
Walking Your LiDOG: A Journey Through Multiple Domains for LiDAR
Semantic Segmentation
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Figure 1: Domain Generalization for LiDAR Semantic Segmentation (DG-LSS). Left: Existing LSS methods are trained
and evaluated on point clouds drawn from the same domain. Right: We focus on studying LSS under domain shifts, where the
test samples are drawn from a different data distribution. Our paper aims to address the generalization aspect of this task.

Abstract

The ability to deploy robots that can operate safely in
diverse environments is crucial for developing embodied
intelligent agents. As a community, we have made tremen-
dous progress in within-domain LiDAR semantic segmenta-
tion. However, do these methods generalize across domains?
To answer this question, we design the first experimental
setup for studying domain generalization (DG) for LiDAR
semantic segmentation (DG-LSS). Our results confirm a sig-
nificant gap between methods, evaluated in a cross-domain
setting: for example, a model trained on the source dataset
(SemanticKITTI) obtains 26.53 mIoU on the target data,
compared to 48.49 mIoU obtained by the model trained on
the target domain (nuScenes). To tackle this gap, we propose
the first method specifically designed for DG-LSS, which
obtains 34.88 mIoU on the target domain, outperforming
all baselines. Our method augments a sparse-convolutional
encoder-decoder 3D segmentation network with an addi-
tional, dense 2D convolutional decoder that learns to clas-
sify a birds-eye view of the point cloud. This simple auxiliary
task encourages the 3D network to learn features that are
robust to sensor placement shifts and resolution, and are
transferable across domains. With this work, we aim to in-

spire the community to develop and evaluate future models
in such cross-domain conditions.

1. Introduction
We address the challenge of achieving accurate and ro-

bust semantic segmentation of LiDAR point clouds. LiDAR
semantic segmentation (LSS) is one of the most fundamental
perception problems in mobile robot navigation, with appli-
cations ranging from mapping [28], localization [32], and
online dynamic situational awareness [45].1

Status Quo. State-of-the-art LSS methods [8, 16, 44, 68]
perform well when trained and evaluated using the same sen-
sory setup and environment (i.e., source domain, Fig. 1, left).
However, their performance degrades significantly in the
presence of domain shifts (Fig. 1, right), commonly caused
by differences in sensory settings, e.g., a new type of sensor,
or recording environments, e.g., geographic regions with
different road layouts or types of vehicles. One way to miti-
gate this is to collect multi-domain datasets for pre-training,

1Semantic point classifier was part of the perception stack in early
autonomous vehicles, such as Stanley, that won the DARPA challenge in
2005.
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similar to what has been done in the image domain using
inexpensive cameras that are widely available [9, 30]. How-
ever, building a crowd-sourced collection of multi-domain
LiDAR datasets is currently not feasible.

Stirring the pot. As a first step towards LiDAR seg-
mentation models that are robust to domain shifts, we
present the first-of-its-kind experimental test-bed for study-
ing Domain Generalization (DG) in the context of LiDAR
Semantic Segmentation (LSS). In our DG-LSS setup we
train and evaluate models on different domains, includ-
ing two synthetic [39] and two real-world densely labeled
datasets [3, 13], recorded in different geographic regions
with different sensors. This evaluation setup reveals a signif-
icant gap in terms of mean intersection-over-union between
models trained on the source and target domains: for exam-
ple, a model transferred from SemanticKITTI to nuScenes
dataset obtains 26.53 mIoU compared 48.49 mIoU obtained
by the model fully trained on the target domain. Could this
gap be alleviated with DG techniques?

Insights. To address this challenge, we propose LiDOG
(LiDAR DOmain Generalization) as a simple yet effective
method specifically designed for DG-LSS. In addition to
reasoning about the scene semantics in 3D space, LiDOG
projects features from the sparse 3D decoder onto the 2D
bird’s-eye-view (BEV) plane along the vertical axis and
learns to estimate a dense 2D semantic layout of the scene.
In this way, LiDOG encourages the 3D network to learn
features that are robust to variations in, e.g., type of sensor
or geo locations, and thereby can be transferred across dif-
ferent domains. This directly leads to increased robustness
toward domain shifts and yields +8.35 mIoU improvement
on the target domain, confirming the efficacy of our ap-
proach. Our experimental evaluation confirms this approach
is consistently more effective compared to prior efforts in
data augmentations [61, 34, 38], domain adaptation tech-
niques [49, 22], and image-based DG techniques [7, 35],
applied to the LiDAR semantic segmentation.

Contributions. We make the following key contributions.
We (i) present the first study on domain generalization in the
context of LiDAR semantic segmentation. To this end, we
(ii) carefully construct a test-bed for studying DG-LSS using
two synthetic and two densely-labeled real-world datasets
recorded in different cities with different sensors. This al-
lows us to (iii) rigorously study how prior efforts proposed
in related domains can be used to tackle domain shift and
(iv) propose LiDOG, a simple yet strong baseline that learns
robust, generalizable, and domain-invariant features by learn-
ing semantic priors in the 2D birds-eye view. Despite its
simplicity, we achieve state-of-the art performance in all the
generalization directions. 2

2Our code is available at https://saltoricristiano.github.io/lidog/.

