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Angélica Torres
Centre de Recerca Matemàtica
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Abstract

We study the joint image of lines incident to points,
meaning the set of image tuples obtained from fixed cam-
eras observing a varying 3D point-line incidence. We prove
a formula for the number of complex critical points of the
triangulation problem that aims to compute a 3D point-line
incidence from noisy images. Our formula works for an
arbitrary number of images and measures the intrinsic dif-
ficulty of this triangulation. Additionally, we conduct nu-
merical experiments using homotopy continuation methods,
comparing different approaches of triangulation of such in-
cidences. In our setup, exploiting the incidence relations
gives a notably faster point reconstruction with comparable
accuracy.

Introduction
The Structure-from-Motion pipeline aims to estimate the

camera positions and the relative position of the objects
present in a given set of images. The process starts by iden-
tifying point and line features in one image that are rec-
ognizable as the same points or lines in another. These
matched features, that we call correspondences, are used
to estimate the camera position and orientation, which then
allow for the triangulation step where the position of the
points and lines is estimated.

In this work, we study the triangulation of points and
lines satisfying a certain incidence relation. Specifically,
we focus on the triangulation of points contained in a single
line; see Figure 1. We note that our methods can also be
used when multiple lines going through a fixed point. We

Figure 1: The illustration of two different types of incidence relations:
(L1) represents the scenario where multiple points are incident to a line,
while (P1) represents the scenario where multiple lines are incident to a
point.

develop the theory for the triangulation of these problems
for an arbitrary number of pinhole cameras assuming com-
plete visibility.

The triangulation of points is well understood and, in
practice, it is efficiently implemented. However, to the
best of our knowledge, incidence relations are not consid-
ered in these implementations. The inclusion of line fea-
tures and incidence relations in the triangulation process
could give a more accurate estimation of scenes as lines are
more robust to noise than points, and incidence relations
appear frequently in interior scenes and man-made scenar-
ios; see [34], [24], [30]. Additionally, in some real data
sets standard feature detection algorithms fail due to a lack
of point correspondences but succeed when line correspon-
dences are taken into account [15].

The main tools in our work are (algebraic) varieties, that
is, the vanishing sets of systems of polynomial equations.
Algebraic varieties have been used extensively to study tri-
angulation of point correspondences [1, 17, 31], line cor-
respondences [7, 16, 29] and minimal problems [12, 13] to
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name a few. In these works, algebraic varieties arise natu-
rally due to the algebraic nature of pinhole cameras.

A pinhole camera, is modeled by a (complex) projective
linear mapC : P3 99K P2 defined by a 3×4 matrixC of full
rank that takes a point X ∈ P3 and sends it to CX ∈ P2.
A camera arrangement with m ≥ 2 cameras is denoted by
C = (C1, . . . , Cm), and the joint camera map

ΦC : P3 99K (P2)m,

X 7→ (C1X, . . . , CmX),
(1)

models the process of taking the images of a point X in
homogeneous coordinates with m cameras. For fixed cam-
eras, the (point) multiview variety MC is the smallest va-
riety that contains all point correspondences. An extensive
account of the pinhole cameras is given by [22], and a sur-
vey of the multiview variety is found in [36]. The joint
camera map can be extended from the space of points P3

to the space of lines, denoted by Gr(1,P3), where each line
is parametrized as the span of two points. The map

ΥC : Gr(1,P3) 99K (P2)m,

L 7→ (C1 · L, . . . , Cm · L).
(2)

models the image of a line L taken by the cameras of C.
To be precise, if u, v span the line L in P3, then C · L is
defined as ℓ = Cu×Cv ∈ P2, where× is the cross product.
Observe that {x ∈ P2 : ℓTx = 0} equals span{Cu,Cv}.
Recently, in [7], the authors study the line multiview variety
referred to as LC , which is the smallest variety containing
all line correspondences.

