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Abstract

As a fundamental problem in computer vision, multi-
view stereo (MVS) aims at recovering the 3D geometry of
a target from a set of 2D images. Recent advances in MVS
have shown that it is important to perceive non-local struc-
tured information for recovering geometry in low-textured
areas. In this work, we propose a Hierarchical Prior Min-
ing for Non-local Multi-View Stereo (HPM-MVS). The key
characteristics are the following techniques that exploit
non-local information to assist MVS: 1) A Non-local Ex-
tensible Sampling Pattern (NESP), which is able to adap-
tively change the size of sampled areas without becoming
snared in locally optimal solutions. 2) A new approach to
leverage non-local reliable points and construct a planar
prior model based on K-Nearest Neighbor (KNN), to obtain
potential hypotheses for the regions where prior construc-
tion is challenging. 3) A Hierarchical Prior Mining (HPM)
framework, which is used to mine extensive non-local prior
information at different scales to assist 3D model recov-
ery, this strategy can achieve a considerable balance be-
tween the reconstruction of details and low-textured areas.
Experimental results on the ETH3D and Tanks & Temples
have verified the superior performance and strong general-
ization capability of our method. Our code will be available
at https://github.com/CLinvx/HPM-MVS.

1. Introduction

Multi-View Stereo (MVS) is one of the key problems in
the field of 3D computer vision, which contributes greatly
to virtual reality [5], 3D object recognition [14], and au-
tonomous driving [23]. The objective of MVS method is
to reconstruct the 3D geometry of a target from a series of
images along with camera parameters. Over the past few
years, the emergence of numerous datasets [15, 26, 45] has
tremendously contributed to the continuous advancement
of MVS methods [8, 27, 9]. However, influenced by low-
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Figure 1: F1 score (↑) comparisons with SOTA tradi-
tional [25, 38, 36] and learning-based [30, 29, 32] MVS
methods on ETH3D [26] and Tanks & Temples [17].

textured areas, illumination variation and other factors [1],
MVS is still a challenging problem.

To perform an accurate and robust 3D reconstruction,
two different types of methods have been investigated, in-
cluding learning-based MVS [43, 44, 37, 22] and traditional
MVS [9, 38, 36]. Learning-based MVS implements deep
networks to extract high-level features and make predic-
tions. However, it needs a large amount of training and its
generalization ability still needs further improvement [16].
Traditional MVS can also be broadly classified into two cat-
egories: plane-sweeping-based MVS [7, 3, 10] and Patch-
Match MVS [9, 25, 38]. Although plane-sweeping-based
MVS produces good results for sufficiently textured and un-
occluded surfaces, it performs poorly for scenes composed
of large planar surfaces, while PatchMatch MVS has suc-
cessfully overcome this restriction.

PatchMatch MVS usually consists of four steps, includ-
ing random initialization, hypothesis propagation, multi-
view matching cost evaluation and refinement [36]. In
essence, it is a process of sampling and verification. The hy-
pothesis propagation samples appropriate hypotheses from
neighboring pixels to construct solution space while the
multi-view matching cost evaluation defines a criterion to
verify the reliability of the sampled hypotheses. There-
fore, these two steps play an important role in PatchMatch
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MVS. Following this popular four-step pipeline, Patch-
Match MVS produces remarkable outcomes.

Even so, geometry recovery still suffers a lot from
low-textured areas because the previous PatchMatch MVS
methods place too much emphasis on local information.
Therefore, we exploit non-local information to achieve
high-quality reconstruction. We propose a Hierarchical
Prior Mining for Non-local Multi-View Stereo (HPM-
MVS) method, which defines a novel hypothesis propaga-
tion pattern and a novel way for constructing planar prior
models to assist multi-view matching cost evaluation.

In terms of hypothesis propagation, sequential propaga-
tion [2, 46, 25] and diffusion-like propagation [9, 38] are
all popular strategies. The previous one only considers the
nearest pixels for updating. In contrast, the diffusion-like
propagation can update simultaneously based on the neigh-
bor hypotheses around the central point. To further lever-
age structured region information, ACMH [38] proposes an
adaptive checkerboard sampling scheme. Although these
previous approaches have greatly improved the efficiency
and performance of hypothesis propagation, they both pro-
cess in the local neighborhood; thus misestimates can only
be updated when several better hypotheses in the local area
are sampled. Based on the above observations, we first pro-
pose the basic method with a Non-local Extensible Sam-
pling Pattern (NESP). Intuitively, a non-local operation re-
moves sampling points around the center point. It allows
distant correct pixels to have a greater possibility to con-
tribute to the update of the current pixel. Moreover, the
extensible architecture maintains the variable sampling size
and can efficiently select suitable candidate hypotheses.