2. Related Work

LiDAR Semantic Segmentation (LSS). LiDAR-based se-
mantic scene understanding has been used in autonomous ve-
hicle perception since the dawn of autonomous driving [45].
State-of-the-art methods are data-driven and rely on differ-
ent LiDAR data representations and network architectures.
Point-based methods [36, 16, 44, 63, 52] learn representa-
tions directly from unordered point sets, whereas range-view-
based methods [33, 50, 51, 62, 1] learn a representation from
a range pseudo-image that represents the LiDAR point cloud.
State-of-the-art methods [8, 15, 68, 27, 43] map 3D points
into a 3D quantized grid and learn representations using
sparse 3D convolutions [15, 8]. The works mentioned above
focus on within-domain performance, i.e., they train and test
on data from the same dataset and do not evaluate robustness
to domain shifts. By contrast, we focus on cross-domain
robustness, i.e., we train on a source domain and test on a
target domain.

Domain Adaptation for LSS. Domain shift in LiDAR
perception [49, 40, 23, 37] is a well-documented issue as
sensors are expensive, and crowd-sourcing data collection
is difficult. Unsupervised domain adaptation (UDA) tech-
niques allow us to reduce the domain shift by looking at data
from the target domain, but without needing any labels in that
domain. Several methods reduce domain shift by mimicking
sensory characteristics of the target domain data, often in a
data-driven manner [22, 64, 54, 55]. Alternatively, domain
shift can be reduced by feature alignment or prediction con-
sistency [51, 20, 19], or by training a point cloud completion
network to map domains into a canonical domain [58]. More
recently, mixup strategies [60, 59] have been introduced in
the context of UDA for LSS [38, 53]. In LiDAR-based 3D
object detection, scaling [49] and self-training [40, 57] are
often used strategies. All aforementioned methods must be
exposed to (unlabeled) data from the target domain to adapt
the learned representation. In this work, we study DG-LSS
with the goal of learning as-general-and-robust-as-possible
representations in the first place, before exposure to any data
from a particular target domain during training.

Domain Generalization. Alternatively, robustness to do-
main shifts can be tackled via Domain Generalization (DG).
In DG, we aim to learn domain-invariant features by training
solely on the source domain data [66]. Due to the impor-
tance of learning robust representations, DG has been widely
studied in the image domain [7, 66, 65, 35] in both, multi-
[14, 26, 67] and single-source [5, 4, 65, 48, 24] settings.
Image-based DG approaches reduce domain shift via domain
alignment [29, 14], meta-learning [26, 2], data and style aug-
mentations [42, 67, 65], ensembling techniques [11, 31], dis-
entangled learning [21, 47], self-supervised learning [5, 4],
regularization strategies [48, 17] and, reinforcement learn-
ing [17, 24]. Data augmentations have also been employed
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Figure 2: LiDOG overview. We encode our input LiDAR scan Pj using the 3D backbone g3D to learn the occupied voxels’
feature representations F 3D. (Upper branch - main task) We apply a sparse segmentation head on F 3D and supervise with 3D
semantic labels, Y3D

j . (Lower branch - auxiliary task) We project those features along the height-axis to obtain a dense 2D
bird’s-eye (BEV) view features FBEV , and apply several 2D convolutional layers to learn the 2D BEV representation. We
supervise the BEV auxiliary task by using BEV-view of semantic labels, YBEV

j . We train jointly on both L3D and LBEV .

in the context of DG in LiDAR-based 3D object detection
in [25] to learn to detect vehicles that have been damaged
in car accidents. In our work, we propose the first method
specifically designed for DG-LSS and introduce a dense 2D
convolutional decoder that learns features robust to domain
shift. In our experimental evaluation (Sec. 5), we adapt
and compare to several state-of-the-art data augmentation
techniques, such as Mix3D [34], PointCutMix [61], and
PolarMix [53] that apply mixup strategies [60, 59] to 3D
point clouds. Moreover, we adapt state-of-the-art methods
from the image domain RobustNet [7] and IBN [35]. We
show that our method has substantially better generalization
across all experiments. Finally, parallel work by [41] ac-
cumulates consecutive point clouds over time to introduce
robustness towards point clouds of different domains and,
consequentially, improve generalization capabilities.

3. A LiDAR Journey Across Domains

In this section, we first recap the standard LiDAR Seman-
tic Segmentation (LSS) setting for completeness. Next, we
formally introduce the problem of Domain Generalization
for LiDAR Semantic Segmentation (DG-LSS), which we
study in this paper.