Our main contribution is the definition and study of the
anchored point and line multiview varieties. Given a fixed
line L in P3, the anchored point multiview variety,ML

C , is
defined as the smallest variety containing all point corre-
spondences coming from points in L; and the anchored line
multiview variety, LX

C , is the smallest variety containing the
line correspondences coming from lines passing through a
given point X ∈ P3.

For these new varieties we prove formulas for their Eu-
clidean distance degree (EDD), which are a measurement
of the complexity for error correction using exact algebraic
methods [11]. Specifically, we prove the following theorem:

Theorem 0.1. Let C be a generic arrangement of m cam-
eras.

1. EDD(ML
C ) = 3m− 2.

2. If m ≥ 3, then EDD(LX
C ) = 9

2m
2 − 19

2 m+ 3.

We provide a precise definition of this degree in Sec-
tion 1.2. Previous work on EDD for multiview vari-
eties includes [19, 31] and [7, Section 5]. The EDD of
the point multiview variety is EDD(MC) = 9

2m
3 −

21
2 m

2 + 8m − 4, according to [31]. The fact that the
EDDs of the anchored multiview varieties are polynomi-
als of smaller degrees suggests that they are less com-
plex for the purpose of data correction. This conclusion is
backed by the results of our numerical experiments using
HomotopyContinuation.jl [9], presented in Sec-
tion 2.

Another contribution of our work is the numerical sim-
ulations for the triangulation of points contained in a line
using the anchored multiview varieties. We present differ-
ent approaches to triangulating data of type (L1) that dif-
fer from the traditional method of fitting point correspon-
dences to the multiview variety MC . For m = 2 views,
our implementation is notably faster than the traditional tri-
angulation of points described above, while the accuracy is
comparable. For m = 3 views we get both higher accu-
racy and faster speed by using LC , compared to usual point
triangulation. All of our proposed methods outperform the
traditional approaches in terms of run-time and give a com-
parably accurate result. In practice, special software and
hardware are used for triangulation, and based on our ex-
periments, we believe that these approaches could be im-
plemented efficiently with good results.

Related work

Algebra. Algebraic geometry, whose connection to com-
puter vision is well established, is our main tool for the the-
oretical study of the triangulation of problem (L1). Funda-
mental theory regarding the point multiview variety is found
in [17, 20, 22], in particular for two and three views. The
paper [36] by Trager et. al. serves as a survey for the al-
gebraic properties of this multiview variety. For applica-
tions, finding a good set of polynomial constraints satisfied
by the point correspondences is important, this is precisely
the work of [1] by Agarwal et al.

Regarding the algebra of lines in a computer vision set-
ting, Kileel presented in [29, Definition 3.9, Theorem 3.10]
several types of multiview varieties with respect to a point-
line incidence relation in P3 in 3 views, and their basic prop-
erties. One of those types is called the LLL-multiview va-
riety and constitutes a special case of the more recent work
by Breiding et. al. [7], where they study algebraic prop-
erties of the line multiview variety. Furthermore, a recent
manuscript [6] studies the polynomial constraints satisfied
by line correspondences.

Projective Reconstruction. Different approaches to the
triangulation of points have been considered in the litera-
ture, in particular for two views [3, 4, 21, 26–28]. Hartley
and Sturm compare many different approaches in [21], in-
cluding the “midpoint” method. The midpoint method in-
puts a point correspondence in two views and outputs the
midpoint of the line segment determined by the points on
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the two back-projected lines that are closest to each other.
In other words, it finds the midpoint of the common per-
pendicular to the two back-projected lines. This is a natu-
ral approach, but it has several downsides, also pointed out
in [3, 4]. Importantly, it is not projectively invariant. A
projectively invariant reconstruction has the property that
acting on the cameras by a global projective transformation
induces the same action on the triangulated point or line.
Instead, Hartley and Sturm propose minimizing the repro-
jection error as the optimal triangulation method, which is
accepted as a standard formulation [35] and it is projectively
invariant. In [35], the focus is on triangulation via mini-
mizing reprojections errors in three views and the authors
point out that three views often lead to greater stability and
stronger disambiguation compared to two views.

