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Abstract

The visual classification performance of vision-language
models such as CLIP has been shown to benefit from ad-
ditional semantic knowledge from large language models
(LLMs) such as GPT-3. In particular, averaging over LLM-
generated class descriptors, e.g. “waffle, which has a round
shape”, can notably improve generalization performance.
In this work, we critically study this behavior and propose
WaffleCLIP, a framework for zero-shot visual classifica-
tion which simply replaces LLM-generated descriptors with
random character and word descriptors. Without query-
ing external models, we achieve comparable performance
gains on a large number of visual classification tasks. This
allows WaffleCLIP to both serve as a low-cost alterna-
tive, as well as a sanity check for any future LLM-based
vision-language model extensions. We conduct an extensive
experimental study on the impact and shortcomings of ad-
ditional semantics introduced with LLM-generated descrip-
tors, and showcase how - if available - semantic context
is better leveraged by querying LLMs for high-level con-
cepts, which we show can be done to jointly resolve po-
tential class name ambiguities. Code is available here:
https://github.com/ExplainableML/WaffleCLIP.

1. Introduction

Task-specific tuning of natural language prompts [31,
67, 8, 26] can improve the performance of large vision-
language models (VLMs) [47]. However, if the model does
not have access to additional training data, i.e. in the zero-
shot setting, this is not an option. Instead, a promising
alternative [42, 46, 36] is querying large language mod-
els (LLMs) to provide additional semantic context to en-
rich class representations. Extending classnames with fine-
grained class descriptors generated by GPT-3 [5] and mini-
mal human intervention has experimentally shown to boost
results [36, 46], for instance with class-based descriptors on
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Figure 1: Substituting GPT-3 generated fine-grained de-
scriptors with random word or character sequences yields
competitive performance. High-level concepts further re-
solve classname ambiguities for additional gains.

top of classnames, e.g. a round shape for waffle [36].
However, close inspection of GPT-3 generated seman-

tic cues indicates a high degree of diversity, limited vi-
sual relevance, and ambiguity [36]. For instance, multi-
ple descriptors can be assigned to the same class despite
likely not co-occurring, e.g. “steamed” and “fried”, or non-
visual attributes might be mentioned, e.g. “a sour and spicy
smell”, or the class interpretation might be ambiguous, e.g.
“webbed feet” for “Peking duck” as a food item. Hence,
the underlying drivers of performance improvements when
using generated fine-grained class descriptors are unclear.

To understand these performance gains, we first show
that each set of class-specific GPT-3 generated descriptors
can be replaced with a fixed set of randomly selected, class-
independent descriptors while still retaining similar bene-
fits in performance. Motivated by this observation, we take
this one step further and propose WaffleCLIP, named af-
ter waffling around the class name, that replaces the LLM-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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generated fine-grained descriptors, e.g. a round shape, a
grid pattern, with random words (e.g. ”foot loud”) or char-
acter lists (e.g. ”jmhj, !J#m”) based on average class name
length and word counts (cf. Figure 1). As WaffleCLIP
does not require access to LLMs for additional context (un-
like e.g. [36, 42, 46, 56]), it remains inherently zero-shot.
Consequently, it also serves as an important sanity check
for future methods utilizing external model queries.

Naturally, the convincing performance of WaffleCLIP
across benchmarks raises questions regarding the true ben-
efits of additional semantics introduced by LLM-generated
descriptors. We provide answers with extensive experi-
ments, showcasing that semantic descriptors produced by
LLMs offer a structurally different and complementary im-
pact on the classification behavior. However, we find this
not to be fully driven by additionally introduced semantics,
but rather a different form of structured noise ensembling.

Instead, we show that actual semantic context is bet-
ter introduced through coarse-grained, high-level concepts.
Given access to external LLMs, we suggest a query mech-
anism for GPT-3 to automatically generate these concepts
(e.g. food for waffle, peking duck), while jointly resolving
issues of context-dependent class label ambiguity.

In summary, our contributions are: 1) We motivate and
propose WaffleCLIP to use random character and word de-
scriptors to enhance the semantic retrieval process in VLMs
(particularly CLIP); 2) we demonstrate that WaffleCLIP
yields comparable zero-shot classification performances at
lower cost compared to methods reliant on LLM-generated
descriptors, thus also serving as an important sanity check
for future models; 3) we extensively study the seman-
tic context introduced through LLM-generated descrip-
tors and propose (automatically extracted) high-level LLM-
generated concepts as an alternative for better use of seman-
tics while tackling classname ambiguities.

2. Related Work
Image classification with VLMs such as CLIP [47] has

gained popularity particularly in low-data regimes. As in-
put prompts have a significant impact on the performance,
recent research has focused on the exploration of learnable
prompts for the text encoder [67, 66, 33, 54], the visual en-
coder [1, 7, 61, 32] or for both encoders jointly [62].