LiDAR Semantic Segmentation. In LSS, we are given a
set of labeled training instances in the form of point clouds
Ttrain = {Pj = {pi ∈ R3}Nj

i=1}. Each point cloud Pj ∼ D
consists of Nj points, and is drawn from a certain point
cloud distribution D. Moreover, point clouds in the training
set are labeled according to a predefined semantic class vo-
cabulary K = {1, . . . ,K} of K categorical labels. Given
such a training set Ttrain along with class vocabulary K, the
goal of LSS is to learn a function f(pi) → K, that maps
each point pi ∈ Pj ,∀j, to one of K semantic classes, such

that the prediction error on the same domain D is minimized.
In other words, LSS models are trained and evaluated on
(disjunct) sets of point clouds that are drawn from the same
data distribution D. We note that it is standard practice for
LSS methods to be evaluated on multiple datasets3. How-
ever, standard multi-dataset evaluation follows the setting
described above: models are trained and evaluated for each
domain separately.

Domain Generalization for LiDAR Semantic Segmenta-
tion. In this work, we release the assumption that train
and test splits were sampled from the same domain and ex-
plicitly study cross-domain generalization in LSS. We are
given M labeled datasets Tm ∼ Dm, m ∈ {1, . . . ,M} sam-
pled from different data distributions Dm. Importantly, all
datasets must be labeled according to a common semantic
vocabulary K, i.e., we are studying DG in closed-set con-
ditions [66]. Then, the task can be defined as follows: we
use T{m} datasets for training, and the held-out datasets
T{m′}, {m′} ∩ {m} = ∅, solely for testing.

The goal of DG-LSS is, therefore, to train a mapping
f(pi) → K, such that the prediction performance on the
target datasets T{m′} ∼ D{m′} is maximized. We only have
access to data and labels from the target datasets during
evaluation. The model has never seen any target data before
evaluation, neither labeled nor unlabeled.

4. Walking Your LiDOG

Overview. We provide a schematic overview of LiDOG:
Lidar DOmain Generalization network in Fig. 2. LiDOG
leverages a 3D sparse-convolutional encoder-decoder neural
network (Fig. 2, g3D) that encodes the input point cloud Pj

3At the moment, SemanticKITTI and nuScenes-lidarseg are commonly
used for the evaluation.
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into sparse 3D features F 3D (Fig. 2). In order to tackle the
domain shift problem, we propose to augment this network
with a dense top-down prediction auxiliary task during model
training. In particular, we project sparse 3D features F 3D

from the decoder network along the height axis to obtain a
2D bird’s-eye view (BEV) representation FBEV of the fea-
tures learned by the 3D network. Then, we jointly optimize
the losses for the 3D and BEV network heads. Importantly,
the auxiliary BEV head is not required during model infer-
ence. Its sole purpose is to effectively learn domain-agnostic
features during training.

4.1. 3D Segmentation Branch

The upper branch of LiDOG (Fig. 2) aims to learn the
main segmentation task, i.e., it learns the mapping function
f(pi) → K. We first process the input LiDAR point cloud
Pj into a 3D occupancy (voxel) grid Vj . During this phase,
the continuous 3D input space is evenly sampled into dis-
crete 3D cells. Points falling into the same cell are merged.
We then learn a feature representation of the occupancy grid
Vj via a 3D encoder-decoder network g3D based on the well-
established sparse-convolutional backbone [8]. The encoder
consists of a series of sparse 3D convolutional downsam-
pling layers that learn a condensed 3D representation, while
the decoder upsamples the features back to the original reso-
lution with sparse convolutional upsampling layers. We use
sparse batch-normalization layers. The output of g3D is a set
of voxel-wise features F 3D

j = g3D(Vj), where each feature
vector is associated with a voxel cell in Vj . We employ a
sparse segmentation head to obtain semantic posteriors that
predict the voxel-wise categorical distribution from the voxel
features F 3D

j : ˜Y3D
j = p(K|Vj) = σ(h3D(F 3D

j )), where σ
denotes the softmax activation function.

4.2. Dense Auxiliary Task

In the lower branch of LiDOG, we add the auxiliary task
that encourages the network to learn a representation that is
robust to domain shifts. We transform 3D features to bird’s-
eye view (BEV) space, and train a network to estimate BEV
semantic scene layout.

Sparse-to-dense feature projection. We start our dense-to-
sparse segmentation task by projecting voxel-wise features
F 3D
j into dense BEV-features feature space FBEV

j . Given a
voxel vi ∈ Vj center coordinates (xi, yi, zi), we compute its
corresponding BEV coordinates (xBEV

i , zBEV
i ) as:

q(xi, zi) = (xBEV
i , zBEV

i ) =
(⌊ xi

xq

⌋
,
⌊ zi
zq

⌋)
, (1)

where q is the projection function, and xq and zq are the
quantization parameters. We project only voxels within
projection bounds B3D = [(−bx, bx), (−bz, bz)], where bx
and bz are the bound values along the x and z axis, and

Figure 3: LiDAR point clouds and their corresponding BEV
views: SemanticKITTI (left) and nuScenes (right). After
projection, BEV images are geometrically more similar.

shift projected coordinates to fit in the BEV-features height
and width. Consequently, we define BEV features FBEV

j

by initializing them to zero and by filling non-empty cells
as FBEV

j (xBEV
i , zBEV

i ) = F 3D
i . When multiple voxels

project to the same cell, we randomly keep one.