Implementation of Line Reconstruction. From the al-
gorithmic point of view, the simultaneous reconstruction
of point and line features have been studied specially with
the goal of reconstructing line segments. For example, [2]
provides a thorough overview of the structure-from-motion
pipeline using lines, going through different methods for
line parameterization and error correction depending on
such parameterizations. In [33], Quan and Takeo study
the algebraic structure of line correspondences with uncal-
ibrated affine cameras. They reduce the problem of re-
constructing affine lines to the reconstruction of projective
points in a lower-dimensional projective camera. In [20],
Hartley and coauthors provide an algorithm for the recon-
struction of point and line features where 3D lines are pa-
rameterized by their projections in 2 views (as the inter-
section of two back-projected planes). Micusik and Wilde-
nauer reconstruct lines to estimate line segments, but only
use incident points for error correction [32]. Furthermore
in [23], the authors propose a technique for 3D recon-
struction incorporating line segments. They assert that this
method surpasses traditional approaches, especially in effi-
ciency while getting accurate results. Finally, in [14], the
authors present a framework for the computation of the rel-
ative motion between two images using a triplet of lines.

This paper is structured as follows. In the first part of
Section 1 we formally introduce anchored multiview vari-
eties and study some properties. In the second part of Sec-
tion 1, we study their smoothness and find their Euclidean
Distance Degree. Finally, in Section 2, we provide a nu-
merical analysis of different approaches to reconstructing
point correspondences incident to a line correspondence.
The proofs of all our results are included in the Supplemen-
tary Material together with a small background on the con-
cepts of Algebraic Geometry used for these results and the
code for the numerical experiments.

1. Anchored Multiview Varieties
A camera refers to a full-rank 3 × 4 matrix. A camera

arrangement is a collection C = (C1, . . . , Cm) of m ≥ 2
cameras whose centers, i.e. kernels, are all distinct.

A variety is the solution set to a system of polynomial
equations. The Zariski closure of a set U is the smallest
variety containingU . We work in complex projective space,
denoted Pn. This is defined as (Cn \{0})/ ∼, where x ∼ y
if x and y differ by a non-zero constant. The set of lines
in Pn is denoted as Gr(1,Pn). In the language of algebraic
geometry, it is called the Grassmanian of lines in Pn. In
general we denote with upper case letters world objects and
with lower case letters image objects. For a rational map
φ : X 99K Y , we denote φ|A the restriction of φ toA ⊆ X .

Definition 1.1. Let X ∈ P3 be a point distinct from all
camera centers, and L a line in P3 containing none of the
camera centers.

1. The anchored point multiview variety, denotedML
C , is

defined as the Zariski closure of the image of the map

ΦC |L : L 99K (P2)m,

X 7−→ (C1X, . . . , CmX).
(3)

2. The anchored line multiview variety, denoted LX
C , is

defined as the Zariski closure of the image of the map

ΥC |Λ(X) : Λ(X) 99K (P2)m,

L 7−→ (C1 · L, . . . , Cm · L),
(4)

where Λ(X) denotes the set of lines in P3 that contain
X and ℓi = Ci · L is defined as in the introduction.

The anchored point multiview varietyML
C is the small-

est variety that contains all point correspondences ΦC(X)
for X ∈ L. Similarly, the anchored line multiview variety
LX
C is the smallest variety that contains all line correspon-

dences ΥC(L) for L meeting X and no center. We high-
light that our definition of anchored multiview varieties is
different from the anchored features in [25] for monocular
EKF-SLAM.

Proposition 1.2. Consider an arrangement of m cameras
C = (C1, . . . , Cm), a point X ∈ P3 and a line L in P3

satisfying the conditions of Definition 1.1.