Alternatively, synthetic images generated using avail-
able classnames can support corresponding image classifi-
cation [56, 2, 20]. In contrast, we do not tune prompts or
query external image generation methods, but propose to
use prompts containing random characters or words to en-
hance the zero-shot capabilities of VLMs.
Adding external knowledge to language prompts. Re-
cently, multiple works have shown how LLMs can be lever-
aged to obtain more effective prompts. [46, 38, 35] utilized
GPT-3 [5] to produce and study lengthy, descriptive sen-

tences that articulate the visual concepts for each category,
while [42] generated semantic hierarchies to identify sub-
classes of categories for zero-shot class prediction. [36]
used multiple fine-grained LLM-generated class descrip-
tors, which enhance accuracy and appear to provide inter-
pretability by assigning weights to each descriptor.

Similarly, different kinds of descriptions have been used
for image classification tasks, by manually crafting de-
scriptions [48, 21], or by utilizing external databases based
on e.g. Wikipedia [16, 45, 39, 11], the WordNet hierar-
chy [37, 52, 49], or the ImageNet-Wiki [6].

Whilst external knowledge from LLMs can be valuable,
in this work we show that one can match the image clas-
sification performance gains of using fine-grained LLM-
generated descriptors with randomly sampled characters
and words as class descriptors. In addition, we find that if
semantic context is available through LLMs, it is better inte-
grated through high-level context (c.f. also [15]), for which
we provide an automatic extraction mechanism.
Noise augmentation. Data augmentation through noise is
known to enhance the performance and robustness of model
training for a variety of tasks and domains [53, 17]. In the
language domain, noise can be incorporated in the embed-
ding or input space. For instance, [55, 9, 19] used linguis-
tic embedding space augmentations inspired by mixup [64],
and [10] added Gaussian embedding space noise. Augmen-
tation through input space noise has been performed at the
word- [28, 60], token- [60] or character-level [51, 22, 3, 41].

For character-level noise augmentation, characters are
randomly substituted, added, or removed [22, 3, 41]. In
all cases, these augmentation are used to prevent overfitting
during training. Instead, our approach utilizes character-
and word-level language augmentation to perturb the class
prompts for improved zero-shot image classification.

3. Method
We first describe image classification using class de-

scriptors following [36] (§3.1), before motivating and ex-
plaining our LLM-free, random semantic descriptor alter-
native WaffleCLIP (§3.2). Finally, if LLMs are available,
we highlight a simple extension to incorporate semantics
while jointly resolving ambiguities with automatically ex-
tracted high-level semantic concepts (§3.3).

3.1. Image classification with class descriptors

Given target categories C and a query image x, the zero-
shot image classification protocol used in CLIP [47] defines
the classification problem as nearest neighbour retrieval:

c̃ = argmax
c∈C

s(ϕI(x), ϕL(f(c))), (1)

with prompt f(c) = "A photo of a {c}." and im-
age and language encoder ϕI and ϕL. To improve
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ViT-B/32 ImageNetV2 ImageNet CUB200 EuroSAT Places365 Food101 Oxford Pets DTD Avg
CLIP [47] 54.71 62.01 51.28 40.78 39.12 82.59 85.06 43.18 57.34
DCLIP [36] 55.82 63.12 52.47 43.29 40.47 82.79 86.54 43.99 58.56
DCLIP (same, 1x) 55.47 ±0.24 62.89 ±0.19 52.64 ±0.28 39.74 ±2.69 40.29 ±0.47 83.82 ±0.48 87.04 ±0.27 43.35 ±0.41 58.16 ±1.01

DCLIP (same, 2x) 55.75 ±0.21 63.10 ±0.19 52.72 ±0.23 39.73 ±1.66 40.61 ±0.22 84.01 ±0.23 87.10 ±0.14 43.29 ±0.22 58.29 ±0.62

Table 1: Motivating random class descriptors. Comparing CLIP [47] and the GPT-descriptor-extended CLIP [36] (DCLIP)
with the same set of randomly sampled descriptors for each class, where the set size is either the average number of descriptors
per class in DCLIP (same, 1x), or twice that (same, 2x). A random set of descriptors per class can match or even outperform
DCLIP across backbone architectures (results for ViT-L/14 and ResNet50 are included in the suppl. material) confirming that
randomized prompt averaging leads to higher performance.

the retrieval process, [36] converts the simple class-
embedding retrieval to a dictionary-based one, where a
class c is associated with a set of descriptors Dc: "{c }
which (is/has/etc) {descriptor}." with e.g. c =
"waffle" and descriptor = "a round shape". Given
Dc for classes c, classification is reformulated as

argmax
c∈C

1

|Dc|
∑
d∈Dc

s(ϕI(x), ϕL(d)), (2)

which defines the similarity between the image x and class c
as the average similarity to all its descriptor variants. We ab-
breviate this descriptor-based extension of CLIP as DCLIP.

3.2. WaffleCLIP

DCLIP [36] 1 requires external LLMs for descriptors that
convert the single-class matching problem to one over an
ensemble of fine-grained class representations.

3.2.1 Motivation

We observe that LLM-generated class descriptors reveal
high diversity, limited visual relevance, and ambiguity.
From a conceptual perspective, this makes it hard to pin
down the precise benefits of generated class descriptors
used e.g. in [46] or [36]. To understand a possible driver
of performance improvements, we conduct a simple exper-
imental study, shown in Tab. 1. We take all available LLM-
generated descriptors for a dataset from [36], sample a small
set of descriptors where the cardinality of the set is the av-
erage number of descriptors per class used in DCLIP, and
assign this same set of random descriptors to every class,
i.e. DCLIP (same, 1x).