In terms of the multi-view matching cost evaluation,
since the photometric consistency usually causes ambigu-
ities during the depth optimization of low-textured areas,
many previous methods [35, 11, 40] introduce planar prior
models to help the evaluation. They assume low-textured
areas are usually on smooth homogeneous surfaces, and
construct a planar prior model at the current scale to as-
sist depth estimation. To establish a more robust and more
comprehensive planar prior, we employ K-Nearest Neigh-
bor (KNN) to search non-local reliable points and obtain po-
tential hypotheses for the marginal regions where prior con-
struction is difficult. Inspired by the coarse-to-fine strategy,
we further design an HPM framework. In a coarse-to-fine
manner, the prior knowledge at the early stages is built upon
non-local credible sparse correspondences at low-resolution
scales, which expands the receptive field and leads to an ef-
fective depth estimate for smooth homogeneous surfaces.
Subsequently, the prior knowledge at the later stages is con-
structed at the higher-resolution scales by using previously
rectified hypotheses, which restores the depth information
of details in the image. This way, the depth information can
be successfully recovered by our HPM architecture.

Extensive experiments on different competitive datasets
verify the effectiveness of our method (Fig. 1). The results
demonstrate that HPM-MVS has excellent performance,
and also holds strong generalization capability to more
complex scenes. In a nutshell, our contributions are three-
fold as follows:

• We present an NESP module to adaptively determine
the number of potential sampling points while avoid-
ing becoming snared in locally optimal solutions.

• To construct a more robust and more comprehensive
planar prior model, we propose an approach based on
KNN to search non-local neighbor reliable hypotheses
and construct a planar prior model for marginal areas
where prior construction is challenging.

• We design an HPM framework to explore prior knowl-
edge at multiple scales, which efficiently balances out
the reconstruction of details and low-textured areas.

2. Related Work
2.1. Traditional Multi-View Stereo

PatchMatch Multi-View Stereo. The PatchMatch method
was initially proposed by Barnes et al. [4], and its primary
goal is to quickly identify the approximate nearest neigh-
bor among patches of two images. The extension of Patch-
Match idea to MVS was proposed by Shen [28]. In order
to enhance efficiency, several methods [46, 2, 34] employ
the sequential propagation scheme. However, this propaga-
tion scheme is still time-consuming. To this end, Galliani
et al. [9] proposed Gipuma, a massively parallel multi-view
extension of PatchMatch MVS which leverages a red-black
checkerboard pattern to perform a diffusion-like propaga-
tion scheme. This makes better use of the parallelism of
GPUs to improve efficiency. Nonetheless, the major draw-
back is that each pixel’s sampling points are preset, which in
turn causes regional information to be ignored. Further, Xu
and Tao [38] designed a method with Adaptive Checker-
board sampling and Multi-Hypothesis joint view selection
(ACMH) to address this shortcoming. In allusion to depth
estimation for low-textured areas, they further combined
ACMH with multi-scale geometric consistency guidance to
present ACMM. In addition, MARMVS [41] selects the op-
timal scale for each pixel to alleviate the ambiguity caused
by regions with raw texture. Although the aforementioned
approaches significantly enhance the performance of Patch-
Match MVS method, how to recover the depth information
of low-textured regions is always a challenging problem.
Planar Prior Assistance. In order to deal with this long-
standing ill-posed problem, the planar prior is considered.
Romanoni et al. [24] proposed TAPA-MVS, they separated
the image into two different scales of superpixels and uti-
lized these as regional structures. The authors fitted a plane
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Figure 2: An overview of HPM-MVS. Starting with the input images, we first apply the basic MVS with NESP (Fig. 3)
to obtain the initial hypotheses. Then, we downsample them to the coarsest scale and generate the prior model. Third, we
upsample the model to the current scale and leverage it to assist hypothesis prediction. After operating on different scales,
we further use geometric consistency (GC) to optimize the results. Finally, the hypotheses will be fused to a point cloud.

within the superpixels by using trustworthy 3D points and
the RANSAC method, then leveraged the prior hypotheses
to optimize the low-textured regions. ACMP [40] constructs
a planar prior depth map based on triangulations, and subse-
quently mosaics the prior hypotheses into the MVS process
via a probabilistic graphical model. Recently, Xu et al. [36]
designed a multi-scale geometric consistency guided and
planar prior assisted Multi-View Stereo (ACMMP) by com-
bining ACMM [38] and ACMP [40]. It fully exploits depth
information at various scales and leverages prior assistance
to efficiently target low-textured areas. Previous approaches
only consider the prior information from the current image
scale, we nonetheless believe that prior hypotheses should
not be restricted to just one scale. To this aim, we embrace
an HPM framework to discover more meaningful and com-
prehensive non-local prior knowledge.