1. If there are two different camera centers ci and cj such
that the span of {ci, cj , L} is P3, then

ML
C = {(x1, . . . , xm) ∈MC : xi ∈ Ci · L}. (5)

2. If for each camera center ci, the line spanned by ci and
X does not contain any other camera center, then

LX
C = {(ℓ1, . . . , ℓm) ∈ LC : CiX ∈ ℓi}. (6)

The proofs for this and all our results are found in the
Supplementary Material.
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1.1. Properties of Anchored Multiview Varieties

A fundamental property of the anchored multiview vari-
eties is that they are linearly isomorphic to multiview vari-
eties arising from projections P1 99K P1 and P2 99K P1,
respectively. A linear isomorphism is a linear map (given
by a matrix) with an inverse that is also linear.

Consider an arrangement C̃ of m full-rank 2 × 2 matri-
ces, and an arrangement Ĉ of m full-rank 2 × 3 matrices.
Also here we assume m ≥ 2. We defineM1,1

C̃
, andM2,1

Ĉ
,

respectively as the Zariski closure of the image of the maps

ΦC̃ : P1 −→ (P1)m,

X 7−→ (C̃1X, . . . , C̃mX)
(7)

and

ΦĈ : P2 99K (P1)m,

X 7−→ (Ĉ1X, . . . ĈmX).
(8)

Theorem 1.3.

1. Let ϕL : L → P1 and ψC,i : Ci · L → P1 be any
choices of linear isomorphisms. Let C̃ denote the ar-
rangement of matrices C̃i := ψC,i ◦ Ci ◦ ϕ−1

L . Then

ψC,L := (ψC,1, . . . , ψC,m) :ML
C →M

1,1

C̃
(9)

is a linear isomorphism.

2. Let ϕX : Λ(X) → P2 and ψC,i : Λ(CiX) → P1 be
any choices of linear isomorphisms. Let Ĉ denote the
arrangement of matrices Ĉi := ψC,i ◦ Ci ◦ ϕ−1

X . Then

ψC,X := (ψC,1, . . . , ψC,m) : LX
C →M

2,1

Ĉ
(10)

is a linear isomorphism.

In Section 2.1.1, we exploit these linear isomorphisms to
improve the speed of triangulation for our setting. A conse-
quence of this theorem is also that many results for the an-
chored multiview varieties translate into results aboutM1,1

C̃
andM2,1

Ĉ
.

Proposition 1.4. ML
C and LX

C are irreducible. Further,

1. ML
C is isomorphic to P1. In particular, dimML

C = 1.

2. If the span of the centers ci and the point X are not
collinear, then dimLX

C = 2.

Using the fundamental matrices of Ci and Cj , denoted
as F ij , we introduce a set of polynomial constraints that
must be fulfilled by the correspondences of points or lines in
the anchored multiview varieties. These constraints imply
that some of the equations obtained from Proposition 1.2
are redundant in the generic case.

Proposition 1.5. For a pointX ∈ P3 and line L in P3, let C
be a generic (random) camera arrangement of m cameras.

1. x ∈ ML
C if and only if xT1 F

1jxj = 0 for every j =
2, . . . ,m and xTi Ci · L = 0 for every i = 1, . . . ,m.

2. ℓ ∈ LX
C if and only if

det
[
CT

1 ℓ1 CT
2 ℓ2 CT

i ℓi
]
= 0,

det
[
CT

1 ℓ1 CT
3 ℓ3 CT

i ℓi
]
= 0

(11)

for i = 3, . . . ,m and ℓTi CiX = 0 for every i =
1, . . . ,m.

The determinantal constraints described in the second
item correspond to the constraints that are satisfied by el-
ements of the line multiview variety, presented in [7].

In Supplementary Material Section B we define the mul-
tidegree of a variety in a product of projective spaces, deter-
mine it for the anchored multiview varieties and explain its
relevance for computer vision.

