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Abstract

Diffusion Probabilistic Models (DPMs) have recently
been employed for image deblurring, formulated as an
image-conditioned generation process that maps Gaussian
noise to the high-quality image, conditioned on the blurry
input. Image-conditioned DPMs (icDPMs) have shown
more realistic results than regression-based methods when
trained on pairwise in-domain data. However, their robust-
ness in restoring images is unclear when presented with out-
of-domain images as they do not impose specific degrada-
tion models or intermediate constraints. To this end, we in-
troduce a simple yet effective multiscale structure guidance
as an implicit bias that informs the icDPM about the coarse
structure of the sharp image at the intermediate layers. This
guided formulation leads to a significant improvement of
the deblurring results, particularly on unseen domain. The
guidance is extracted from the latent space of a regression
network trained to predict the clean-sharp target at mul-
tiple lower resolutions, thus maintaining the most salient
sharp structures. With both the blurry input and multiscale
guidance, the icDPM model can better understand the blur
and recover the clean image. We evaluate a single-dataset
trained model on diverse datasets and demonstrate more
robust deblurring results with fewer artifacts on unseen
data. Our method outperforms existing baselines, achiev-
ing state-of-the-art perceptual quality while keeping com-
petitive distortion metrics.

1. Introduction

Image deblurring is a fundamentally ill-posed inverse

problem that aims to estimate one (or several) high-quality

image(s) given a blurry observation. Deep networks allow

for end-to-end image deblurring with pairwise supervised

learning. While deep regression-based methods [81, 90, 97,

79, 6, 88, 7, 83, 78, 41, 23, 52] optimize distortion metrics

such as PSNR, they often produce over-smoothed outputs

that lack visual fidelity [39, 5, 13, 4]. Therefore, perceptual-

driven methods [43, 26] aim to produce sharp and visually

1Work done during an internship at Google Research.

Figure 1. Deblurring example on Realblur-J dataset [60] with

models only trained on synthetic GoPro data [51], from recent

regression-based [88, 82] (MPRNet, UFormer), GAN-based [37]

(DeblurGANV2) and image-conditioned diffusion probabilistic

methods (icDPM). We introduce a guidance module onto the

icDPM formulation, and improves its robustness on unseen image.

pleasing images that are still faithful to the sharp reference

image, typically with a slight compromise on distortion per-

formance, i.e., a less than 3dB drop on PSNR [4, 55] allows

for significantly better visual quality while still being close

to the target image. GANs [16] are leveraged for improved

deblurring perception [36, 37]. However, GAN training

suffers from instability, mode-collapse and artifacts [47],

which may hamper the plausibility of the generated images.

Recently, DPMs [18] further improved the photo-realism

in a variety of imaging inverse problems [67, 42, 83, 65, 12],

formulated as an image-conditioned generation process,

where the DPM takes the degraded estimation as an aux-

iliary input. Image-conditioned DPMs (icDPMs) do not es-

timate the degradation kernel nor impose any intermediate

constraints. These models are trained using a standard de-

noising loss [18] with pairwise training data in a supervised

fashion. In image restoration, such pairwise training dataset

is typically artificially curated by applying known degrada-

tion models on a group of clean images, which inevitably

introduces a domain gap between the synthetic training

dataset and real-world blurry images. When presented with

unseen data, the robustness of icDPMs are rather unclear

as the intermediate restoration process is intractable. E.g.,

we observe a noticeable performance drop when we ap-

ply the synthetically trained icDPM to out-of-domain data,
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including failure to deblur the input (Fig. 1) and injec-

tion of artifacts (Fig. 4 ‘icDPM’ and Fig. 7 ‘DvSR’). We

empirically established a connection between domain sen-

sitivity and image-conditioning in the existing deblurring

icDPMs [65, 67, 83], where the observed poor generaliza-

tion is attributed to the naive input-level concatenation and

the lack of intermediate constraints during the deblurring

process. When optimized on the synthetic training set, over-

fitting or memorization [71] may occur, making the model

vulnerable to shift of the input distribution. Currently, con-

ditioning DPM on blurred or corrupted images is under-

explored [61], and we hypothesize that more effective im-

age conditioning for icDPM is crucial to make the model

more constrained and robust towards unseen domain.

Inspired by traditional blind deblurring algorithms where

optimization is made using explicit structural priors (e.g.,

containing image saliency [56, 85]), we enhance the icDPM

backbone (UNet [63]) with a multiscale structure guidance

at intermediate layers. These guidance features are obtained

through a regression network trained to predict salient sharp

features from the input. The guidance, in conjunction with

the blurry image, provide more informative cues to the

model regarding the specific degradation in the image. As a

result, the model can more accurately recover the clean im-

age and generalize more effectively. Our contributions are

threefold: (1) we investigate and analyze the domain gen-

eralization of conditional diffusion models in motion de-

blurring task, and empirically find a relationship between

model robustness and image-conditioning; (2) we propose

an intuitive but effective guidance module that projects the

input image to a multiscale structure representation, which

is then incorporated as an auxiliary prior to make the diffu-

sion model more robust; (3) Compared with existing bench-

marks, our single-dataset trained model shows more robust

results across different test sets by producing more plausi-

ble deblurring and fewer artifacts, quantified by the state-

of-the-art perceptual quality and on par distortion metrics.