Sparse-to-dense label projection. We obtain source labels
by following the same procedure used for FBEV

j . After
voxelization, each voxel vi is associated to a label cate-
gory y3Di ∈ Y3D

j . We use Eq. 1 and the same bounds
B3D to compute the label coordinates (xBEV

i , zBEV
i ) of

BEV image pixels. Then, we define BEV labels as:
YBEV
j (xBEV

i , zBEV
i ) = y3Di .

BEV predictions. We predict BEV semantic posteriors by
employing a standard 2D segmentation head hBEV which
predicts semantic classes in the dense 2D BEV plane and
takes as input BEV features FBEV

j . First, we reduce the
dimensionality of FBEV

j through a pooling operation. Then,
we feed hBEV with FBEV

j and obtain BEV semantic pre-

dictions: ˜YBEV
j = σ(hBEV (FBEV

j )), where σ denotes the
softmax activation function.

4.3. Losses

Given 3D semantic predictions ˜Y3D
j and labels Y3D

j ,

as well as BEV semantic predictions ˜YBEV
j and labels

YBEV
j , we train both LiDOG network heads jointly us-

ing soft DICE loss [18], i.e., L3D = dice( ˜Y3D
j ,Y3D

j ), and

LBEV = dice( ˜YBEV
j ,YBEV

j ). Finally, we average contri-
butions of both losses: Ltot =

1
2 (L

BEV +L3D). DICE loss
has been shown in literature [18, 38] to perform favorably
for rarer classes compared to the cross-entropy loss.

4.4. Why Does This Work?

We demonstrate empirically in Sec. 5 that the dense BEV
prediction proxy task significantly improves model perfor-
mance in terms of cross-domain generalization. Why does
this simple objective yield, in practice, more robust feature
representations? There are several possible sources of do-
main shift, e.g., different sensors, different environments,
and scans are visibly different (Fig. 3). After the projection,
we obtain a denser label space that is less sensitive to indi-
vidual sensor characteristics: in the BEV space scans from
different domains look more alike, Fig. 3. We effectively
regularize the model training by promoting the network ro-
bustness to changes in the sensor acquisition patterns. We
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Figure 4: Feature visualization: t-SNE visualization [46]
of the point embeddings for the road class, obtained by
training our network without (w/o BEV, left) and with BEV
task (BEV, right). Top: Synth4D-KITTI→SemanticKITTI.
Bottom: Synth4D-KITTI→nuScenes. As shown, projected
features are well-aligned when training the network with the
auxiliary BEV task.

validate this intuition in Fig. 4 by visualizing learned point
embeddings [46] for the road class with and without BEV
auxiliary task, across multiple domains. As can be seen, pro-
jected embeddings are consistently closer when employing
BEV auxiliary task.

5. Experimental Evaluation
In this section, we report our experimental evaluation.

In Sec. 5.1, we describe our evaluation protocol, datasets
and baselines. In Sec. 5.2-5.3, we report our synth-to-real
and real-to-real results, and discuss qualitative results. In
Sec. 5.4, we ablate our proposed approach. We provide
implementation details in the appendix.

5.1. Experimental Protocol

We base our evaluation protocol on two syn-
thetic (Synth4D [39]) and two real-world datasets (Se-
manticKITTI [3] and nuScenes [13]). We study (i) general-
ization from synthetic→real data in single- and multi-source
settings, i.e., trained on one or multiple source datasets, as
well as (ii) real→real generalization.

Synthetic datasets. Synth4D [39] is a synthetic dataset
generated using CARLA [10] simulator. It provides two
synthetic source domains, each one with 20k labeled scans,
emulating Velodyne64HDLE and Velodyne32HDLE sensors,
similar to those used to record SemanticKITTI (Synth4D-
KITTI) and nuScenes-lidarseg datasets (Synth4D-nuScenes).
These datasets were generated in the same synthetic environ-
ment, mimicking different sensor types. We use the official
training splits in all experiments.

Real datasets. SemanticKITTI [3] was recorded in vari-

ous regions of Karlsruhe, Germany, with Velodyne64HDLE
sensor, and provides 20k labeled scans. nuScenes [13] was
recorded in Boston, USA, and Singapore, with a sparser
Velodyne32HDLE sensor and provides 40k labeled LiDAR
scans. We use the official training and validation splits for
both datasets in all experiments.

Class vocabulary. To ensure this task is well-defined, we
formalize cross-dataset consistent and compatible seman-
tic class vocabulary, which ensures there is a one-to-one
mapping between all semantic classes. We follow [39]
which provides a common label space among Synth4D, Se-
manticKITTI and nuScenes-lidarseg consisting of seven se-
mantic classes: vehicle, person, road, sidewalk,
terrain, manmade and vegetation. We perform all
evaluation with respect to these classes.

Baselines. We are the first in studying DG-LSS, therefore,
we construct our set of baselines by considering the previous
efforts in bridging the domain shift in other LiDAR tasks as
well DG methods for images.