1.2. The Euclidean Distance problem

For a variety X ⊆ Rn and a point u ∈ Rn outside the
variety, a natural problem is to find the closest point on X
to u, which corresponds to the optimization problem

minimize

n∑
i=1

(ui − xi)2 subject to x ∈ X . (12)

Equation (12) is called the Euclidean distance problem and
models the process of error correction and fitting noisy data
to a mathematical model X . In the case of a smooth vari-
ety, defined below, the Euclidean distance degree (EDD) is
the number of complex solutions to the critical equations of
(12) [11]. The EDD is an estimate of how difficult it is to
solve this problem by exact algebraic methods. For a vari-
ety X in a product of projective spaces Pn1 × · · · × Pnm ,
the EDD is the EDD of X ∩U1× · · · ×Um ⊆ Rn1+···+nm ,
where Ui is a generic affine patch of Phi for each i. An
affine patch U of Pn is a subset defined by an affine equa-
tion with non-zero constant part, for instance x0 = 1. We
have U ∼= Rn over the real numbers.

A variety X is smooth at a point x if X locally around x
looks like Euclidean space. X is smooth if all its points
are smooth. The singular locus of a variety is the set of
non-smooth points. See [18] for more details. The singu-
lar locus of the point multiview variety is well-understood,
see for instance [36], and it is mostly understood for the
line multiview variety, see [7, Section 3]. The proposition
below guarantees that the anchored multiview varieties are
smooth for generic camera arrangements, which helps us to
compute its EDD.
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Proposition 1.6.

1. ML
C smooth.

2. If there are exactly two cameras, or the centers to-
gether with the point X span P3, then LX

C is smooth.

For the EDD to be relevant in a particular setting, the Eu-
clidean distance has to be a good measurement of distance.
This is naturally the case for points in R2, i.e. an affine
patch of P2. This extends to an affine patch of MC . It is
perhaps less clear how to best measure distances between
lines. Recall that we regard LC as a subset of (P2)m. In-
deed, we identify image lines with the point that defines its
normal vector. We choose the Euclidean distance between
these normal vectors (in affine patches of P2) as our distance
between lines.

The theorem below present our computations of
the EDDs of the anchored multiview varieties. Ad-
ditionally, our numerical computations using the
HomotopyContinuation.jl [8] package in the
julia [5] programming language have confirmed the
accuracy of these formulas for m ≤ 10.

Theorem 1.7. Let C be a generic arrangement of m cam-
eras.

1. EDD(ML
C ) = 3m− 2.

2. If m ≥ 3, then EDD(LX
C ) = 9

2m
2 − 19

2 m+ 3.

We end with an implication of Theorem 1.3: There is a
direct correspondence between the EDDs of the anchored
multiview varieties andM1,1

C̃
,M2,1

Ĉ
.

Theorem 1.8. Let C̃ and Ĉ be generic arrangements of car-
dinality m.

1. EDD(M1,1

C̃
) = 3m− 2.

2. If m ≥ 3, then EDD(M2,1

Ĉ
) = 9

2m
2 − 19

2 m+ 3.

2. Numerical Experiments
In this section we conduct numerical experiments of the

triangulation process of incident point and lines. All the
code can be found in the Supplementary Material.

By (L1) we refer to point-line arrangements in P3 of one
line incident to p points, as depicted in Figure 1. Our goal
is to reconstruct such arrangements, given point correspon-
dences incident to a single line correspondence across m
views. The following is a list of natural approaches for such
triangulation given a camera arrangement C. It is not neces-
sarily a complete list.

(L1).0 Triangulate each point correspondence by fitting it
to the point multiview variety MC , i.e. find the
closest point correspondence inMC ;

Figure 2: Comparison of (L1).0 and (L1).1 triangulation approaches.
(L1).0 expects non-collinear points in the reconstruction, while (L1).1 pro-
duces collinear points.

(L1).1 Reconstruct the 3D line L by back-projecting the
image lines from two views. Triangulate the point
correspondences by fitting them to the anchored
multiview varietyML

C ;

(L1).2 Triangulate two point correspondences by fitting
them toMC to get 3D points X and Y . Let L be
the line they span in R3. Triangulate the remaining
point correspondences by fitting them toML

C ;

(L1).3 Triangulate one point correspondence by fitting it
to MC to get a 3D point X . Reconstruct the 3D
line L by fitting the line correspondence to the
anchored variety LX

C . Triangulate the remaining
point correspondences by fitting them toML

C ;

(L1).4 Reconstruct the 3D line L by fitting the line corre-
spondence to the line multiview variety LC . Trian-
gulate the point correspondences by fitting them to
the anchored multiview varietyML

C .