2. Related Works
Single image deblurring is the inverse process of recov-

ering one or multiple high-quality, sharp images from the

blurry observation. Typically, classic deblurring approaches

involve variational optimization [15, 35, 40, 48, 57, 85,

1, 25], with prior assumptions on blur kernels, images or

both, to alleviate the ill-posedness of the inverse problem.

Handcrafted structural priors, such as edges and shapes,

have been used successfully in many algorithms to guide

the deblurring process towards preserving important fea-

tures in the image while removing blur [56, 57, 85]. Our

design principle is inspired by these approaches and in-

volves a learned guidance as implicit structural bias. With

the emergent of deep learning, deblurring can be cast as a

particular image-to-image translation problem where a deep

model takes the blurry image as its input, and predicts a

high quality counterpart, supervised by pixel wise losses

between the recovered image and the target [81, 90, 97,

79, 6, 88, 7, 83, 78, 41, 23, 52, 24]. Pixel-wise losses,

such as L1 and L2, are known to result in over-smoothed

images [39, 5, 13] given their ‘regression to the mean’ na-

ture. To this end, perception-driven losses including percep-

tual [26, 93, 46, 45, 95, 13] and adversarial losses [36, 37]

are added on top of the pixel-wise constraints, to improve

the visual fidelity of the deblurred image, with a compro-

mising drop in distortion scores [4, 55]. Tangentially, recent

works seek to improve the architectural design by exploring

attention mechanisms [54, 87, 82, 86, 78, 79], multi-scale

paradigms [51, 7] and multi-stage frameworks [89, 6, 88].

Diffusion Probablistic Models (DPM) [70, 18, 72, 14],

Score-based models [74, 75, 76] and their recent ex-

ploratory generalizations [2, 22, 11] achieved remarkable

results in a varied range of applications[9], from image and

video synthesis[66, 58, 62, 19, 30, 20], to solving general

imaging inverse problems[10, 27, 32, 29, 38, 8]. DPMs are

characterized for having stable training [18, 14, 28], diverse

mode coverage [73, 33], and high perception [66, 14, 58].

DPM formulation involves a fixed forward process of grad-

ually adding Gaussian noise to the image, and a learnable

reverse process to denoise and recover the clean image, op-

erated with a Markov chain structure. Conditional DPMs

aim to perform image synthesis with an additional input

(class [14], text [66, 58], source image).

Image-conditioned DPMs (icDPMs) have been success-

fully re-purposed for image restoration tasks such as super-

resolution [67, 42], deblurring [83], JPEG restoration [65,

31]. This is achieved by concatenating the corrupted ob-

servation at input level. They do not require task-specific

losses or architectural designs, and have been adopted due

to high sample perceptual quality. ControlNet [92] further

enables the task-specific image conditioning for pretrained

text-to-image diffusion models. InDI [12] presents an al-

ternative, and more intuitive, diffusion process where the

low-quality input is directly restored into a high-quality im-

age in small steps. Nevertheless, generalization of DPMs

to unseen shifts in domain, and their low-quality/corrupted

image conditioning remains unexplored.

Generalization to unseen domain As mentioned above,

deep restoration models for deblurring rely on synthetic

pairwise training data. However, any well-trained deep

restoration model may fail to produce comparable results

on out-of-domain data (Fig. 1). To address this issue, re-

searchers have pursued two main directions for improving

model generalization: enhancing the representativeness and

realism of the training data, or improving the model’s do-

main generalization ability. Our method focuses on the

latter, but it is not mutually exclusive with the former di-

rection and can be combined to further improve the re-
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Figure 2. The training process of the proposed deblurring method.

The backbone model is a standard image-conditioned DPM

(icDPM) where a UNet learns to perform denoising towards the

clean image conditioned on the blurry input. We equip the icDPM

with a structure guidance module (detailed in Fig. 3) to better in-

form the model of the coarse sharp structure at multiple scales.

sults. To tackle the data limitations, previous works fo-

cus on acquiring or combining more representative train-

ing data [50, 60, 23, 96], and/or generate realistic de-

graded images using generative approaches [91, 84]. Other

prior works focus on explicit domain adaptation, leveraging

transfer learning techniques to reduce domain gaps. These

approaches include unpaired image translation [21, 59] and

domain adaptation [80, 68, 44, 52], which typically involve

an adversarial formulation and joint training between two

specified domains. However, these methods may require re-

training when a new dataset is introduced. In contrast, our

method does not involve explicit adaptation between spec-

ified domains. Instead, we focus on introducing more ef-

fective image conditioning mechanism that naturally makes

the model more robust towards distribution shift.