This shows a close match to DCLIP (e.g. 58.56% and
58.16% for ViT-B/32 in total average) and in parts even bet-
ter performance (e.g. 0.83% improvement in Food101 for

1DCLIP [36] reports improvements over CLIP by using the phrase
"{c }, which (is/has/etc) {descriptor}." instead of "A photo
of {c }, which (is/has/etc) {descriptor}." as suggested and
studied in the original CLIP paper. For fair comparison with existing base-
line CLIP results, we thus utilize the latter, but find similar behaviour for
other prompt structures.

ViT-B/32 ). This reveals averaging over descriptor varia-
tions as one of the key drivers for performance. The results
further improve when increasing the number of random
LLM-generated descriptors for each class (DCLIP (same,
2x), e.g. 58.16% → 58.29% for ViT-B/32 ).

Correspondingly, these results indicate that the role of
additional descriptor semantics is likely overestimated,
especially when uncurated descriptors are used. Building
on the benefits of averaging over various prompt variants
to extract a better semantic representation estimate of an
associated class, we investigate whether fully randomized
prompt descriptors can provide similar benefits, without
querying external LLMs.

3.2.2 WaffleCLIP Method

This motivates WaffleCLIP, an LLM-free descriptor alter-
native that uses simple randomized descriptors. In particu-
lar, we populate Dc with class-independent, random word
sequences or random character lists, with a fixed number
of characters per word lw, and a fixed number of words
nw. For example, lw = 4 and nw = 2 for char seq 1
= "aks@, pg2f" in Fig. 2. To avoid introducing hyper-
parameters, we leverage a simple heuristic where the aver-
age number of words and average number of characters per
word in the provided class labels determines lw and nw. As
a result, this converts the standard CLIP input prompt "A
photo of a {c}." into "A photo of a {c}, which
(is/has/etc) {random sequence}.", where we follow
the extension structure used in [36].

3.3. Better semantics and reduced ambiguity via
high-level concepts

Due to the limited impact of additional semantics intro-
duced by fine-grained descriptors (c.f. §3.2), we propose an
alternative way of querying LLMs that does not require av-
eraging across multiple descriptors and simultaneously ad-
dresses the issue of class ambiguities. Therefore, we sug-
gest taking a step back and searching not for additional class
details, but instead for higher-level commonalities between
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“Q: Tell me in five words or 
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nothing.   A: They are all ”
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CLIP image-text embedding space

CLIP
image enc.
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word_seq_1 = “foot loud ”
word_seq_2 = “life ring ”

char_seq_1 = “aks@, pg2f ”
char_seq_2 = “jmhj, !J#m ”

Query GPT-3 for high-level concept

Figure 2: Visual classification with WaffleCLIP using random characters/words. WaffleCLIP utilizes a collection of
prompt variations by simply injecting character-level and word-level noise around the classname (top left, orange). Simple
averaging consequently raises the robustness of the extracted semantics and the corresponding retrieval process (top right),
leading to notable gains in the open-vocabulary classification performance using Vision-Language models such as CLIP,
while approximating the performance improvements gained by e.g. querying external Large Language models for additional
semantic descriptors. In addition, we show that if given access to external LLMs, WaffleCLIP can be further enhanced by
adding a high-level concept descriptor in the prompt (red).

the classes, akin to the use of class hierarchies in image clas-
sification [18]. Understanding commonalities between mul-
tiple target classes can help resolve ambiguities. If the class
"boxer" is seen in the context of animal classification, it
likely refers to the animal instead of a human athlete.

We propose to automatically produce such high-level
concepts by using available class names (or subsets if the
class count exceeds the maximum LLM input sequence
length) CD for a dataset D and querying GPT-3 [5] with:

"Q: Tell me in five words or less what
{list of classes} have in common. It may be

nothing. A: They are all ".

or small variants thereof. After extracting the shared
concept through the corresponding LLM, simple filtering
of concepts is executed to check if generated concepts
are non-specific, namely "Object", "Thing", "Verb",
"Adjective", "Noun", or "Word". If so, high-level
concept guidance is omitted (this is only the case for three
out of eleven visual classification benchmarks, see also §4).
We then augment the default CLIP prompt to "A photo
of a {concept}: a {c}." and for WaffleCLIP, the
prompt is extended to "A photo of a {concept}: a

{c}, which (is/has/etc) {random sequence}."
While the prompt style can likely be improved, this naive
extension already offers remarkable benefits.

4. Experiments

We first provide implementation details before compar-
ing WaffleCLIP to DCLIP in §4.2. Extending our observa-
tions in Tab. 1, we study the source of performance gains via
LLM-generated descriptors (§4.3) and present a better way
for introducing semantics into the retrieval process while
tackling semantic ambiguities with automatically extracted
high-level concepts (§4.4).