Approaches (L1).1-4 take the incidence relations into ac-
count in the triangulation, whereas (L1).0 does not. There-
fore, in contrast to (L1).1-4, the resulting triangulation of
(L1).0 does not preserve the point-line incidences; see Fig-
ure 2.

2.1. Implementation

Our experiments are implemented in
HomotopyContinuation.jl [8] in Julia [5].
Here we explain them in some detail. The full explanation
can be found in Supplementary Material. We ran the
code on a Intel(R) Core(TM) i5-8300H CPU running at
2.30GHz.

2.1.1 Reducing the number of parameters

We reduce the number of parameters involved in the prob-
lem of fitting data toML

C , respectively LX
C , by translating

it to and solving it for M1,1

C̃
, respectively M2,1

Ĉ
. Details

are found in Supplementary Material Section B. This trans-
lation corresponds to a reduction of parameters because an
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affine patch ofM1,1

C̃
lives in (R1)m, while an affine patch

of ML
C lives in (R2)m. The analogous is true for M2,1

Ĉ
and LX

C .
We call the methods that do not use this translation stan-

dard and for instance, write (L1).1 std. to denote it. By
just writing (L1).1, we denote the implementation of this
translation.

2.1.2 Evaluating error

In our experiments, each iteration starts by randomly gen-
erating a 3D line L and p points Xi on this line. This
line and these points are projected by randomly generated
cameras to line and point correspondences in (R2)m. For
fixed ϵ = 10−12, randomly generated noise vectors σ(ϵ) of
length ϵ are added in each factor. Our approaches then find
points Yi ∈ R3 that match the noisy correspondences. We
measure the accuracy by taking the logarithm after averag-
ing the relative error of reconstructed points:

e = log10

(∑
∥Yi −Xi∥
pϵ

)
, (13)

where ∥Yi − Xi∥ denotes the Euclidean distance. The in-
terpretation of this number is that the error in the data gets
amplified by 10e during the triangulation.

2.1.3 Algorithms

The pseudocodes for all approaches are included in the Sup-
plementary Material. The pseudocode for approach (L1).1
is presented in Algorithm 1. We use the notation that for
a column vector X ∈ Rn, [X; 1] ∈ Rn+1 is the vec-
tor we get by adding a 1 as the last coordinate. Let ι be
the function that scales a vector such that its last coordi-
nate is 1, and then removes that coordinate. In lines 1 and
2 of the algorithm, we generate noisy data by introducing
randomly generated noise σ(ϵ) as explained above, where
ϵ = 10−12 is a fixed parameter for our experiments. Lines
3 and 4 correspond to the triangulation of the line and the
point correspondences using the anchored point multiview
variety at the line L0. Note that we solve the closest point
problem in line 4 by computing the zeros of a system of
polynomial (critical) equations using the solve function in
HomotopyContinuation.jl [9]. Finally, line 5 com-
pares the points obtained in the previous step with the orig-
inal starting points, measuring the logarithmic average rel-
ative error of the p points.

Most other pseudocodes are similar to Algorithm 1. For
instance, approach (L1).0 does not take into account the
line, so it corresponds deleting lines 1 and 3 from Algo-
rithm 1 and modifying the minimization domain in line 4,
replacing L0 byMC . In approach (L1).2, line 3 is modified

so that L0 is obtained by the span of two triangulated points
instead of by intersecting two back-projected planes.

Algorithm 1: One iteration of the (L1).1 std.
method given a randomly generated camera ar-
rangement C of 3 × 4 matrices, a projective line
L spanned by two vectors of R4, and p points
Xi ∈ R3 such that [Xi; 1] lie on L.