3. Method
3.1. Overview

We assume access to a paired dataset with samples

(x,y) ∼ ptrain(x,y), where x represents the high-quality

sharp image, and y is the respective low-quality blurry ob-

servation (denoted in Fig. 2). Such paired dataset is typ-

ically generated by simulating degraded images from the

high-quality ones adopting a specific degradation model.

The goal is to reconstruct one or multiple clean, sharp im-

ages x from the low-quality observation ŷ ∼ preal(ŷ). Gen-

erally, the distribution of the training set ptrain differs from

that of unseen images preal. It is thus crucial that a model

not only performs well on ptrain but also generalizes to preal.

DPMs We consider a general-purpose DPM for our formu-

lation given its superior performance in high-quality image

restoration [67, 83]. In what follows, we briefly describe the

training and sampling of a DPM to contextualize our work.

Unconditional DPMs aim to sample from the data distribu-

tion p(x) by iteratively denoising samples from a Gaussian

distribution and converting them into samples from the tar-

get data distribution. To train such model, a forward dif-

fusion process and a reverse process are involved. As illus-

Figure 3. The learned structure guidance (red box in Fig. 2) is ex-

tracted from the latent features of a regression network trained to

predict the luma channel of the sharp target at multiple lower reso-

lutions. In this way, the guidance maintains only structure-relevant

information, representing the underlying sharp image.

trated in Fig. 2, at a diffusion step t, a noisy version xt of the

target image x is generated by xt =
√
αtx+

√
(1− αt)ε,

ε ∼ N (0, Id), where ε is sampled from a standard Gaus-

sian distribution N (0, Id), and αt controls the amount of

noise added at each step t. In the reverse process, an image-

to-image network (i.e. UNet) Gθ(xt, t) parameterized by θ
learns to estimate the clean image from the partially noisy

input xt. In practice, a reparameterization of the model to

predict the noise instead of the clean image leads to better

sample quality [18]. Once trained, it samples a clean im-

age by iteratively running for T steps starting from a pure

Gaussian noise xT ∼ N (0, Id).

Image-conditioned DPMs further inject an input image y
so as to generate high-quality samples that are paired with

the low-quality observation. This involves generating sam-

ples from the conditional distribution of p(x|y) (posterior).

A conditional DPM Gθ([xt,y], t) is used, where the image

conditioning is typically implemented via concatenation of

y and xt at input-level [67, 83, 65]. However, we found that

this formulation is sensitive to domain shift in input images,

and leads to poor generalization (‘DPM’ in Fig. 1). More-

over, in many cases it introduces visual artifacts (‘DvSR’ in

Fig. 7). We speculate that this is due to the naive image-

conditioning (input-level concatenation), which lacks con-

straints in the intermediate process. Therefore, we integrate

a multiscale structure guidance h(y) into the latent space

of the icDPM backbone, to inform the model about salient

image features, such as significant coarse structures that are

essential for reconstructing a high-quality image, while dis-

entangling irrelevant information, such as the footprint of

blur kernels and color information. To obtain such guidance

with the aforementioned characteristics, we propose an aux-

iliary regression network and leverage its learned features as

the realization of the guidance, described below in Sec. 3.2.

3.2. Multiscale structure guidance

Fig. 3 shows the details of our proposed guidance, de-

noted as h(·). The DPM equipped with such multiscale

guidance is better aware of the underlying salient structures

of the input, thus it learns to better sample from the target
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conditional distribution to preal(x|y). Moreover, the dis-

tribution of h(y) does not change significantly when the

input domain changes, so that it can reliably provide the

auxiliary structure guidance even when applied to unseen

domain. To both ends, we construct the guidance module

as hk(·) = H(φk(·)). At scale k, it consists of an image

transformation function φk(·), followed by a regression-

driven guidance network H. Specifically, φk(·) transforms

the input image y to suppress information not relevant to

the coarse sharp image structures (e.g., color, and informa-

tion about the domain-specific degradation). This ensures

that H operates on a less input-domain-sensitive space. We

first convert y to the grayscale space ȳ, and then, ȳ gets

downsampled by a factor of 2k, where k = 1, 2, 3. This

removes fine details (including the footprint of blur to cer-

tain amount), while preserving coarse structures at multiple

lower resolutions. Motivated by [84], we also add a small

amount of Gaussian noise to mask other domain specific

degradations/characteristics, and make the output less sen-

sitive to input domain shift. In recent diffusion models, the

addition of noise becomes a common practice [64, 66] as it

enhances robustness when dealing with out-of-domain data.

Thus,

φk(y) = d↓k(ȳ) + n, n ∼ N (0, σ2I). (1)

Then, the guidance network Hϕ extracts the guidance

feature by mapping φk(y) onto the representation/latent

space as hk(y) = Hϕ(φk(y)). To make sure it obtains

salient structure features and further filters out insignificant

information, we apply a regression task Rϕ on top of hk(y),
and constraints the output to be closer to its sharp target

φk(x). In this way, the guidance hk(y) at scale k is en-

forced to maintain information that is relevant to a sharp im-

age, and suppress other signals that are input-specific (e.g.,

trace of blurs).