In addition to that, §4.5 provides further insights on other
benchmarks not studied in e.g. [36], alongside benchmarks
measuring out-of-distribution (OOD) generalization. §4.6
showcases a comparison to hand-crafted prompt ensembles,
and §4.7 a study into the relationship of WaffleCLIP and
latent space noise. §4.8 then provides ablational studies to
WaffleCLIP. Finally, further experiments and particularly
experimental details and results are included in the supple-
mentary materials.
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ViT-B/32 ImageNetV2 ImageNet CUB200 EuroSAT Places365 Food101 Oxford Pets DTD Avg
CLIP [47] 54.71 62.01 51.28 40.78 39.12 82.59 85.06 43.18 57.34
+ Concepts ↓ ↓ 52.23 48.86 39.31 84.66 86.73 ↓ 58.96
DCLIP [36] 55.82 63.12 52.47 43.29 40.47 82.79 86.54 43.99 58.56
WaffleCLIP (ours) 55.92 ±0.08 63.31 ±0.09 52.38 ±0.12 44.31 ±1.07 40.56 ±0.07 83.25 ±0.21 85.70 ±0.25 43.16 ±0.25 58.57 ±0.41

+ Concepts ↓ ↓ 52.83 ±0.19 48.51 ±0.70 40.97 ±0.08 85.21 ±0.06 87.52 ±0.10 ↓ 59.47 ±0.42

+ GPT descr. + Concepts ↓ ↓ 52.77 ±0.26 51.64 ±0.25 41.35 ±0.09 84.87 ±0.05 87.71 ±0.18 ↓ 60.21 ±0.20

Table 2: Image classification with WaffleCLIP which extends input prompts with random word and character sequences
and matches the performance of DCLIP [36] using GPT-generated class descriptors. Additional semantic context through
high-level concepts (+ Concepts) can offer further boosts, particularly on benchmarks where classnames can be generic or
ambiguous. We further find that WaffleCLIP complements the use of GPT-generated descriptors (+ GPT descr.). (↓) denotes
same results as previous lines where high-level concept guidance is not applicable. For ViT-L/14 and RN50, see Supp.

4.1. Experimental details

We utilize CLIP [47] as the underlying VLM for
WaffleCLIP. As there is no direct cost associated with gen-
erating random character or word sequences, their number
is only bounded by inference speed requirements (which
is minimal as all respective language embeddings can be
computed a priori [36]). However, we find diminishing re-
turns for very high numbers (see also §4.8), and use 30 ran-
dom descriptors per class (or 15 random character and word
descriptor pairs) if not mentioned otherwise, with similar
performance for both half or double the descriptor count
(c.f. §4.8). All experiments use PyTorch [44] and are con-
ducted on a single NVIDIA 3090Ti GPU. Wherever nec-
essary, fine-grained LLM-generated descriptors are either
taken from or generated following the codebase provided
by [36]. If not mentioned explicitly, all results involving
WaffleCLIP are computed over seven random seeds.

Benchmarks. The datasets considered are (mostly
from [36]) ImageNet [14] and ImageNetV2 [29], CUB200-
2011 [57] (fine-grained bird classification), EuroSAT [23]
(satellite image recognition), Places365 [65], Food101 [4],
Oxford IIIT Pets [43], DTD (Textures, [12]), Flowers102
[40], FGVCAircraft [34], and Stanford Cars [30].

High-level concepts. Following §3.3, the GPT-3 gen-
erated high-level concept for CUB200-2011 is "Bird",
"Land Use" for EuroSAT, "Place" for Places365,
"Food" for Food101 and "Breed" for Oxford Pets. For
additional benchmarks, extracted concepts are noted in sec-
tion §4.5. For ImageNet (V2) and DTD, the concepts are
too generic and thus filtered out ("Object", "Noun", or
"Adjective"), with high-level guidance omitted.

4.2. WaffleCLIP vs LLM-generated descriptors

We start by analyzing the impact of randomization be-
yond fixed, randomized sets of fine-grained LLM-generated
descriptors as done in Tab. 1, by instead using random-
ized character or word descriptors through our proposed
WaffleCLIP. For that, we investigate visual classification
accuracies across the eight diverse benchmarks studied in

[36] in Tab. 2, where we compare WaffleCLIP, which does
not use any external LLMs, with DCLIP.

We find that averaging over randomized descriptors
yields performances comparable to or better than those ob-
tained with LLM-generated fine-grained descriptors over a
majority of studied datasets, with average performance be-
ing comparable: 58.56% using DCLIP versus 58.57% for
WaffleCLIP with a ViT-B/32 backbone and (see supp. ma-
terial) 69.14% → 68.95% for ViT-L/14, and 54.77% →
54.20% for ResNet50. Beyond the inherently zero-shot na-
ture of WaffleCLIP and ease of use, these results high-
light that improved visual classification with pretrained
VLMs does not require external LLMs, and further cements
prompt averaging as a potential key driver behind DCLIP.

4.3. Are descriptors from LLMs obsolete?

Our results above question the benefits of LLM-
generated fine-grained semantics, as averaging over fully
randomized character and word sequences achieves com-
parable performance. But does that mean that there is no
benefit in leveraging descriptors produced by LLMs?