2.2. Learning-based Multi-View Stereo

Deep learning has been widely used in 3D vision and has
proven to be critical for MVS. MVSNet [43] introduces an
end-to-end deep learning network that builds the 3D cost
volumes from 2D image features. R-MVSNet [44] regu-
larizes the cost volume along the depth direction with the
convolutional GRU to make reconstruction feasible. To fur-
ther decrease memory and boost performance, CIDER [39]
builds a lightweight cost volume using an average group-
wise correlation similarity metric. In recent years, the effi-
ciency of learning-based MVS gains more attention. CVP-
MVSNet [42], CasMVSNet [12] and UCS-Net [6] build a
cascade cost volume by integrating the coarse-to-fine strat-
egy. Furthermore, PatchMatchNet [30] embeds PatchMatch
MVS into a deep learning framework to achieve high-

quality reconstruction with low memory consumption.
Although the existing deep learning methods have

achieved great success in MVS, they usually require a large
quantity of training datasets, which may not be practical in
real-world applications. In addition, the generalization abil-
ity still remains an issue for learning-based methods [16].
As such, we still focus on traditional methods for MVS.

3. Methodology

In this section, we first briefly review the classical Patch-
Match MVS. Then, we detail our proposed HPM-MVS. An
overview of the method is illustrated in Fig. 2 (the pseudo-
code is shown in the supplementary).

3.1. Review of PatchMatch MVS

PatchMatch MVS [9, 25, 38] is a method for rapidly find-
ing correspondences between image patches. To compute
depth maps for input images, each image is selected in turn
as a reference image and its corresponding source images
are determined based on the Structure-from-Motion (SfM)
results. In general, the process consists of four steps [36],
i.e., random initialization, hypothesis propagation, multi-
view cost evaluation and refinement. The last three steps
are iterated until convergence, the details are as follows:
1) Random initialization means randomly generating a
plane hypothesis for each pixel in the reference image based
on the results of SfM. A key observation behind is that a
non-trivial fraction of a large field of random offset assign-
ments is likely to be a good guess.
2) Hypothesis propagation samples the hypotheses from
neighboring pixels because of the high spatial coherence of
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Figure 3: Non-local Extensible Sampling Pattern. The
circles represent the pixels in the red-black checkerboard.
The red areas represent the sampling regions; the lighter the
color, the less adaptive extension is performed. The solid
yellow circles show the sampled points.

neighbors in images. Moreover, a proper hypothesis can be
propagated to a relatively large region to ensure the smooth-
ness constraint of nearby pixels.
3) Multi-view matching cost evaluation aims at robustly in-
tegrating matching cost from multiple views to select the
best plane hypotheses.
4) Refinement generates two additional hypotheses to en-
rich the diversity of the solution space. The one with the
lowest cost will be selected as the refined estimation.

In this work, we concentrate on hypothesis propagation
and multi-view matching cost evaluation, which are es-
sential components of PatchMatch MVS methods, to cap-
ture non-local information for recovering better geometry
in low-textured areas.

3.2. Non-local Extensible Sampling Pattern

Hypothesis propagation is a prerequisite for multi-view
matching cost evaluation and refinement. Hence, choosing
a reasonable sampling pattern will lead to accurate results.
The pixels within a relatively large area can be represented
by one of the pixels. So considering local information re-
peatedly is redundant. Our NESP is inspired by these two
key insights to sample more robust hypotheses. Following
the PatchMatch MVS pipeline introduced above, we design
our basic MVS with NESP.
Random Initialization. First, we randomly generate a hy-
pothesis θx = [dx,nx] for each pixel x, where dx repre-
sents the depth information and nx is a normal vector. Sec-
ond, a matching cost is calculated from each source image
via homography [13]. Finally, the initial multi-view match-
ing cost is obtained by averaging top-k best costs.
Hypothesis Propagation. The diffusion-like propaga-
tion scheme can tremendously enhance efficiency while
maintaining high-quality hypothesis propagation. Follow-
ing [38], we first partition all pixels in the reference image
into a red-black checkerboard pattern which uses hypothe-

ses within eight regions as candidates to update. Second,
we divide eight sampling areas into four long strip areas and
four polyline areas; each polyline area starts with 8 samples,
compared to each long strip area’s initial 5 samples. Then,
we consider two strategies to construct our NESP (Fig. 3).