Finally, we incorporate the multiscale guidance {hk(y)}
to the original diffusion UNet by adding the extracted rep-

resentation to the feature map at the respective scale on the

diffusion encoder (Fig 2) as an extra bias. To compensate

for the difference in depth, at each corresponding scale, we

apply a convolutional layer that has the same number of fea-

tures as in the diffusion encoder. Detailed diagram is pro-

vided in the appendix.

3.3. Training loss

Our model is trained end-to-end with both a multiscale

regression loss for optimizing the guidance network, and a

denoising loss in icDPM. The regression loss is the mean

squared error at each scale k defined as:

Lk
guidance = E(x,y)∼ptrain

‖Rϕ(Hϕ(φk(y)))− φk(x)‖2,
(2)

where Hϕ is the guidance feature extractor, and R is instan-

tiated as a single convolutional layer that projects the guid-

ance feature to the final output towards the clean image (as

depicted in Fig. 3). The total regression loss is the average

over different scales Lguidance =
∑

k Lk
guidance. Note that we

do not use any additional downsampling/upsampling oper-

ation in the guidance network, so the spatial dimension re-

mains the same at each scale. We empirically observe that

the best performance is obtained by integrating three differ-

ent scales with k = 1, 2, 3 with details discussed in Sec. 4.6.

By aggregating the information from the input image

y, and the multi-scale guidance {hk(y)}, our icDPM G is

trained by minimizing the denoising loss,

LDPM = E(x,y)∼ptrain
Et∼Unif(0,1)Eε∼N (0,I) (3)

‖Gθ(xt,y, {Hϕ(φk(y))}, αt)− ε‖1.

The denoising model parameterized by θ predicts the

noise ε, given the noisy corruption xt, the blurry input

y, the noise scheduler αt as well as the proposed multi-

scale guidance {Hϕ(φk(y))}. The total training loss L =
Lguidance + LDPM , which is used to optimize the guidance

network H, the regression layer R, and icDPM G in an

end-to-end manner. During the inference, the model starts

with a Gaussian noise, and iteratively recovers the clean im-

age, conditioned on both the blurry input and the multiscale

guidance at each denoising step.

4. Experiments

4.1. Setup and metrics

As motivated above, we are particularly interested in

the model generalization of DPMs to unseen blurry data.

Therefore, we set up our experiments under the scenario

that the model will be only trained with synthetic paired

dataset, and will be evaluated on a few unseen testing sets

where the images may present different content and distor-

tions than the in-domain data. To benchmark, we use the

widely adopted motion deblurring dataset GoPro [51] as our

training data, and assume Realblur-J [60], REDS [50] and

HIDE [69] are representatives of unseen test sets.

In GoPro [69], 3214 pairs of blurry/clean training exam-

ples are provided for training, and 1111 images are held-out

for evaluation. Realblur-J [60] is a recent realistic dataset

mainly consisting of low-light scenes with motion blur with

980 test images provided. We consider it to present the

largest domain gap with GoPro. REDS [50] presents a

complimentary video deblurring dataset with more realistic

motion blur. We follow [50, 6] and extract 300 validation

images for the motion deblur test. HIDE [69] is the most

commonly adopted dataset to test the model generalization

ability trained from GoPro with 2025 test images.
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4.2. Implementation details

Our framework is implemented in TensorFlow 2.0 and

trained on 32 TPU v3 cores. We warm start the training with

only regression loss, and linearly increase the weight of the

denoising loss to 1 within the first 60k iterations. Adam

optimizer [34] is used during the training (β1 = 0.5, β2 =
0.999), with batch size 256 on 128 × 128 random crops.

We use linear increasing learning rate within the first 20k

iterations, then with a constant learning rate 1 × 10−4. We

use a fully-convolutional UNet architecture [83] for icDPM

to ensure the model can be used at arbitrary image resolu-

tions. During the inference, we follow [83] and perform

a sequence of sampling under different parameters. More

details are included in the appendix.

4.3. Effectiveness of the guidance

We first validate the effectiveness of the proposed guid-

ance module by qualitatively comparing with our baseline

setup, which is a standard image-conditioned DPM (abbrev

as ‘icDPM’), on top of which we will introduce the guid-

ance module (abbrev as ‘icDPM w/ Guide’).

Table 1. Inception distances analysis (domain-shift) between two

different domains (GoPro v.s. Realblur-J) at different scales within

different image space. At each scale, the guidance network output

consistently reduces the gap compared to the downsampled input

images, as expected. The distance between grayscale inputs (at

original spatial resolution) are also given as a reference. KID val-

ues are scaled by a factor of 100 for readability.