Data augmentation baselines (Aug). Data augmentations
are used in supervised learning to improve model generaliza-
tion and, in DA, to reduce domain shift. We re-implement
and evaluate in the DG context three data augmentation ap-
proaches: Mix3D [34], PointCutMix [61] and CoSMix [38].
Mix3D concatenates both points and labels of different
scenes, obtaining a single mixed-up scene. PointCutMix
and CoSMix follow the same strategy but mix either patches
or semantic regions, respectively. We follow the official
implementations and apply these data augmentation strate-
gies during source training. For single-source training, we
mix between samples of the same domain, while for multi-
source training, we mix between samples of the two source
domains.

Image-based baselines (2D DG). Image-based DG is a
widely explored field. However, not all the methods can be
extended to DG-LSS due to their image-related assumptions,
e.g., style consistency. We identify and re-implement two
image-based approaches that can be extended to DG-LSS:
IBN [35] and RobustNet [7]. IBN makes use of both batch
and instance normalization layers in the network blocks to
boost generalization performance. We follow the IBN-C
block scheme and use it to build the sparse model. Robust-
Net [7] makes use of IBN blocks and introduces an instance
whitening loss. Similarly, we start from our IBN imple-
mentation and use their instance-relaxed whitening loss [7]
during training.

UDA for LiDAR baselines (3D UDA). Most of the UDA for
LSS approaches assume (unlabeled) target data available for
training/adaptation [57], hence, we cannot adapt and eval-
uate them in the DG setting fairly. We identify two UDA
baselines that assume only weak supervision from the target
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domain, e.g., vehicle dimensions or sensor specs. We re-
implement and extend SN [49] and RayCast [23]. SN [49]
uses the knowledge of average vehicle dimensions from
source and target domains to re-scale source instances. We
employ DBSCAN to isolate vehicle instances in both source
and target domains and estimate the ratio between their di-
mensions. At training time, we follow their pipeline and
train our segmentation model on the re-scaled point clouds.
RayCast [22] employs ray casting to re-sample source data
by mimicking target sensor sampling. We use the official
code to re-sample source data and use mapped data during
training. Notice that both these baselines use a-priori knowl-
edge from the target domain, i.e., vehicle dimensions or
target sensor specifications, and can thus be considered as
weakly-supervised baselines.

5.2. Synth → Real Evaluation

In this section, we train our model on one or more syn-
thetic source domains and evaluate on both real target do-
mains, i.e., SemanticKITTI and nuScenes-lidarseg. We re-
port two models as lower and upper bounds in all the tables
for reference: source (i.e., a model trained on the source
domain without the help of DG techniques) and target (i.e.,
model directly trained on the target data).

Single-source. In Tab. 1, we report the results for
single-source Synth4D-KITTI→Real. We report analogous
Synth4D-nuScenes→Real results with similar findings in the
appendix. We observe a 36.84 mIoU gap (SemanticKITTI)
between the source (24.69 mIoU) and target (61.53 mIoU)
models. Among the baselines, augmentation-based methods
are the most effective: PointCutMix and Mix3D achieve
42.14 mIoU and 30.36 mIoU on Synth4D-KITTI→Real, re-
spectively. Surprisingly, these approaches outperform 3D
DA baselines, that leverage prior information about the tar-
get domain, e.g., vehicle dimensions (SN) or target sensor
specs (RayCast), confirming the efficacy of data augmenta-
tions for DG. LiDOG significantly reduces the domain gap
between source and target models and outperforms all the
compared baselines in all the scenarios. For example, on
Synth4D-KITTI→Real (Tab. 1), we obtain 44.18 mIoU, a
+19.49 improvement over the source model.

In Fig. 5, we discuss qualitative results, comparing the
source model, the top-performing baseline, Mix3D, our pro-
posed LiDOG, and the ground-truth labels. As we can see,
the source model predictions are often incorrect and mingled
in many small and large regions. Mix3D brings (limited)
improvements. For example, notice how road (Fig. 5 top) is
incorrectly segmented. LiDOG achieves overall top perfor-
mance, improving on both small (vehicle) and large (building
and road) areas. We report additional qualitative results in
the appendix.

Multi-source. In Tab. 2, we report the results for the multi-

source training, where we train our model on both synthetic
datasets, and evaluate the model on both real datasets. Com-
pared to the single source (Tab. 1), in this setting we train
models on synthetic data that mimics two different sensor
types. The source model improves from 24.69 → 31.82
mIoU on SemanticKITTI and from 20.62 → 25.60 mIoU
on nuScenes as a result of training on multiple synthetic
datasets. As can be seen, LiDOG consistently improves over
top-scoring baselines, RobustNet (+3.04 mIoU) and Mix3D
(+4.56 mIoU). On average, LiDOG significantly improves
over the source model with +10.62 mIoU and +14.63 mIoU
on SemanticKITTI and nuScenes, respectively. We conclude
that LiDOG is consistently a top-performer for classes and
scenarios over the source model, except for the terrain class.
This may be a limitation of our BEV projection. We assume
it occurs when multiple classes are spatially overlapping
due to the top-down projection, e.g., mixing terrain with
vegetation.