Input : C = (C1, . . . , Cm), L, X1, . . . , Xp

Output: The log of the average relative error
1 for j from 1 to m do
2 for i from 1 to p do
3 qi,j ← ι(Cj [Xi; 1]) + σ(ϵ);

4 uj ← ι(Cj · L) + σ(ϵ);

5 L0 ← nullspace
[
CT

1 [u1; 1] CT
2 [u2; 1]

]T
;

6 for i from 1 to p do
7 Yi ←

argmin
X∈R3:[X; 1]∈L0

∑m
j=1(qi,j − ι(Cj [X; 1]))2;

8 e← log10

(
1
pϵ

∑p
i=1 ∥Yi −Xi∥

)
;

Return: e

2.2. Numerical results

The main results of our numerical experiments are pre-
sented in Figures 3 to 5 and Tables 1 to 3. We compare the
performance of the five different triangulation approaches
for p = 5 and different number of m cameras. In the ta-
bles, we present the median, mean and standard deviation σ
of the logarithmic average relative error and time. The re-
sults are displayed in histograms and tables created with
Plots.jl [10].

Note that for two cameras, (L1).0 and (L1).2 are the ex-
act same, and (L1).1 and (L1).4 are essentially the same.
In Figure 3 and Table 1 we present results for m = 2 and
therefore only include (L1).0, (L1).1 and (L1).3. We also
compare with the standard implementations of (L1).1 and
(L1).3 that do not use the linear isomorphisms of Theo-
rem 1.3 to improve computation time as described in Sec-
tion 2.1.1. This simulation is iterated 1000 times.

Figure 4 and Table 2 compare the different reconstruc-
tion approaches for m = 3 cameras. The simulations are
again iterated 1000 times.

Figure 5 and Table 3 compare the different reconstruc-
tion approaches for m = 4 cameras. The simulations are
iterated only 100 times, due to the longer run-time of the
simulations.

Our theoretical studies in Section 1, specifically Theo-
rem 1.7, guarantee that methods such as (L1).1, (L1).2 and
(L1).3 are less complex from the algebraic point of view,
than (L1).0 for triangulation of points incident to a line. Ad-
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Figure 3: Triangulation of p = 5 point correspondences incident to a line
for m = 2 views with complete visibility. 1000 iterations. The histograms
show the frequency of the average relative error and the running time of
the depicted triangulation methods.

ditionally, using Section 2.1.1, we were able to improve the
computation speed while retaining comparable accuracy,
which is exemplified by the two cases (L1).1 vs. (L1).1
std. and (L1).3 vs. (L1).3 std. in Table 1.

Finally, our numerical simulations show that in
our HomotopyContinuation.jl implementation, the
(L1).1 approach is the fastest across all number of views,
but least accurate. In the case of m = 3, (L1).4 is the most
accurate and faster than the traditional (L1).0 method. Even
for m = 4, (L1).4 is the most accurate but is notably slower
than (L1).0. Increasing the number of cameras m improves
accuracy and reduces speed, but the exact impact depends
on the approach. Among (L1).1-4, (L1).1 is least affected
in both regards, and (L1).4 is most affected in both regards.
The speed can be thought of as an affine function in the
number of point correspondences p. Reconstructing the line
correspondence takes some fixed amount of time indepen-
dent of p and then all p correspondences are independently
reconstructed.

3. Conclusion and Future Work
This work studied the triangulation of incident points and

lines. We introduced the anchored line multiview varieties
and showed that they correspond to multiview varieties aris-
ing from projections P2 99K P1 and P1 99K P1. In addi-
tion, we proved that they are less complex for reconstruc-
tion via critical points. These theoretical results are also

Accuracy median mean σ

(L1).0 1.031 1.243 1.213
(L1).1 1.489 1.702 1.085
(L1).1 std. 1.374 1.548 0.990
(L1).3 1.250 1.449 0.964
(L1).3 std. 1.147 1.393 1.205
Speed median mean σ

(L1).0 0.170 0.201 0.220
(L1).1 0.0430 0.0470 0.0207
(L1).1 std. 0.122 0.141 0.202
(L1).3 0.0838 0.0941 0.0464
(L1).3 std. 0.167 0.188 0.0764

Table 1: Triangulation of p = 5 point correspondences incident to a line
for m = 2 views with complete visibility. 1000 iterations. The tables show
the accuracy and speed of the depicted triangulation methods in terms of
median, mean and standard deviation.