Space FID ↓ KID ↓
Input 61.115 3.07

Input ×2 downsampled 58.266 3.02

Guidance ×2 output 49.437 3.00

Input ×4 downsampled 56.313 3.60

Guidance ×4 output 47.984 3.46

Input ×8 downsampled 49.684 4.91

Guidance ×8 output 44.649 4.70

Guidance and domain gap. As the guidance is designed

to improve the robustness towards domain shift, we perform

an analysis on the Inception distances from different inter-

mediate ‘image space’ to verify whether the guidance mod-

ule is progressively reducing the gap between inputs from

different sources (i.e. different blurry images in our sce-

nario). In Table 1, we start by calculating the per-scale In-

ception distance between GoPro (in-domain) and Realblur-J

(out-of-domain) images. At each scale of ×2, ×4 and ×8
downsampled space, we observe a consistent reduction of

FID and KID on the guidance network outputs, compared

with the downsampled grayscale inputs. This demonstrates

that the introduction of the learned guidance may provide

more domain-agnostic information and benefit generaliza-

tion of the model on unseen domains. In Fig. 4, we dis-

Figure 4. Top row: We compare the visual deblurring results on

an out-of-domain image between a standard icDPM and icDPM

with the proposed guidance module. While icDPM is prone to

producing artifacts, our method that incorporates the guidance is

more robust. Bottom row: We also visualize our multiscale regres-

sion outputs from scales of ×8,×4,×2, indicating the prediction

at spatial resolutions of 1/8, 1/4, 1/2 the input image.

play the multiscale regression outputs at different scales on

an out-of-domain input. The results align with our expecta-

tions, as the grayscale prediction at each scale progressively

approached a clean image. Further, we noticed pronounced

sampling artifacts from icDPM in this example, which are

effectively eliminated with the proposed guidance.

Guidance and model capacity. As the guidance network

introduces more parameters, we investigate if its perfor-

mance improvement is solely due to larger models. We per-

form a joint analysis of varying model size with and without

the guidance network, and results are presented in Table 2.

We refer results on the GoPro test set as ‘In-domain’ and

on the Realblur-J dataset as ‘Out-of-domain’, using a sin-

gle GoPro-trained model. We keep the number of building

blocks constant and modulate the network size by changing

only the number of convolutional filters. ‘-S’ and ‘-L’ in-

dicate a smaller and larger models, respectively. We start

27.8 28.0 28.2 28.4 28.6 28.8
Distort ion (PSNR)

6.5

7.0

7.5

8.0

Pe
rc

ep
ti

on
 (

1/
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IP
S)

icDPM-L w/ Guide-S
icDPM-S w/ Guide-S
icDPM-L

icDPM-L w/ Guide-L

icDPM-S

Figure 5. Perception-distortion plot as supplementary for Table 2,

under varying sampling parameters. Under different network

capacities (‘-S’ and ‘-L’ refer to small and large respectively),

the guidance mechanism allows for consistently better perceptual

quality and lower distortions compared to icDPM. Plots for other

datasets are in supplementary, where we observe similar trends.

with the image-conditioned DPM (icDPM) without the pro-

10725



Table 2. The effectiveness of the proposed guidance on top of image-conditioned DPM (icDPM), under different network size (‘-S’ and

‘-L’ refer to small and large networks respectively). We show both In-Domain (train on GoPro, test on GoPro), and Out-of-Domain (train

on GoPro, test on Realblur-J) results. Based on (a)-(b), we observe a larger icDPM boost in-domain performance, while not necessarily

lead to better out-of-domain results. With guidance (c)-(d), we observe consistent improvements both in-domain and out-of-domain.

Guidance Diffusion #Params
In-Domain Out-of-domain

network network best LPIPS ↓ best PSNR ↑ best LPIPS ↓ best PSNR ↑
(a) icDPM-S - ch=32 6M 0.077 30.555 0.150 28.209

(b) icDPM-L - ch=64 27M 0.058 32.105 0.156 27.996

(c) icDPM-S w/ Guide-S ch=32 ch=32 10M 0.068 31.298 0.145 28.286

(d) icDPM-L w/ Guide-S ch=32 ch=64 30M 0.058 32.220 0.128 28.742

(e) icDPM-L w/ Guide-L ch=64 ch=64 52M 0.057 32.254 0.123 28.711

Table 3. Average deblurring results across GoPro [51], HIDE [69]

Realblur-J [60], REDS [50] dataset with GoPro [51]-only trained

model, indicating the model robustness on various unseen data.

Perceptual Distortion

LPIPS ↓ NIQE ↓ FID ↓ KID ↓ PSNR ↑ SSIM ↑
DeblurGAN-v2 [37] 0.149 3.42 14.57 5.28 28.09 0.871

MPRNet [88] 0.140 3.70 20.22 8.49 29.78 0.897

UFormer [82] 0.133 3.65 18.99 8.13 30.06 0.903

Restormer [86] 0.139 3.69 19.90 8.36 30.00 0.895

Ours-SA 0.124 3.64 14.36 6.79 29.98 0.902

Ours 0.104 2.94 8.41 2.39 28.81 0.881

posed guidance network under different network sizes. In

Table 2 row (a) and (b), we observe a significant improve-

ment of the in-domain deblurring performance by increas-

ing the UNet capacity, in terms of both perception and dis-

tortion qualities. However, the out-of-domain testing results

become much worse with a larger network, suggesting po-

tential overfitting during the training. Through visual in-

spection, we also found that the larger DPM is prone to arti-

facts when presented with unseen data, as shown in Fig. 1, 4

and 8. By introducing the guidance network, we observe

both in-domain and out-of-domain performance gains. To

isolate the effects of introducing guidance module, we also

compare the performance between the icDPM and icDPM

with guidance under similar amount of parameters, where

we reduce the parameters of the model by using a smaller

guidance module (from (e) to (d)). We observe compara-

ble results of (d) icDPM-L w/ Guide-S with (e) icDPM-L

w/ Guide-L in both in-domain and out-of-domain perfor-

mance, and both of them outperformed icDPM-L.