• Extensible Strategy. To achieve the purpose of ex-
tension, we first choose the best hypothesis in each
area according to the multi-view matching costs from
random initialization or the previous iteration (the ini-
tial costs in random initialization are used for the first
propagation, while the other iterations use the costs
computed in the previous iteration) and define the can-
didate hypothesis set as Θ = {θi|i = 1 · · ·8}. Second,
we calculate their matching costs with respect to differ-
ent source images and embed them into a cost matrix,

M =


m1,1 m1,2 · · · m1,N−1

m2,1 m2,2 · · · m2,N−1

...
...

. . .
...

m8,1 m8,2 · · · m8,N−1

 , (1)

where N is the number of input images, mi,j repre-
sents the matching cost of the sampled point in the i-th
region scored by the j-th view. Based on this matrix,
a voting scheme is implemented in each line to deter-
mine whether this region needs to be extended. Two
thresholds are defined here: 1) A good matching cost
threshold is,

τ(titer, text) = τgood · e−
titer

2·(Next−text)

α , (2)

where titer and text represent the titer-th iteration of
hypothesis propagation and the text-th regional expan-
sion, respectively; τgood is the initial good matching
cost threshold, α is a constant and Next represents the
maximum number of extensions. 2) A bad matching
cost threshold is defined as τbad. For a specific region,
there should exist at least ngood matching costs smaller
than τ(titer, text), and at most nbad matching costs
meeting the condition: mi,j > τbad. When the above
conditions are satisfied, the expansion of the current
sampling area will be stopped. Otherwise, this area
should extend by itself while each extension doubles
the number of sampling points in the area. Notably,
the set Θ and the matrix M are renewed dynamically
in each expansion using the rule described above.

• Non-local Strategy. There are two key insights be-
hind the non-local strategy: 1) The surrounding pixels
of the central point share the same structured region
information, and their hypotheses can be contained by
Eq. 4 when in the process of refinement. 2) The mis-
estimates in low-textured areas always appear as small
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isolated speckles in the depth map; this phenomenon
indicates that these regions have fallen into local opti-
mal solutions. Therefore, we use the non-local strategy
(Fig. 3) which abandons the sampling points within the
radius R of the center pixels. The motivation is to con-
centrate more on non-local areas instead of focusing
on the local surrounding information.

In the end, we combine these two strategies to form
NESP, which helps to collect more reasonable candidate hy-
potheses from non-local neighboring pixels.
Multi-View Matching Cost Evaluation. In order to deter-
mine the best hypothesis from the above candidate hypothe-
sis set, we follow the previous studies [46, 25, 38] to define
the multi-view matching cost via photo consistency in our
basic MVS with NESP,

cphoto(θi) =

∑
j wj ·mi,j∑

j wj
, (3)

where wj is the weight of the j-th view, which is computed
by the view selection strategy in [38]. The hypothesis with
the least matching cost will be chosen as the current best
estimate for the center pixel.
Refinement. We generate two new hypotheses in refine-
ment. One hypothesis is obtained by perturbing the current
hypothesis [dpx,n

p
x], while the other is randomly generated

[drx,n
r
x]. Subsequently, the two new hypotheses are ran-

domly arranged and combined with the current hypothesis
to form an ensemble of seven hypotheses,

{[dx,nx], [dx,n
p
x], [dx,n

r
x], [d

r
x,nx],

[drx,n
r
x], [d

p
x,nx], [d

p
x,n

p
x]}.

(4)

The final estimation for pixel x will be the hypothesis with
the minimum cost.