4.3.1 Impact of Descriptor Averaging

To better understand this, we extend our motivational exper-
iments from Tab. 1. First, we look at what happens when not
performing averaging over all class descriptor distances as
in DCLIP, but instead choosing the maximum. If additional
fine-grained semantics were indeed beneficial, selecting the
most suitable one should similarly raise the performance.
However, as Tab. 3 reveals, performance actually drops,
showing that the VLM cannot leverage the additional se-
mantics to improve visual classification performance2. In-
stead, this again points to descriptor ensembling as the main
driver in performance.

We further support this by studying additional descrip-
tor randomization variants beyond those in §3.2. In particu-

2This is potentially influenced by bag-of-words behavior of CLIP-like
Vision-Language models as studied e.g. in [63]. We leave the detailed
analysis of this to future research.
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ViT-B/32 ImageNetV2 ImageNet CUB200 EuroSAT Places365
CLIP [47] 54.71 62.01 51.28 40.78 39.12
DCLIP [36] (mean) 55.82 63.12 52.47 43.29 40.47
DCLIP [36] (max) 54.41 61.67 52.40 37.11 37.21

Food101 Oxford Pets DTD Flowers102 FGVCAircraft Stanford Cars Avg
82.59 85.06 43.18 62.89 24.99 58.54 55.01
82.79 86.54 43.99 64.01 26.94 57.08 56.05
82.37 88.03 43.35 63.62 25.77 56.21 54.74

Table 3: Importance of semantics in DCLIP. The fa-
vorable performance of similarity score averaging (mean)
over simply selecting the maximum similarity score (max),
which in some cases can even underperform the CLIP
baseline built upon, points to the limited impact of LLM-
generated semantics on improved visual classification.

IN1k
V2

IN1k CUB
200

Euro
SAT

Places
365

Food
101

Oxford
Pets

DTD1%

10%

100% Percentage of flipped data points
DCLIP
WaffleCLIP

Figure 3: Label flipping experiment from CLIP to DCLIP
or WaffleCLIP. Each bar indicates the percentage of data
points getting either positively or negatively flipped (i.e.
labelled correctly or incorrectly adjusted) when switching
from CLIP to either DCLIP or WaffleCLIP. The consis-
tently higher flip percentage indicates structural differences
between natural language descriptors and randomized ones.

lar, instead of swapping specific descriptors, we interchange
full class-specific descriptor lists (interchanged). As de-
scriptions often contain class-specific keywords, this mod-
els a systematic semantic shift away from the actual class.
Additionally, we evaluate shuffling words within a descrip-
tor list (shuffled), and descriptor lists subsampled from all
available ones (random). This gives a progression from sys-
tematic to more independent descriptor randomization.

Our results in Tab. 4 reveal that directly interchanging
full class-dependent descriptor lists (interchanged) drops
performance significantly (e.g. from 58.56% to 55.03% for
ViT-B/32). In cases where no such shift is happening,
we find performances to match DCLIP (e.g. 86.54% →
86.28% on Oxford Pets). Similarly, when moving from a
systematic shift closer to fully randomized descriptors, per-
formance approaches DCLIP (scrambled with 58.56% →
57.55% to random with 58.56% → 58.02%, see supp. ma-
terial for more results).

While this offers further evidence for WaffleCLIP and
the fact that class-dependent ensembling drives gains, it
does not yet allow us to directly compare the impact on
the prediction behavior of LLM-generated descriptors and

"bird" "land use" "place" "food" "breed"

CUB200
EuroSAT

Places365
Food101
Ox. Pets

52.23
41.89
37.65
79.86
83.65

52.62
48.86
38.71
81.98
82.42

51.47
40.61
39.31
83.35
79.91

52.47
47.81
38.12
84.66
83.54

51.50
44.19
37.28
79.41
86.73

Figure 4: Study of the semantic impact of GPT-3 generated
high-level concepts through a semantic confusion matrix,
where we cycle high-level concepts between each bench-
mark. We find that interchanging the concepts generally re-
duces performance, indicating that high-level concepts pro-
vide complementary semantic context.

randomized ones.

4.3.2 Structural differences between LLM-generated
and randomized descriptors

We consider the percentages of samples that get positively
or negatively flipped - i.e. classified correctly while previ-
ously being classified incorrectly (and vice versa) - when
moving from CLIP to either DCLIP or WaffleCLIP in
Fig. 3. We find that using LLM-generated fine-grained de-
scriptors flips significantly more predictions than random-
ized words and characters, even when WaffleCLIP outper-
forms DCLIP. For example, DCLIP achieves 43.29% com-
pared to WaffleCLIP with 44.31% on EuroSAT or 82.79%
to 83.25% on Food101 in Tab. 2, but DCLIP flips a signifi-
cantly larger portion of samples than WaffleCLIP.

This reveals that full sentence, LLM-generated descrip-
tors have a structurally different impact on the classification
process, which we find to be complementary to random-
ization (see Tab. 2, + GPT descr.), where the use of both
leads to additional improvements over WaffleCLIP (e.g.
58.57% → 60.21% for ViT-B/32).

This means that even if additional semantics are not the
leading factor, LLMs for structured descriptor generation
can still facilitate more robust class embeddings. Even with
access to an external model for producing class descriptors,
WaffleCLIP can provide additional benefits.