We additionally present a distortion-perception plot in

Fig. 5, with samples acquired from varying sampling pa-

rameters (i.e. number of steps and the standard deviation

of noise). Similar to [83], we found a general trade-off

between perceptual quality and distortion metrics. Also,

we observed that all guided models consistently outperform

the baseline DPMs under varying sampling parameters. We

provide additional results on other datasets in appendix and

observe similar effects and benefits of using the guidance

module over the baseline icDPM.

4.4. Deblurring results

We compare our deblurring results with the state-of-

the-art methods, loosely categorized into distortion-driven

models [6, 88, 7], perception-driven GAN based meth-

ods [36, 37], as well as recent diffusion-based method [83].

In this work, we place particular emphasis on evaluating

(1) the generalization ability on unseen data, and (2) the

perceptual quality of the output, willing to compromise a

slight drop on average distortion scores towards a better

trade-off between distortion and perception [4]. For bench-

marking, we mainly consider perceptual quality of the re-

sults quantified by standard metrics for generative models

including LPIPS [94], NIQE [49], FID (Fréchet Inception

Distance) [17], and KID (Kernel Inception Distance) [3].

We also present distortion metrics including PSNR and

SSIM for completeness. However, we note that they are

less correlated with human perception [53] and maximiz-

ing PSNR/SSIM results in a compromise of visual percep-

tion [4]. Our method is based on generative models and per-

forms stochastic posterior sampling. The reference image

provided in the training dataset is only one of the possible

restoration result among other possibilities (due to the ill-

posed nature of inverse problems). Thus, similar to [4, 55],

our results compromise a certain amount of pixelwise av-

erage distortion while still being faithful to the target. We

highlight best and second-best values for each metric.

KID values are scaled by a factor of 1000 for readability.

We first present the in-domain GoPro performance in Ta-

ble 4. Our model achieved state-of-the-art perceptual met-

rics across the board, while maintaining competitive distor-

tion metrics by taking average of multiple samples (‘Ours-

SA’). Moreover, we are interested in the domain general-

ization and out-of-domain results on Realblur-J (Table 5),

REDS (Table 7) and HIDE (Table 6). We achieved a sig-

nificantly better perceptual quality on the unseen Realblur-J

and REDS, and competitive results on HIDE. Further, we

analyze the robustness the best-performing single-dataset

trained models by comparing their average performance

across all four test sets summarized in Table 3. Our method

significantly improves the perceptual scores, while main-
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Figure 6. Deblurring results on GoPro [51] (top two rows) and HIDE [69] (bottom two rows) test set from MIMO UNet+ [7], DvSR [83],

UFormer [82], and Ours. All models are trained only on GoPro [51] training set. Our method generates perceptually much sharper images,

and reduce artifacts when applied to unseen images (HIDE). Enlarged results are provided in the appendix.

Figure 7. Test examples on Realblur-J [60], with all models trained only on GoPro dataset [51]. Best viewed electronically. We empirically

found DeblurGANv2 [37] and DvSR [83] are prone to artifacts, and regression-based UFormer [82] produces over-smoothing images. Our

methods alleviate artifacts, and produce high-fidelity deblurring on unseen data, even when the domain gap is large.

taining highly competitive distortion scores with < 0.08
dB difference from the best PSNR, and < 0.001 difference

from the best SSIM with averaging samples (‘Ours-SA’).

Visual deblurring examples are provided in Fig. 6 on Go-

Pro [51] and HIDE [69], Fig. 7 on RealblurJ [60] and Fig. 8

on REDS [50], respectively. On the GoPro (in-domain)

test example, we find that all methods are able to produce

reasonable artifact-free deblurring, and our method gener-

ates sharper and more visual realistic results. On the three

out-of-domain datasets, performance degradation starts to

occur from baseline methods. For instance, GAN-based

model [37] and previous diffusion based model [83] tend

to produce artifacts on out-of-domain data, and state-of-the-

art regression based model [82] produces over-smoothed re-

sults. Our formulation performs more consistently better

across different datasets, significantly reducing artifacts on

unseen data with high perceptual realism. More enlarged

visual examples are in the appendix.

4.5. Perceptual Study

We further conducted a user study with human subjects

to verify the perceptual quality of the deblurring perfor-

mance on unseen data, with all models trained on GoPro

and tested on Relblur-J. We asked Amazon Mechanical

Turk raters to select the best quality image from a given pair.