3.3. Planar Prior Construction

The local image patches of low-textured areas are highly
similar, and the photometric consistency, as a metric func-
tion of MVS, always leads to incorrect estimates due to its
defects. Inspired by [40], we construct a better planar prior
model to assist multi-view matching cost evaluation. After
executing the basic MVS, a hypothesis with its final cost
for each pixel can be obtained. A lower cost represents a
more precise estimate, therefore we collect the credible cor-
respondences into a set Icred,

Icred = {θx|cphoto(θx) < τcred}, (5)

where τcred represents the credible threshold. Then, the
Delaunay triangulation is applied to generate triangular sur-
faces of various sizes. Although these triangles cover a large
area, there are still some marginal areas in the image that
remain unaffected. This suggests that the local information

(a) (b) (c)

(d) (e) (f)

Figure 4: Planar prior models at different scales and result-
ing depth maps. (a) The color image (the low-textured area
is in the white box while pixels in the red box are details);
(b) the planar prior model constructed at the low-resolution
scale; (c) the planar prior model constructed at the high-
resolution scale (the dark blue areas show that there are
anomalies and have already been filtered out); (d) the depth
map obtained without prior models; (e) the depth map based
on the prior model constructed at the low-resolution scale;
(f) the depth map based on prior models at different scales.

cannot satisfy the requirements of developing a planar prior
model in these parts of the regions. To address this issue,
we propose a method based on KNN to construct the planar
prior model via non-local credible hypotheses. First, we set
up a KD-tree [47] for the reliable points in Icred. Second,
the top-K nearest non-local neighbors are searched for pix-
els in the regions where prior construction is challenging.
In addition, we use Heron’s formula to avoid the case of
co-linearity of proximity points. Then, each pixel will have
three reliable neighboring points. We project them into the
coordinate of the reference camera and set up a matrix A to
get the plane parameters zopt,

zopt = argmin
z∗:||z∗||=1

||A · z∗||, (6)

where z∗ is a unit-length variable. To further enhance the
validity of the prior model, the ultimate prior knowledge for
each image is filtered by its depth range. At last, we con-
sider Planar Prior Assistance [40] which can better leverage
the planar prior model to assist multi-view matching cost
evaluation in low-textured areas.

3.4. Hierarchical Prior Mining

The multi-scale structure is employed in some Patch-
Match MVS methods to infer the depth information of low-
textured areas. Previous approaches [21, 38, 33] usually
construct image pyramids to fuse depth estimation at differ-
ent scales. In addition, several methods [40, 24] focus on
constructing planar priors models at a single scale to help
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the depth estimation. In our work, we demonstrate that con-
structing planar prior models in a multi-scale way will fur-
ther facilitate depth estimation.

As depicted in Fig. 4(b), when the planar prior model is
built in low-textured regions, the performance at the low-
resolution scale is obviously more advanced than the high-
resolution scale. Because the information is condensed af-
ter downsampling, resulting in a larger receptive field for
each pixel, and a wider range of non-local information can
be excavated than the original scale. However, only us-
ing the prior from the coarsest scale may lead ambigu-
ity in detail areas. We find that the aforementioned prob-
lem of prior construction is expertly managed at the high-
resolution scale (Fig. 4(c)).

Therefore, the depth perception advantages of planar
prior models at different scales are complementary. Inspired
by this key observation, we design an HPM framework to
construct prior models at different scales, which assists the
depth estimation of low-textured regions without sacrificing
details. The depth map can be continually optimized via the
HPM framework (Fig. 4(d)-(f)).

Excavating hierarchical prior is essentially an iterative
coarse-to-fine optimization process (Fig. 2). After employ-
ing the basic MVS method with NESP, we first downsample
the obtained hypotheses (i.e. depth and normal) to the coars-
est scale and build a planar prior model. Second, with the
joint bilateral upsampler [18], we propagate the planar prior
to the original scale. Third, the planar prior model is em-
bedded into the PatchMatch MVS method with Planar Prior
Assistance [36] to approximate the depth in low-textured
areas better. Finally, we downsample the newly generated
hypotheses to the medium scale again, and repeat the same
operation until iterating up to the original scale. For images
with high resolutions, more medium scales can be consid-
ered. To further optimize the results, we apply geometric
consistency as [25, 38] do. This way, the final depth esti-
mation can achieve a better trade-off between details and
low-textured areas.

Moreover, to save computing resources and improve
time efficiency, we propose a fast version of the HPM
framework. This version only uses the planar prior model
constructed at the coarsest scale to assist MVS. The ratio-
nale behind this is that the prior model obtained at the coars-
est scale can effectively target the low-textured region and
exactly compensate for the deficiencies of the basic MVS
method in that region. Both HPM and its fast version will
be experimentally analyzed.

4. Experiments
We evaluate our method on two challenging MVS

datasets, ETH3D benchmark [26] and Tanks & Temples
datasets [17], from two perspectives, i.e., benchmark per-
formance and analysis experiments.