5.3. Real → Real Evaluation

In this setting, we only train and evaluate our models on
real-world recordings. We report SemanticKITTI→nuScenes
results in Tab. 3 and nuScenes→SemanticKITTI results in
Tab. 4. Overall, we observe that the performance gap of
Real→Real (Tab. 3-4) is lower compared to the gap in
Synth→Real setting (Tab. 1-2 and Tab. 1 in the appendix).

SemanticKITTI→nuScenes. We observe a performance
gap of 21.96 mIoU between source (26.53 mIoU) and target
(48.49 mIoU) models. All the baselines consistently improve
over the source model, however, by a smaller margin as
compared to Synth→Real. Again, LiDOG improves on all
the classes compared to the source performance and achieves
top generalization performance on all the classes except for
vehicle and manmade. On average, LiDOG obtains 34.88
mIoU and obtains +8.35 mIoU improvement over the source
model.

nuScenes→SemanticKITTI. We observe a performance
gap of 31.98 mIoU with source and target models achieving
29.55 mIoU and 61.53 mIoU, respectively. Augmentation-
based methods are once again the most effective baselines,
with PointCutMix achieving 39.78 mIoU. LiDOG outper-
forms all the compared baselines, achieves 41.22 mIoU and
obtains +11.67 over the source model.

5.4. Ablations

BEV auxiliary task. We study whether LiDOG general-
ization capabilities are due to the additional segmentation
head, or specifically due to the dense BEV segmentation
head. The use of multiple prediction heads for ensembling
is a well-known practice for improving prediction robust-
ness [6, 12]. To this purpose, we remove the lower branch
of LiDOG and attach an additional 3D branch. The resulting
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Table 1: Synth4D-KITTI→Real, single-source. Our approach (LiDOG) improves upon Source model on both real datasets:
+19.49 mIoU for SemanticKITTI and +16.52 mIoU for nuScenes, outperforming all baselines. Lower bound (red): a model
trained on the source domain without the help of DG techniques. Upper bound (blue): model directly trained on the target data.

S T Info Method Vehicle Person Road Sidewalk Terrain Manmade Vegetation mIoU
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Mix3D [34] 59.99 14.02 55.75 17.71 25.67 39.26 53.00 37.92
PointCutMix [61] 58.26 14.35 67.74 13.91 27.26 49.21 64.22 42.14

CoSMix [38] 43,01 14.16 61.84 12.38 18.84 18.00 57.56 32.26

2D DG
IBN [35] 24.95 9.18 56.82 17.85 7.21 21.59 44.65 26.04

RobustNet [7] 50.85 14.97 58.71 7.83 19.96 42.58 44.52 34.20
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SN [49] 49,38 14.83 68.53 18.45 25.62 37.49 59.48 39.11

RayCast [23] 51.73 4.33 56.43 18.07 23.91 36.23 40.52 33.03

3D DG Ours (LiDOG) 72.86 17.1 71.85 28.48 11.53 46.02 61.42 44.18

Upper bound Target 81.57 23.23 82.09 57.64 46.84 64.14 75.21 61.53

Lower bound Source 19.99 6.80 32.85 6.81 11.95 45.07 20.86 20.62
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Mix3D [34] 26,8 22.68 41.90 7.31 13.54 48.17 52.09 30.36

PointCutMix [61] 23,97 19.49 44.27 6.29 12.14 48.85 55.44 30.06
CoSMix [38] 16.94 15.78 52.97 2.09 5.55 15.6 43.85 21.83

2D DG
IBN [35] 21,32 11.96 36.83 5.39 11.25 35.91 37.46 22.87

RobustNet [7] 26.19 7.47 43.85 2.29 13.93 43.63 46.32 26.24

3D UDA
SN [49] 23.14 14.08 51.60 11.38 14.02 46.91 50.83 30.28

RayCast [23] 19.54 11.78 56.53 6.66 8.45 45.66 36.99 26.52

3D DG Ours (LiDOG) 31.29 19.62 64.66 14.21 15.63 57.3 57.27 37.14

Upper bound Target 47.42 20.18 80.89 37.02 34.99 64.27 54.67 48.49

source mix3D ours gt

Figure 5: Qualitative results. Top: Synth4D-KITTI→SemanticKITTI, bottom: Synth4D-KITTI→nuScenes. LiDOG im-
proves consistently improves results over the source model and outperforms Mix3D [34] with more homogeneous predictions.

architecture has two sparse 3D heads h3D taking as input
F 3D. During inference, predictions are obtained by aver-
aging the predictions from both heads. Fig. 6 reports the
generalization performance of this alternate version (Dou-
ble) compared to LiDOG (Ours). As can be seen, by simply

learning two decoders and ensembling predictions we obtain
lower performance as compared to utilizing the proposed
BEV network heads to improve the generalization.