4.4. Semantic guidance with high-level concepts

While we verified the relevance of additional semantic
context through fine-grained descriptors, methods using ad-
ditional fine-grained class information [36, 42, 46] suffer
from the inherent ambiguities of some class names. As
proposed in §3.3, our aim is to understand if high-level se-
mantic context can be used to resolve such ambiguities by
providing coarse semantic guidance for the class-retrieval
process.

Our results with extracted high-level concepts in Tab. 2,
i.e. (+ Concepts), demonstrate consistent and signifi-
cant improvements across most benchmarks and backbones
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ViT-B/32 ImageNetV2 ImageNet CUB200 EuroSAT Places365 Food101 Oxford Pets DTD Avg
DCLIP [36] 55.82 63.12 52.47 43.29 40.47 82.79 86.54 43.99 58.56
DCLIP (interchanged) 52.51 ±0.42 59.62 ±0.13 52.52 ±0.41 33.63 ±4.16 35.52 ±0.32 81.71 ±0.35 86.28 ±0.50 38.42 ±1.14 55.03 ±1.56

DCLIP (scrambled) 55.12 ±0.12 62.57 ±0.12 52.18 ±0.28 40.48 ±2.52 39.91 ±0.08 82.46 ±0.13 86.10 ±0.40 41.58 ±0.31 57.55 ±0.92

DCLIP (random, 1x) 54.11 ±0.28 61.37 ±0.18 52.42 ±0.19 36.83 ±4.27 38.80 ±0.26 82.86 ±0.23 85.99 ±0.62 42.20 ±0.85 56.82 ±1.57

DCLIP (random, 5x) 55.43 ±0.12 62.81 ±0.05 52.66 ±0.17 38.57 ±1.52 40.54 ±0.05 84.03 ±0.11 86.75 ±0.21 43.41 ±0.74 58.02 ±0.61

Table 4: Progression from systematic to fully randomized descriptor scrambling. To model systematic semantic shifts,
we randomly swap descriptor lists between classes (interchanged), before progressing to shuffling descriptor words within
the classes (scrambled) and randomly sampling LLM-generated descriptors for each class (random) from the complete set
of descriptors with counts as in (or five times that of) DCLIP (1x, 5x). As can be seen, a systematic shift results in a notable
performance drop, while more independently randomized descriptors can recover the DCLIP performance, aligning with the
observation that fully randomized prompt averaging is the main performance driver for WaffleCLIP.

ViT-B/32 Flowers102 FGVCAircraft Stanford Cars Avg
CLIP [47] 62.89 24.99 58.54 48.81
DCLIP [36] 64.01 26.94 57.08 49.34
WaffleCLIP 66.27 ±0.26 25.66 ±0.19 58.91 ±0.17 50.28 ±0.21

+ Concepts 67.19 ±0.19 28.44 ±0.22 59.70 ±0.12 51.78 ±0.18

+ GPT dsc. + Conc. 66.71 ±0.39 28.96 ±0.37 59.33 ±0.14 51.67 ±0.32

Table 5: We find similar performance improvements with
WaffleCLIP and high-level concept guidance for three ad-
ditional standard visual classification benchmarks not stud-
ied in [36], which in parts do not benefit from LLM-
generated descriptors (e.g. Stanford Cars).

Benchmarks ImageNet-R [24] ImageNet-S [58] ImageNet-A [25]

CLIP [47] 65.97 40.73 29.63
DCLIP [36] 65.12 41.09 29.19

WaffleCLIP 67.31 42.00 31.52

Table 6: Performance gains of WaffleCLIP on distribution-
shifted datasets to study impacts on OOD generalization.
Our results further highlight the general applicability of
simple averaging over randomized descriptors, even in
cases where the use of natural language ones may fail.

when used with CLIP, with WaffleCLIP, and even along-
side WaffleCLIP and DCLIP. These improvements are
especially evident on benchmarks with ambiguous (e.g.
Food101) or generic labeling (e.g. EuroSAT, with labels
such as Industrial or Residential): For ViT-B/32, classifica-
tion accuracy increases from 40.78% to 48.86% when ap-
plied to CLIP.

Overall, the average classification accuracy also in-
creases consistently (e.g. from 57.34% to 58.96% for ViT-
B/32). This even beats DCLIP, despite only being ap-
plicable on five out of eight benchmarks (58.96% versus
58.56%). When applied to WaffleCLIP, improvements
across most benchmark and backbone settings are also sig-
nificant, although we find diminishing returns on the largest
backbone, ViT-L/14, with average performance increasing
only from 68.95% to 69.12% (see suppl. material). This
might be due to its capabilities of retaining the most com-

mon concepts associated with specific classes, resulting in
a robust class retrieval setup when averaging over multiple
randomized descriptor variants.

We verify the benefits of high-level semantics fur-
ther by looking at performance changes when concepts
are interchanged (Fig. 4). For most benchmarks, the
largest improvements are obtained with GPT-generated
concepts. Some off-diagonal terms with higher scores,
e.g. CUB200 where "bird" performs similar to/worse than
"land use"/"food", do appear out of distribution and
warrant future research to improve our understanding of
how semantics concepts are truly encoded in large VLMs.

