions. The convolutional blocks learn to

generate features that leverage both the contextual features

from the transformer encoder and the RGB image features

for predicting fine masks that mimic the coarse mask but

also preserve the high-frequency image details. In addition

to details provided in Section 3.3, we also set σ = 1.

Foreground selection. We first binarize the indicator vec-

tor with threshold = 0.5. In order to pick the foreground, we

consider four strategies. (a) Select the patch with a lower

average distance to the center as the foreground. (b) Dis-

carding partitions with full spatial width or height as back-

ground, selecting the smaller partition to break a tie. (c) Se-

lect the partition with greatest attention from the last layer

of DINO. (d) Select the partition occupying the least num-

ber of corners. If there is a tie, select the smaller partition.

4.2. Unsupervised saliency segmentation

Datasets. As done in [4, 1, 39], we trained SEMPART on

the train split of DUTS [49], known as DUTS-TR and eval-

uate the performance of our model on the corresponding

test split DUTS-TE [49], as well as DUT-OMRON [57] and
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Method Avg. Time Model RES GPU CPU
TokenCut 130ms No Low Yes Yes

TokenCut+BF 337ms No High Yes Yes

MOVE 13ms Yes High Yes No

SEMPART 14ms Yes High Yes No

Table 2 Both SEMPART and MOVE train a model, generate high-resolution

masks, and have comparable average inference times per image.

ECSSD [38]. DUTS-TR contains 10,553 images, DUTS-

TE contains 5, 019 images, DUT-OMRON contains 5,168

images, and ECSSD contains 1000 images.

Evaluation. As done in [4, 54], we compute the per-pixel

mask accuracy (Acc), intersection over union (IoU), and

maxFβ [54] for evaluating the performance of SEMPART.

Accuracy is the fraction of pixels correctly predicted into

the foreground or background. The overlap between the bi-

nary saliency mask and the ground truth gives IoU. We set

β = 0.3 as per [4, 54] where maxFβ is given for the thresh-

old used for binarizing the mask that maximizes Fβ .

Results. We compared the performance of SEMPART with

recent state-of-the-art MOVE [4] and several other stan-

dard baselines referenced therein. Table 1 contains three

horizontal sections corresponding to the baseline method,

followed by applying a bilateral filtering [3] step. The fi-

nal section involves generating pseudo ground truth based

on the baseline method and training MaskFormer [10] in a

class agnostic manner, as in [39].

We observe that applying the bilateral filter after infer-

encing SEMPART on a per-image basis is detrimental to the

overall performance, as is also seen in [4], with the perfor-

mance of SEMPART-Fine deteriorating significantly.

SEMPART significantly outperformed all other baselines

in all three sections across all datasets. Although SEM-

PART is primarily motivated by the normalized cut mini-

mization in [54], the expected normalized cut loss in Sec-

tion 3.4 co-optimized with the image-guided graph-based

super-resolution loss results in significant improvement in

performance. As seen in Figure 3, the per-image opti-

mization in TokenCut selects regions that are not salient or

present in the foreground.

SEMPART significantly outperforms the movability [4]

heuristic in all three sections for all datasets. From Figure 3,

we find that MOVE may include multiple semantically un-

related patches into the movable object mask. Additionally,

we note that MOVE greatly relies on retraining according to

SELFMASK [39] for outperforming previous state-of-the-

art. While SEMPART-Coarse predicts noisy masks (see Fig-

ure 3-A,C,D, and E) with slight errors as seen in the last ex-

ample, SEMPART-Fine results in refinement with improved

ground truth alignment.

Figure 4 SEMPART for single object detection. Green boxes are ground

truth bounding boxes, and the red box is our predicted bounding box. In-

tersection area is highlighted.

4.3. Single object detection

Datasets. We evaluate our model on three datasets - the

train split of COCO20K [27] and the training and validation

splits of VOC07 [17] and VOC12 [18]. Each image in these

datasets has one or more bounding boxes corresponding to

each object. The objective is to localize any single object.

Evaluation. We detect connected components for separat-

ing multiple objects for an image’s SEMPART mask1. The

component with the largest bounding box is used as the ob-

ject prediction. Suppose the highest IoU between our pre-

dicted bounding box and all ground truth bounding boxes

exceeds 0.5. In that case, we treat it as a successful predic-

tion and use this to compute Correct Localization (CorLoc)

metric which is simply the accuracy of prediction.

Results. SEMPART results in superior bounding-boxes

which perform comparably with state-of-the-art MOVE,

outperforming it on COCO20k dataset (see Table 3). Our

findings suggest that increasing τ to 0.25 helps us prevent

co-located disparate objects from lying in the same con-

nected component and results in a slight improvement.