BEV prediction area. First, we study the impact on the
generalization ability of LiDOG w.r.t. BEV area size in
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Table 2: (Synth4D-nuScenes + Synth4D-KITTI)→Real, multi-source. Baselines significantly improve performance relative
to the source model. Specifically, with LiDOG we observe +10.62 mIoU improvement on SemanticKITTI and +14.63 mIoU
on nuScenes. Our approach (LiDOG) outperforms all the compared approaches. Lower bound (red): a model trained on the
source domain without the help of DG techniques. Upper bound (blue): model directly trained on the target data.
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Mix3D [34] 45.64 7.72 59.11 22.12 16.86 50.03 51.59 36.15
PointCutMix [61] 48.38 6.28 60.8 20.53 7.56 33.62 54.32 33.07

CoSMix [38] 45.81 0.93 59.28 22.81 18.13 43.14 40.91 33.00

2D DG
IBN [35] 58.9 12.02 67.09 27.89 7.53 33.91 57.62 37.85

RobustNet [7] 59.28 13.11 66.55 7.75 30.87 35.46 62.75 39.40

3D UDA
SN [49] 35.07 5.95 60.36 27.96 13.3 26.88 54.88 32.06

RayCast [23] 58.06 3.3 63.41 25.33 22.03 35.39 41.64 35.59

3D DG Ours (LiDOG) 66.23 18.87 67.39 24.13 15.22 46.21 59.03 42.44

Upper bound Target 81.57 23.23 82.09 57.64 46.84 64.14 75.21 61.53
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Mix3D [34] 28.35 24.6 57.16 13.96 9.48 60.19 55.98 35.67

PointCutMix [61] 25.6 14.8 54.29 11.58 6.66 58.09 51.53 31.79
CoSMix [38] 23.13 8.26 52.24 11.04 10.88 58.29 53.43 31.04

2D DG
IBN [35] 26.11 16.95 55.16 13.59 12.67 56.64 52.92 33.43

RobustNet [7] 27.03 16.48 50.61 6.66 15.73 57.68 56.47 32.95

3D UDA
SN [49] 19.08 13.89 53.18 14.73 9.69 53.54 45.39 29.93

RayCast [23] 25.37 9.03 60.27 10.03 11.15 54.72 45.56 30.87

3D DG Ours (LiDOG) 30.78 25.3 73.2 19.83 16.03 62.65 53.80 40.23

Upper bound Target 47.42 20.18 80.89 37.02 34.99 64.27 54.67 48.49

Table 3: SemanticKITTI→nuScenes, single-source. We train our model on SemanticKITTI and evaluate it on the nuScenes
dataset. LiDOG improves over the source model by +8.35 mIoU. Lower bound (red): a model trained on the source domain
with-out the help of DG techniques. Upper bound (blue): model directly trained on the target data.
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Lower bound Source 22.92 0.03 63.33 16.09 7.42 35.40 40.53 26.53
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Mix3D [34] 33.74 11.22 58.54 12.91 5.28 50.36 48.59 31.52

PointCutMix [61] 22.75 2.68 59.37 10.47 7.04 27.9 42.74 24.71
CoSMix [38] 35.91 0.00 58.13 11.57 8.95 45.17 49.11 29.83

2D DG
IBN [35] 29.93 0.01 56.77 18.70 12.09 37.67 33.83 27.00

RobustNet [7] 25.50 0.03 62.40 15.12 9.40 29.58 43.62 26.52

3D UDA
SN [49] 21.35 0.01 60.48 15.06 6.16 31.85 45.69 25.80

RayCast [23] 28.82 0.00 59.25 16.08 12.51 49.72 49.82 30.89

3D DG Ours (LiDOG) 23.97 14.86 70.63 24.59 13.97 45.27 50.85 34.88

Upper bound Target 47.42 20.18 80.89 37.02 34.99 64.27 54.67 48.49
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Table 4: nuScenes→SemanticKITTI, single-source. We train our model on nuScenes and evaluate it on the SemanticKITTI
dataset. LiDOG improves over the source model by +11.67 mIoU. Lower bound (red): a model trained on the source domain
with-out the help of DG techniques. Upper bound (blue): model directly trained on the target data.
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IBN [35] 22.00 11.32 37.24 0.21 13.11 21.76 50.33 22.28

RobustNet [7] 32.94 10.98 39.85 14.70 28.27 50.42 58.47 33.66
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SN [49] 25.69 5.46 19.59 2.17 23.47 27.65 61.07 23.58

RayCast [23] 28.30 16.09 45.80 9.44 20.56 38.56 61.83 31.51

3D DG Ours (LiDOG) 60.07 9.03 47.44 16.40 32.58 54.21 68.82 41.22

Upper bound Target 81.57 23.23 82.09 57.64 46.84 64.14 75.21 61.53
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Figure 6: Effectivenes of the BEV head: We compare
2D BEV decoder (Ours) to simply adding an additional 3D
segmentation head (Double) on SemanticKITTI (left) and
nuScenes (right). Source: Synth4D −KITTI .
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Figure 7: BEV prediction area: We study the impact of
BEV area size on SemanticKITTI (top) and nuScenes (bot-
tom). 50x50m area is consistently the best-performing op-
tion on both datasets. Source: Synth4D −KITTI .

Synth4D-KITTI→Real setting. We experiment with pro-
jection bounds B3D ranging from 10x10 to 60x60m. As
can be seen in Fig. 7, there is a near-linear relation between
the BEV area and generalization performance.