Table 1: Point cloud evaluation on ETH3D benchmark [26].
We show accuracy / completeness / F1 score (in %) at differ-
ent thresholds (2cm and 10cm). The best results are marked
in bold while the second-best results are underlined.

Method 2cm 10cm

Train.

i) Traditional
COLMAP [25] 91.85 / 55.13 / 67.66 98.75 / 79.47 / 87.61
PCF-MVS [19] 84.11 / 75.73 / 79.42 95.98 / 90.42 / 92.98

ACMM [38] 90.67 / 70.42 / 78.86 98.12 / 86.40 / 91.70
ACMP [40] 90.12 / 72.15 / 79.79 97.97 / 87.15 / 92.03

ACMMP [36] 91.03 / 77.27 / 83.42 97.96 / 93.19 / 95.46
ii) Learning

PatchMatchNet [30] 64.81 / 65.43 / 64.21 89.98 / 83.28 / 85.70
IterMVS [29] 73.62 / 61.87 / 66.36 94.48 / 78.85 / 85.25

MVSTER [32] 68.08 / 76.92 / 72.06 91.97 / 91.91 / 91.73
HPM-MVSfast 91.17 / 73.20 / 80.86 98.23 / 92.41 / 94.97

HPM-MVS 90.66 / 79.50 / 84.58 97.97 / 95.59 / 96.22

Test

i) Traditional
COLMAP [25] 91.97 / 62.98 / 73.01 98.25 / 84.54 / 90.40
PCF-MVS [19] 82.15 / 79.29 / 80.38 92.12 / 91.26 / 91.56

ACMM [38] 90.65 / 74.34 / 80.78 98.05 / 88.77 / 92.96
ACMP [40] 90.45 / 75.58 / 81.51 97.47 / 88.71 / 92.62

ACMMP [36] 91.91 / 82.10 / 85.89 98.05 / 94.67 / 96.27
ii) Learning

PatchMatchNet [30] 79.71 / 77.46 / 73.12 91.98 / 92.05 / 91.91
IterMVS [29] 76.91 / 72.65 / 74.29 95.42 / 85.81 / 90.15

MVSTER [32] 77.09 / 82.47 / 79.01 94.21 / 92.71 / 92.30
HPM-MVSfast 92.50 / 80.25 / 85.35 98.32 / 94.89 / 96.51

HPM-MVS 92.13 / 83.25 / 87.11 98.11 / 95.41 / 96.69

4.1. Experimental Setup

ETH3D high-resolution multi-view benchmark [26] con-
sists of training datasets and test datasets, which contain in-
door and outdoor images at a resolution of 6048 × 40321.
Tanks & Temples datasets are divided into Intermediate and
Advanced datasets based on the complexity of the scene.
However, these datasets do not provide official camera
poses. In that case, we use COLMAP [25] to estimate cam-
era parameters.

All of our experiments are executed on a computer with
an Intel i5-12600 CPU and an RTX 3070 GPU. In the basic
MVS with NESP, {k, Next, τgood, τbad, α, ngood, nbad, R}
= {4, 3, 0.8, 1.2, 90, 1, 2, 4}. In the process of planar prior
construction, {τcred, K} = {0.1, 6}.

4.2. Benchmark Performance

Evaluation on ETH3D Benchmark. Both traditional
methods [25, 19, 38, 40, 36] and learning-based [30, 29, 32]
methods are considered for comparison. Table 1 reports the
accuracy, completeness and F1 score of the point clouds.

As shown in the table, HPM-MVS can achieve outstand-
ing performance in terms of completeness and F1 score
among all the methods, and HPM-MVSfast can outperform
in accuracy while guaranteeing completeness and F1 score.
Notably, HPM-MVS obtains the highest completeness than
other methods on both training and test datasets which con-

1We downsample the undistorted images to 3200 × 2130 as in [25].
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(a) Images (b) COLMAP [25] (c) ACMMP [36] (d) IterMVS [29] (e) HPM-MVSfast (f) HPM-MVS

Figure 5: Qualitative point cloud comparisons between different MVS methods on several high-resolution multi-view test
scans (old computer and terrace 2) of ETH3D benchmark [26]. Some challenging areas are shown in red boxes.

Table 2: F1 score (in %) comparisons of different meth-
ods on Tanks & Temples datasets [17] at given evaluation
threshold.