4.4. Ablations

We ablated SEMPART for saliency segmentation as follows,

Foreground selection. Unlike [4], where the foreground

is given by the movable object, SEMPART selects partitions

based on occupying least corners given by SEMPART-Fine

1If multiple objects lie in a component this evaluation is less reliable.

729



Method VOC07 VOC12 COCO20K
DDT+ [55] 50.2 53.1 38.2

rOSD [44] 54.5 55.3 48.5

LOD [45] 53.6 55.1 48.5

FreeSOLO [53] 56.1 56.7 52.8

LOST [41] 61.9 64.0 50.7

Deep Spectral [30] 62.7 66.4 52.2

TokenCut [54] 68.8 72.1 58.8

MOVE [4] 76.0 78.8 66.6

SEMPART-Coarse 74.7 77.4 66.9
SEMPART-Fine 75.1 76.8 66.4

Table 3 SEMPART bounding boxes exhibits a high CorLoc comparable to

state-of-the-art MOVE [4], for single object discovery on VOC2007 [17],

VOC2012[18] and outperforms it on COCO20K [27] dataset.

Method OMRON* D-TE* ECSSD
fs: framing prior 0.663 0.730 0.825

fs: centrality 0.652 0.736 0.854

fs: total attention 0.668 0.745 0.853

w/ self-loops in W 0.667 0.743 0.846

w/o GTV coarse 0.646 0.749 0.848

w/o GTV fine 0.637 0.717 0.818

train fine mask directly 0.645 0.738 0.845

w/o joint training 0.662 0.743 0.849

SEMPART-Fine 0.668 0.749 0.855

Table 4 Ablations of SEMPART for saliency, using mIoU. *Shorthand has

been used due to space constraints; OMRON refers to DUT-OMRON [57]

and D-TE refers to DUTS-TE [49]; fs denotes foreground selection.

in Table 4. Motivated by [39, 41], we compare with se-

lection based on closeness to the image center (centrality),

as well as the framing prior [39], which labels the seg-

ment occupying full spatial width or height as background

while breaking ties based on selecting the smaller partition

as foreground. Another heuristic that is a close contender to

least corners is total attention, in which the partition hav-

ing the highest total overlap with the DINO [CLS] token

attention map as foreground.

Self-loops. We populate Wii with (3) instead of 0 for LNcut

and demonstrate that the performance deteriorates.

Graph TV regularization. SEMPART without either

LGTV-coarse or LGTV-fine is detrimental to performance. The

absence of the GTV-fine loss has a greater negative impact.

Training fine mask directly. We evaluate a setting where

we only have a fine branch (see Figure 2), and the LNcut and

LGTV-fine losses. Table 4 demonstrates that this is inferior to

SEMPART despite being almost equivalent in the number of

parameters. We attribute this to the absence of the coarse
branch and the corresponding LNcut loss which in turn regu-

larized the transformer encoder for subsequent consumption

by the convolutional blocks.

Joint training. We evaluate a variant of SEMPART, where

Figure 5 Limitations of SEMPART. Human bias towards humans and mov-

ing objects are shown in A and B. SEMPART cannot capture the intricate

details and smooths over narrow regions in B and C. An immovable back-

ground object is included, which is not as visually salient as the rooster in

D. The crib is the same color as the wall in E; therefore, the toys are promi-

nent. However, DINO highlights the semantic differences for partitioning

the entire crib from the background.

the coarse and fine branch are trained independently. While

the Lcoarse only optimizes the coarse branch and the trans-

former encoder (see deviations from Figure 2 in Suppl.), the

gradients from Lfine and Ljoint are prohibited from optimiz-

ing these modules. As seen in Table 4, this is detrimental

to performance on all datasets, verifying our hypothesis that

co-optimizing coarse and fine mask is mutually beneficial.

4.5. Limitations

Visual saliency is not agnostic to various human biases

in favor of humans and animals, as well as objects which

are likely to move in a subsequent frame or have high con-

trast with the background. Figure 5 discusses examples

where the ground truth favors a human, a train crossing a

bridge, and a rooster over all other objects. SEMPART re-

sults in over-selection here as it does not explicitly incor-

porate these priors or even control the object size. Further-

more, our graph TV loss can sometimes merge narrow co-

located regions into the mask, as seen in the Figure 5-B and

C, which can also be detrimental to localizing objects.

5. Conclusion
SEMPART demonstrates the efficacy of graph-driven ob-

jectives towards self-supervised image partitioning and es-
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tablishes state-of-the-art performance for detecting salient

regions and a competitive advantage in localizing objects.

We address the limitations of expensive post-processing,

limited resolution, and noise artifacts in saliency masks. We

demonstrate the value of a joint learning paradigm for infer-

ring high-quality masks at multiple resolutions using SEM-

PART, which will hopefully be a vital enabler of the sub-

sequent investigation into class-aware object detection for

diverse vision systems.
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