We used 30 unique pairs of size 512×512 and averaged the
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Figure 8. REDS [50] deblurring examples from HINet [6], DeblurGAN-v2 [37], icDPM without guidance and Ours. When trained only

on GoPro [51], our method better removes the blur trace from the input image, while eliminating artifacts when applied on unseen data.

Table 4. Image deblurring results on GoPro [51] dataset.

Perceptual Distortion

LPIPS ↓ NIQE ↓ FID ↓ KID ↓ PSNR ↑ SSIM ↑
HINet [6] 0.088 4.01 17.91 8.15 32.77 0.960

MPRNet [88] 0.089 4.09 20.18 9.10 32.66 0.959

MIMO-UNet+ [7] 0.091 4.03 18.05 8.17 32.44 0.957

SAPHNet [77] 0.101 3.99 19.06 8.48 31.89 0.953

SimpleNet [43] 0.108 - - - 31.52 0.950

DeblurGANv2 [37] 0.117 3.68 13.40 4.41 29.08 0.918

DvSR [83] 0.059 3.39 4.04 0.98 31.66 0.948

DvSR-SA [83] 0.078 4.07 17.46 8.03 33.23 0.963

UFormer [82] 0.087 4.08 19.66 9.09 32.97 0.967

Restormer [86] 0.084 4.12 19.33 8.75 32.92 0.961

Ours-SA 0.078 4.10 8.69 7.06 33.20 0.963

Ours 0.057 3.27 3.50 0.77 31.19 0.943

Table 5. Results on Realblur-J [60] with GoPro trained models.

Perceptual Distortion

LPIPS ↓ NIQE ↓ FID ↓ KID ↓ PSNR ↑ SSIM ↑
UNet [63] 0.175 3.911 22.24 8.07 28.06 0.857

DeblurGAN [36] - - - - 27.97 0.834

DeblurGAN-v2 [37] 0.139 3.870 14.40 4.64 28.70 0.866

MPRNet [88] 0.153 3.967 20.25 7.57 28.70 0.873

DvSR [83] 0.153 3.277 18.73 6.00 28.02 0.851

DvSR-SA [83] 0.156 3.783 20.09 7.43 28.46 0.863

Restormer [86] 0.149 3.916 19.55 7.12 28.96 0.879

UFormer-B [82] 0.140 3.857 18.56 7.02 29.06 0.884

Ours-SA 0.139 3.809 16.84 6.25 28.81 0.872

Ours 0.123 2.976 12.95 3.58 28.56 0.862

750 ratings from 25 raters. In Table 8, each value represents

the fraction of times that the raters preferred the row over

the column. As can be seen, our method outperforms the

existing solutions. Also, it is worth pointing out that there

is a significant gap in the preference of our method with and

without the guidance mechanism (denoted as icDPM).

4.6. Additional modeling choices

Guidance network. We carried out additional ablation

studies for the modeling choices of the guidance network

on regression target (RGB v.s. grayscale), the number of

Table 6. Results on HIDE [69] with GoPro [51] trained models.

Perceptual Distortion

LPIPS ↓ NIQE ↓ FID ↓ KID ↓ PSNR ↑ SSIM ↑
HINet [6] 0.120 3.20 15.17 7.33 30.33 0.932

MIMO-UNet+ [7] 0.124 3.24 16.01 7.91 29.99 0.930

MPRNet [88] 0.114 3.46 16.58 8.35 30.96 0.940

SAPHNet [77] 0.128 3.21 16.78 8.39 29.99 0.930

DeblurGAN-v2 [37] 0.159 2.96 15.51 6.96 27.51 0.885

DvSR-SA [83] 0.105 3.29 15.34 8.00 30.94 0.940

DvSR [83] 0.089 2.69 5.43 1.61 29.77 0.922

UFormer [82] 0.113 3.40 16.27 8.51 30.89 0.920

Restormer [86] 0.108 3.41 15.84 8.28 31.22 0.923

Ours-SA 0.104 3.40 14.62 7.62 30.96 0.938

Ours 0.088 2.91 5.28 1.68 29.14 0.910

Table 7. Results on REDS [50] with GoPro-trained models.

Perceptual Distortion

LPIPS ↓ NIQE ↓ FID ↓ KID ↓ PSNR ↑ SSIM ↑
HINet [6] 0.195 3.223 21.48 7.91 26.72 0.818

DeblurGAN-v2 [37] 0.181 3.172 14.98 5.12 27.08 0.814

MPRNet [88] 0.204 3.282 23.90 8.94 26.80 0.814

Restormer [86] 0.213 3.326 24.86 9.30 26.91 0.818

UFormer-B [82] 0.192 3.272 21.48 7.91 27.31 0.842

Ours-SA 0.178 3.248 17.27 6.21 26.95 0.834

Ours 0.147 2.610 11.91 3.51 26.36 0.810

Table 8. Perceptual study with human subjects on Realblur-J [60]

dataset using GoPro [51] trained models. Each value represents

the fraction of times that raters preferred the row over the column.