Method Intermediate Advanced

Traditional

COLMAP [25] 42.14 27.24
PCF-MVS [19] 55.88 34.59

ACMM [38] 57.27 34.02
ACMP [40] 58.41 37.44

ACMMP [36] 59.38 37.84

Learning

R-MVSNet [44] 48.40 24.91
PatchMatch-RL [20] 51.81 31.78
PatchMatchNet [30] 53.15 32.31

IterMVS [29] 56.22 33.24
PVSNet [37] 56.88 33.46

Effi-MVS [31] 56.88 34.39
MVSTER [32] 60.92 37.53

Ours HPM-MVSfast 61.59 39.65
HPM-MVS 61.39 40.80

tain large low-textured areas, because HPM-MVS perceives
non-local structured information for recovering geometry.
The visual comparisons are shown in Fig. 5. It can be
clearly observed that our methods produce higher quality
point clouds than other competitors, especially in challeng-
ing low-textured areas, e.g., red boxes in Fig. 5.
Evaluation on Tanks & Temples Datasets. To further il-
lustrate the robustness of our methods, we test our methods
on Tanks & Temples datasets without any fine-tuning. The
quantitative results of state-of-the-art methods on both In-
termediate and Advanced sets are reported in Table 2.

Our methods achieve outstanding performance among
all the methods. Even compared with learning-based meth-
ods, our methods still achieve better performance without
any data training. Remarkably, HPM-MVS can greatly im-
prove the performance of Advanced datasets which contain
complex details and more low-textured areas difficult to re-
cover. Our method ranks 1st in Advanced datasets over all
the existing traditional MVS methods, and it outperforms
the previous best record by 2.96%. This result well con-
firms that our method can achieve a good balance for MVS
reconstruction in details and low-textured areas. Fig. 6

presents some visualization examples of point cloud recall
comparisons between different methods, which verifies our
proposed methods can produce more complete 3D geome-
tries than the others. These obvious advantages suggest that
HPM-MVS and HPM-MVSfast hold powerful generaliza-
tion ability and can adapt to different application scenarios
without any data training.

4.3. Analysis Experiments

Ablation Study. In this section, we conduct an ablation
study on the multi-view high-resolution training datasets of
ETH3D benchmark to validate the performance of differ-
ent parts in our proposed methods. We divide them into
five sections, which are Non-local Sampling Pattern, Ex-
tensible Sampling Pattern, planar prior model assistance,
Hierarchical Prior Mining framework fast version and Hi-
erarchical Prior Mining framework. The baseline method is
ACMH2 [38]. Table 3 summarizes the effectiveness of each
individual part in our proposed methods.

For the basic MVS method with NESP, we remove the
no-local part and the extensible part, respectively. The re-
sults show that these two proposals can both enhance the
completeness and F1 score. In particular, the improvement
of the non-local strategy is more obvious than the exten-
sible strategy. In some circumstances, especially in low-
textured areas, several severe errors always cause the hy-
pothesis propagation into local optimal solutions. Hence,
the non-local operation can effectively prevent this situation
from getting worse.

Based on NESP, the planar prior model constructed at the
current scale generates a potential hypothesis for each pixel
in the image. As for two versions of the HPM framework,
one can make several observations from the results: 1) HPM
and HPMfast achieve outstanding performance at relatively
high thresholds (e.g., 5cm and 10cm), because they have
a strong focus on sizable low-textured areas. 2) We notice
that HPMfast will suffer some loss of completeness at low
thresholds (e.g., 1cm), because it obtains the prior model

2Note that, we combine ACMH with geometric consistency here.
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(a) ACMM [38] (b) ACMMP [36] (c) IterMVS [29] (d) MVSTER [32] (e) HPM-MVSfast (f) HPM-MVS

Figure 6: Qualitative point cloud recall comparisons between MVS methods on Tanks & Temples datasets [17] (Horse and
Temple). The darker the pixel color is, the greater the error will be. τ is the recommended threshold for each dataset.

Table 3: Comparative results of our methods under different settings on the training datasets of ETH3D benchmark [26]. N,
E, PA, HPMfast and HPM mean Non-local Sampling Pattern, Extensible Sampling Pattern, planar prior model assistance,
Hierarchical Prior Mining framework fast version and Hierarchical Prior Mining framework, respectively.