However, seeing maximum performances primarily on
the diagonal heuristically supports that additional seman-
tics introduced as high-level concepts and commonalities,
can offer reliable guidance. Indeed, considering a selection
of ambiguous samples such as "Boxer" or "Sphynx" in the
Oxford Pets dataset, "Mussels", "Oysters" or "Grilled
Salmon" in the Food101 dataset, or highly generic labels
such as "Industrial" or "Residential" in the EuroSAT
satellite image dataset, we find a consistent increase in av-
erage similarity to all associated test images by up to 13%.
This confirms that concept guidance can re-align and refine
class embeddings based on the relevant context.

4.5. Evaluation on additional (OOD) benchmarks.

We observe further evidence for the generality of
WaffleCLIP and concept guidance by studying three ad-
ditional benchmarks beyond those in Tab. 2 and [36]: Flow-
ers102 [40] (extracted concept: "flower"), FGVCAir-
craft [34] ("aircraft"), and StanfordCars [30] ("car").
Our results in Tab. 5 (and in the suppl. material for other
backbones) again show consistent gains when going from
CLIP to WaffleCLIP or WaffleCLIP + Concepts.

Interestingly, DCLIP is detrimental on very fine-grained
benchmarks like Stanford Cars, losing 1.46% against CLIP.
We speculate that this is due to semantically similar de-
scriptors for multiple classes that are coarser than the ac-
tual class label (e.g. "BMW Active Hybrid" and "BMW 1
Series" being assigned similar generic BMW descriptors).
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ViT-B/32 IN1k-V2 IN1k CUB Euro Places Food Pets DTD Flowers FGVC Cars Avg
CLIP [47] 54.71 62.01 51.28 40.78 39.12 82.59 85.06 43.18 62.89 24.99 58.54 55.01
DCLIP [36] 55.82 63.12 52.47 43.29 40.47 82.79 86.54 43.99 64.01 26.94 57.08 56.05
P. Ensemble 55.49 ±0.21 62.79 ±0.29 51.46 ±0.43 45.76 ±0.49 40.58 ±0.06 82.67 ±0.37 83.26 ±0.72 42.53 ±0.54 63.30 ±0.33 25.14 ±0.45 58.38 ±0.29 55.58 ±0.42

+ Concepts ↓ ↓ 52.08 ±0.17 49.80 ±0.66 40.61 ±0.14 84.45 ±0.15 87.42 ±0.20 ↓ 65.38 ±0.27 26.64 ±0.50 59.12 ±0.14 56.94 ±0.34

WaffleCLIP 55.92 ±0.08 63.31 ±0.09 52.38 ±0.12 44.31 ±1.07 40.56 ±0.07 83.25 ±0.21 85.70 ±0.25 43.16 ±0.25 66.27 ±0.26 25.66 ±0.19 58.91 ±0.17 56.31 ±0.37

+ Concepts ↓ ↓ 52.83 ±0.19 48.51 ±0.70 40.97 ±0.08 85.21 ±0.06 87.52 ±0.10 ↓ 67.19 ±0.19 28.44 ±0.22 59.70 ±0.12 57.52 ±0.26

Table 7: Prompt ensembling versus WaffleCLIP (+concepts). Across all visual classification benchmarks, we conduct
comparisons to equivalent prompt ensembling, which leverages handcrafted prompts. Our results show matching or improved
performance of WaffleCLIP (improving on eight out of eleven benchmarks), with the increase in average classification
performance of WaffleCLIP compared to prompt ensembling higher than the increase of a prompt-ensembled version over
the respective standard CLIP baseline, without requiring a handcrafted list of prompts.
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Figure 5: We evaluate changes in the performance of the
CLIP baseline when using latent space noise (modeled us-
ing vMF distributions centered around the default, unaltered
CLIP language embeddings) and thus also provide an im-
plicit comparison against WaffleCLIP). However, as can
be seen, reducing latent noise (i.e. increasing concentra-
tion κ) converges to initial performance while significantly
dropping the performance when increasing the latent noise
scale. This highlights no notable benefit of deploying noise
in the latent space.

Consequently, embeddings of related classes are system-
atically moved too close, harming performance. Mean-
while, WaffleCLIP (+ Concepts) can still offer perfor-
mance boosts (58.54% → 58.91% → 59.70%).

Furthermore, we study WaffleCLIP on benchmarks
measuring OOD generalization: Adversarial natural images
(ImageNet-A, [25]), sketches (ImageNet-S, [58]) and rendi-
tions (ImageNet-R, [24]). Results in Tab. 6 show that while
DCLIP does not improve consistently, WaffleCLIP oper-
ates well even for out-of-distribution data (e.g. 29.63% →
31.52% on ImageNet-A).

4.6. Comparison to prompt ensembles

We also compare WaffleCLIP to prompt ensembling
(c.f. e.g. [46]) with the same budget of 30 randomly selected
prompt options from a list of eighty handcrafted ones (taken
from [46], such as "A tattoo of a {class}.", "A
{class} in a video game.", ...). Unlike WaffleCLIP,
prompt ensembling still requires human input and design.
Results on all eleven benchmarks are listed in Tab. 7, which
favor WaffleCLIP, outperforming prompt ensembling in
eight out of eleven benchmarks and comparable perfor-
mance on the remaining ones.