DGANv2

[37]

UFormer

[82]

DvSR

[83]

icDPM Ours-

SA

Ours

DGANv2 - 0.28 0.43 0.56 0.26 0.17
UFormer 0.72 - 0.53 0.58 0.44 0.35
DvSR 0.57 0.47 - 0.61 0.32 0.29
icDPM 0.44 0.42 0.39 - 0.28 0.21
Ours-SA 0.74 0.56 0.68 0.72 - 0.38

Ours 0.83 0.65 0.71 0.79 0.62 -

scales to adopt for the guidance (single v.s. multiscale), and

the mechanism of incorporating the guidance (input-level vs

latent space). For fair comparison, identical diffusion UNet

is used under different configurations during training, and
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the same sampling parameters are used during inference.

Table 9 (a) indicates our baseline icDPM without any guid-

ance.We first compare the difference between incorporating

the guidance at input-level and at latent space (Table 9 (b)

and (c)). In (b), we upscale the regression output to the

original input size, and concatenate the result to the diffu-

sion UNet. In (c), we incorporate the feature maps before

regression output into the UNet latent space via addition

operation described above. The results indicate the bene-

fit of latent-space guidance over input-level concatenation.

Both (b)(c) improve on (a), showing the overall benefit of

introducing the guidance. We also observe a moderate im-

Table 9. Effect of various settings on the domain invariant guid-

ance. The scale column denotes the downsampling factors.

Regression Scale(s) Guidance LPIPS PSNR

(a) - - - 0.156 28.21

(b) RGB ×8 input 0.145 28.34

(c) RGB ×8 latent 0.143 28.45

(d) RGB ×2, ×4, ×8 latent 0.141 28.45

(e) Grayscale ×2, ×4, ×8 latent 0.137 28.63

provement by using multiscale guidance rather than single

scale guidance in row (d) over (c). In row (e), we simplified

the regression target from color space to grayscale space,

which further improved the results.

Guidance operation. We performed ablation studies

on the operations that injects the guidance into the icDPM

backbone. We tested three different possible guidance oper-

ations including addition (our final choice), concatenation,

and adaptive group normalization. Table 10 shows the de-

blurring PSNR on GoPro, where addition achieves the best

performance. Empirically, we observe that adaptive norm

in our use case tends to introduce artifacts. Compared with

concatenation, addition is more memory-efficient, and en-

sures that the guidance cannot be simply neglected.

Table 10. Ablation on guidance operations.

Operation PSNR

Addition 31.139

Concatenate 30.248

Adaptive norm 29.676

Training objectives for guidance feature. As we aim

to enhance the icDPM backbone with a more robust con-

ditioning mechanism through the integration of multiscale

structure guidance, we introduce a regression loss to jointly

train the guidance module and the icDPM. We assume that

this loss is essential to ensure that the derived guidance rep-

resentation retains prominent structural features while filter-

ing out extraneous information. To verify our assumption,

we trained our model without the regression loss, and we

observed that the PSNR on GoPro test set degraded from

31.19 to 30.56. This indicates that the regression loss is cru-

cial to effectively constraint learning of the guidance, and

removing the loss potentially makes the model equivalent

to just a larger UNet architecture.

Figure 9. An out-of-domain deblurring result on a test image from

Realblur-J [60] (left), alongside 12 (out of 64) selected channel-

wise guidance feature maps at the scale of k = 1 (right).

Qualitatively, we examine the learned channel-wise

guidance feature maps depicted in Fig. 9. As expected,

these feature maps are highly related to edges and over-

all structures, which provide as auxiliary information to the

icDPM about the coarse structures of its sharp reconstruc-

tion, and eventually benefit the robustness of the model.

5. Discussion
We present a learned multiscale structure guidance

mechanism for icDPM that acts as an implicit bias which

enhances its deblurring robustness. We acknowledge that

limitations exist and require further investigation.

Although our focus is on improving the model’s ability

to generalize to unseen data without access to large-scale

realistic training data, we recognize that the quality and re-

alism of the training dataset ultimately bounds the deblur-

ring capability of the model. In our experiments, we are

restricted to the GoPro training dataset for benchmarking,

which does not adequately cover all real-world scenarios,

such as saturated regions with poor light conditions, light

streaks at night. We observe that almost all methods fail

on deblurring such images and we include failure cases in

appendix. We believe our method can further benefit from

large-scale diverse sets of training data.

Further, while the scope of our work is specifically on

improving the robustness of deblurring in the context of

icDPM where the deblurring task is cast as a conditional
generation problem instead of a regression problem, similar

ideas could be explored in different contexts, e.g., making

a regression model more robust. However, as the guidance

module is also trained with regression objectives, attaching

it to a regression model may potentially lead to having a

single regression model with increased number of param-

eters. Such formulation along with other extensions (e.g.

plugging the guidance into other state-of-the-art regression

backbone like transformers) require further investigations.
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