Figure 4: Triangulation of p = 5 point correspondences incident to a line
for m = 3 views with complete visibility. 1000 iterations. The histograms
show the frequency of the average relative error and the running time of
the depicted triangulation methods.

aligned with the numerical experiments we conducted. In
particular, the proposed methods in Section 2 compare dif-
ferent methods for triangulating a set of points incident to
a line. We highlight that according to our experiments, the
use of the theoretical results in Section 1 allows for a no-
tably faster triangulation while preserving the accuracy of
the traditional method for point reconstruction.

We hope this work motivates the use of new algebraic
constraints in the triangulation of incident points and lines.
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Accuracy median mean σ

(L1).0 0.620 0.817 1.023
(L1).1 1.562 1.781 1.128
(L1).2 0.878 1.125 0.998
(L1).3 1.011 1.243 1.078
(L1).4 0.407 0.499 0.901
Speed median mean σ

(L1).0 0.984 1.060 0.514
(L1).1 0.0806 0.0858 0.0318
(L1).2 0.431 0.456 0.155
(L1).3 0.304 0.331 0.134
(L1).4 0.616 0.763 0.500

Table 2: Triangulation of p = 5 point correspondences incident to a line
for m = 3 views with complete visibility. 1000 iterations. The tables show
the accuracy and speed of the depicted triangulation methods in terms of
median, mean and standard deviation.

Figure 5: Triangulation of p = 5 point correspondences incident to a line
for m = 4 views with complete visibility. 100 iterations. The histograms
show the frequency of the average relative error and the running time of
the depicted triangulation methods.

Some questions that arose in the development of this work,
and that we believe are worth studying, are included below.

• A triangulation approach inspired by [2] consists of re-
constructing the 3D line L by fitting it to LC solving
the following optimization problem

minimize
∑
ij

d(xij , ℓi)
2subject to ℓ ∈ LC . (14)

Accuracy median mean σ

(L1).0 0.385 0.551 0.776
(L1).1 1.437 1.762 1.249
(L1).2 1.095 1.077 0.845
(L1).3 0.817 1.110 1.094
(L1).4 0.203 0.421 1.324
Speed median mean σ

(L1).0 4.365 4.675 1.576
(L1).1 0.141 0.149 0.0431
(L1).2 1.809 1.863 0.323
(L1).3 1.107 1.157 0.234
(L1).4 6.599 7.391 3.068

Table 3: Triangulation of p = 5 point correspondences incident to a line
for m = 4 views with complete visibility. 100 iterations. The tables show
the accuracy and speed of the depicted triangulation methods in terms of
median, mean and standard deviation.

Here, xij denotes the j = 1, . . . , p point correspon-
dences across i = 1, . . . ,m cameras, and d(xij , ℓi) is
the affine distance from a line in R2 to the point, mean-
ing

d(xij , ℓi) =
|1 + (ℓi)1(xij)1 + (ℓi)2(xij)2|√

(ℓi)21 + (ℓi)22
. (15)

We believe that this method is more accurate than
(L1).4, but with longer running time, due to the ap-
pearance of fractions.

• Consider the point-line problem (P1) defined by one
point incident to l lines, illustrated in Figure 1. Can
similar approaches to (L1).1-4 be formulated for the
triangulation of the (P1) setting? Can they be used to
improve accuracy and/or the speed of triangulation?

• Our implementation for the numerical experiments
does not directly correspond to the specialized soft-
ware and hardware used for triangulation in practice.
However, our results motivate that patterns displayed
in our figures and tables could translate to such set-
tings. This could improve the efficiency of current spe-
cialized solvers.
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