In particular, improvements over prompt ensembling are
higher than the improvement of prompt ensembling over
vanilla CLIP (56.31% → 55.58% → 55.01%). This fur-
ther supports the benefit of extracting more robust semantic
representations, for which randomized descriptors provide
a cheap and suitable tool.

In addition to that, we highlight the complementarity of
high-level concept guidance in combination with prompt
ensembling in Tab. 7 (wherever the classname is included,
we simply use "a {concept}: a {classname}" in-
stead), raising the average classification accuracy from
55.58% to 56.94%.

4.7. Comparison to latent noise

To highlight that input-level class-conditioned ran-
domization is crucial, we compare our results using
WaffleCLIP to latent random noise applied on the hyper-
sperical representation of CLIP. To model the correspond-
ing noise distribution, we use unimodal von-Mises-Fisher
distributions (as commonly done, c.f. e.g. [59, 13, 68, 50])
of class embedding vectors ϕ̂c:

p(ϕ̂c|ϕc
l , κ) = Cd(κ) exp(κϕc

l
T ϕ̂c), (3)

centered around a class centroid vectors ϕc
l with constant

normalization Cd(κ) only dependent on the dimensionality
of ϕ and concentration κ. Note that ϕc

l is simply the lan-
guage embedding produced by CLIP when utilizing the un-
altered classname and input prompt. To sample from a vMF
distribution around each class embedding, we leverage the
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sampler utilized in [13, 27] with the same budget of 30 noise
embeddings.

Average performance as a function of the (inverse) con-
centration κ is visualized in Fig. 5. For high concen-
trations (i.e. random embedding samples placed close to
the mean direction), one can replicate the CLIP perfor-
mance. For higher variances, performance continuously
drops, with a hard inflection at around κ ≈ 104. This shows
that class-conditioned randomized descriptors as used in
WaffleCLIP are crucial for providing a more robust esti-
mate of semantic concepts, and cannot be simulated through
simple embedding space noise.

4.8. Ablations

4.8.1 Dependence on descriptor counts

We study the impact of the randomized word and character
sequence pair count for WaffleCLIP in Fig. 6. A value of
one indicates a single pair comprising a random words and a
separate random characters descriptor, respectively. As can
be seen, we already achieve competitive performance with
4 to 15 descriptor pairs (c.f. DCLIP in Tab. 2), while con-
sistently outperforming CLIP (blue line) even with a sin-
gle randomized descriptor pair. As class embeddings can
be computed a priori, and the generation of random words
and characters does not require external model queries, the
impact on overall setup and inference time is low, making
WaffleCLIP and its extensions very attractive for enhanc-
ing image classification performance of VLMs.

4.8.2 Impact of randomization types

Finally, we analyze how performance changes when ei-
ther using only random character sequences or only ran-
dom word sequences instead of a combination of both as
in WaffleCLIP. Across benchmarks and architectures (see
Tab. 8), we observe dichotomies in performance between
either random word or random character sequences, often
performing either best or worst on a specific benchmark and
backbone, while the joint usage of random words and char-
acter sequences strikes a consistent and best transferable
average improvement across benchmarks and backbone ar-
chitectures. Therefore, we chose the joint usage of both
random words and characters as our default setup.

5. Conclusion
In this work, we systematically examined the benefits

of using LLM-generated class descriptors for improved
training-free image classification with vision-language
models (VLMs). In-depth studies reveal how similar
performance gains can be achieved by replacing LLM-
generated descriptors with randomized ones, giving rise
to WaffleCLIP. Without access to external LLMs, across

Avg. ViT-B/32 ViT-L/14 RN50
Joint 58.57 ±0.41 68.95 ±0.18 54.20 ±0.23

Random Words 58.18 ±0.44 68.73 ±0.58 55.24 ±0.41

Random Characters 58.59 ±0.27 68.02 ±0.14 53.79 ±0.16

Table 8: Randomized descriptor modes. We provide a
quick comparison between the joint usage of randomized
word and character sequences as opposed to their singu-
lar usage, i.e. either only randomized word or character
sequences. Our experiments show that joint usage pro-
vides the most consistent performance improvements across
benchmarks and backbones.
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Figure 6: Ablation study on the number of randomized
word and character descriptors used in WaffleCLIP. We
find consistent competitive performance gains with just four
randomized descriptor pairs (both random words and ran-
dom characters, c.f. DCLIP Tab. 2). Note that the CLIP ref-
erence (blue line) is already outperformed with just a single
descriptor pair.

eleven visual classification benchmarks, we get comparable
or better results than those obtained when using fine-grained
GPT-3 generated descriptors. This makes WaffleCLIP
very attractive for practical use in true zero-shot scenarios,
and it serves as a crucial sanity check for future methods
using external queries. We also show that VLMs struggle
to leverage the actual semantics introduced through fine-
grained semantic descriptors, and instead show that if given
access to external LLMs, semantics are better exploited
through coarse, high-level concepts. Using specific queries,
we show how these can be automatically extracted, while
jointly helping to address issues of class ambiguity.
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