Method Settings ETH3D train.
N E PA HPMfast HPM 1cm 2cm 5cm 10cm

ACMH [38] 82.41 / 50.63 / 61.71 91.09 / 63.04 / 73.60 96.61 / 74.73 / 83.50 98.25 / 82.20 / 88.57
NSP ✓ 82.52 / 53.46 / 63.84 90.86 / 65.59 / 75.26 96.63 / 76.15 / 84.52 98.46 / 82.40 / 89.19
ESP ✓ 82.66 / 51.40 / 62.22 90.93 / 63.83 / 74.05 96.64 / 75.37 / 84.04 98.47 / 82.09 / 89.03

NESP ✓ ✓ 82.47 / 53.98 / 64.22 90.78 / 66.02 / 75.59 96.60 / 76.63 / 84.87 98.47 / 82.73 / 89.44
NESP+PA ✓ ✓ ✓ 82.88 / 62.37 / 71.32 90.51 / 74.96 / 81.66 96.48 / 84.29 / 88.90 97.89 / 88.57 / 92.73
HPMfast ✓ ✓ 83.32 / 53.53 / 64.66 91.16 / 70.48 / 79.04 96.39 / 84.67 / 89.84 97.89 / 88.57 / 92.73

HPM ✓ ✓ 83.01 / 62.07 / 70.67 90.65 / 77.03 / 83.06 96.06 / 88.42 / 91.97 97.91 / 93.62 / 95.66
HPM-MVSfast ✓ ✓ ✓ ✓ 82.95 / 57.36 / 67.39 91.17 / 73.20 / 80.86 96.51 / 86.22 / 90.89 98.23 / 92.14 / 94.97

HPM-MVS ✓ ✓ ✓ ✓ 82.93 / 65.16 / 72.73 90.66 / 79.50 / 84.58 96.13 / 89.98 / 92.88 97.97 / 94.59 / 96.22

Table 4: Generalization performance of NESP on ETH3D
high-resolution training datasets [26].

Method ETH3D train.
1cm 2cm 5cm 10cm 20cm

ACMM [38] 67.58 78.86 87.68 91.70 94.41
ACMP [40] 68.72 79.79 88.32 92.03 94.43

ACMMP [36] 71.57 83.42 92.03 95.46 97.37

ACMM+NESP 70.70 81.01 88.80 92.26 94.55
3.12↑ 2.15↑ 1.12↑ 0.56↑ 0.14↑

ACMP+NESP 70.87 81.45 89.43 92.72 94.78
2.15↑ 1.66↑ 1.11↑ 0.69↑ 0.35↑

ACMMP+NESP 74.54 85.33 93.25 96.45 97.99
2.97↑ 1.91↑ 1.22↑ 0.99↑ 0.62↑

at the lowest resolution scale which may lead to ambigui-
ties in details. 3) The method with NESP as the basis for
subsequent processes can provide a set of reliable points for
planar prior model construction.
Generalization Performance of NESP. In addition, we
perform a more extensive comparison on the multi-view
high-resolution training datasets of ETH3D benchmark to
show the generalization ability of NESP. Several kinds of
state-of-the-art diffusion-like propagation methods are inte-
grated with NESP for evaluation. The considered methods
are ACMM [38], ACMP [40] and ACMMP [36]. Note that
ACMMP is a very recent state-of-the-art geometric-only

method. Each method is tested under different thresholds,
and results are shown in Table 4.

Impressively, NESP dramatically improves the F1 score
for all tested methods at relatively low thresholds, e.g.,
1cm and 2cm. The improvement of NESP working with
multi-scale strategy is more obvious, because the non-local
and extensible strategy works even better at low-resolution
scale. Notably, the combination of NESP and ACMMP
outperforms all the competitors and achieves state-of-the-
art F1 score of 85.33% / 96.45% at 2cm / 10cm thresh-
olds. Based on the results, the following conclusions can be
drawn: 1) NESP is a generalized module that can be adapted
to other MVS methods and boost their performance. 2)
Combined with the multi-scale strategy, NESP can achieve
better performance.

More analysis experiments and point cloud visualiza-
tions can be found in the supplementary.

5. Conclusion

In this paper, we presented an HPM-MVS method which
can efficiently perceive non-local structured information to
achieve high-quality reconstruction. Based on the non-local
and extensible strategy, we first propose our NESP module.
Focusing on the planar prior construction in marginal re-
gions, we employ KNN to search non-local credible points
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and obtain potential hypotheses. Further, we design an
HPM framework which explores planar prior at different
scales to assist MVS. Through extensive experiments, we
have demonstrated the rationality of each key component
of our method and its superiority against existing methods.
In the future, we plan to combine our method with a proba-
bilistic graphical model to further improve its ability to han-
dle the reconstruction of details and low-textured regions.
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