6. Conclusions
Impact. With the advent of autonomous agents, there will
be an increasing need for robust perception models that can

generalize across different environments and sensory con-
figurations. Robustness to domain shift in semantic LiDAR
scene understanding is therefore an important challenge that
needs to be addressed. Fully supervised fine-tuning can be
used to bridge domain gaps, however, it comes at the high
cost of collecting and annotating data for specific domains
and is therefore not a scalable solution.

Domain generalization. To the best of our knowledge,
this is the first work that investigates domain generalization
techniques to learn robust and generalizable representations
for LiDAR semantic segmentation. We evaluate and discuss
a comprehensive set of baselines from related fields and
study their generalization across synthetic and real datasets,
proving the need for more effective solutions. To this end,
we propose LiDOG that encourages a 3D semantic backbone
to learn features robust to domain shifts and is consistently
more accurate than the compared baselines.

Limitations. The main limitation of LiDOG is that its core
contribution, the auxiliary bird’s-eye prediction task, may
lead to overlap after the projection to the BEV plane when
classes overlap vertically, e.g., the terrain below vegetation.
This results in sub-optimal performance for these classes.
This issue could be mitigated with the introduction of soft
labels for overlapping semantic classes, or introducing addi-
tional losses on multiple BEV height slices (c.f ., [56]).

Acknowledgments. This project was partially funded by the Sofja Ko-
valevskaja Award of the Humboldt Foundation, the EU ISFP project PRE-
CRISIS (ISFP-2022-TFI-AG-PROTECT-02-101100539), the PRIN project
LEGO-AI (Prot. 2020TA3K9N) and the MUR PNRR project FAIR - Fu-
ture AI Research (PE00000013) funded by the NextGenerationEU. It was
carried out in the Vision and Learning joint laboratory of FBK-UNITN and
used the CINECA, NVIDIA-AI TC clusters to run part of the experiments.
We thank T. Meinhardt and I. Elezi for their feedback on this manuscript.
The authors of this work take full responsibility for its content.

204



References
[1] I. Alonso, L. Riazuelo, L. Montesano, and A.C. Murillo. 3d-

mininet: Learning a 2d representation from point clouds for
fast and efficient 3d lidar semantic segmentation. In IROS,
2020. 2

[2] Y. Balaji, S. Sankaranarayanan, and R. Chellappa. Metareg:
Towards domain generalization using meta-regularization.
NeurIPS, 2018. 2

[3] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Juergen Gall. Se-
manticKITTI: A Dataset for Semantic Scene Understanding
of LiDAR Sequences. In ICCV, 2019. 2, 5

[4] S. Bucci, A. D’Innocente, Y. Liao, F.M. Carlucci, B. Caputo,
and T. Tommasi. Self-supervised learning across domains.
T-PAMI, 2021. 2

[5] F.M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T.
Tommasi. Domain generalization by solving jigsaw puzzles.
In CVPR, 2019. 2

[6] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A.
Joulin. Unsupervised learning of visual features by contrast-
ing cluster assignments. NeurIPS, 2020. 6

[7] S. Choi, S. Jung, H. Yun, J.T. Kim, S. Kim, and J. Choo.
Robustnet: Improving domain generalization in urban-scene
segmentation via instance selective whitening. In CVPR,
2021. 2, 3, 5, 7, 8, 9

[8] C. Choy, J.Y. Gwak, and S. Savarese. 4D spatio-temporal con-
vnets: Minkowski convolutional neural networks. In CVPR,
2019. 1, 2, 4

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A large-scale hierarchical image database. In
CVPR, 2009. 2

[10] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun.
CARLA: An open urban driving simulator. In ACRL, 2017. 5

[11] A. D’Innocente and B. Caputo. Domain generalization with
domain-specific aggregation modules. In GCPR, 2019. 2

[12] E. Fini, E. Sangineto, S. Lathuilière, Z. Zhong, M. Nabi, and
E. Ricci. A unified objective for novel class discovery. In
ICCV, 2021. 6

[13] W. K. Fong, R. Mohan, J. V. Hurtado, L. Zhou, H. Caesar, O.
Beijbom, and A. Valada. Panoptic nuscenes: A large-scale
benchmark for lidar panoptic segmentation and tracking. RAL,
2021. 2, 5

[14] M. Ghifary, D. Balduzzi, B.W. Kleijn, and M. Zhang. Scat-
ter component analysis: A unified framework for domain
adaptation and domain generalization. T-PAMI, 2016. 2

[15] B. Graham, M. Engelcke, and L. van der Maaten. 3d se-
mantic segmentation with submanifold sparse convolutional
networks. In CVPR, 2018. 2

[16] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni,
and A. Markham. RandLA-Net: Efficient semantic segmenta-
tion of large-scale point clouds. In CVPR, 2020. 1, 2

[17] Z. Huang, H. Wang, E. P. Xing, and D. Huang. Self-
challenging improves cross-domain generalization. In ECCV,
2020. 2

[18] S. Jadon. A survey of loss functions for semantic segmenta-
tion. In CIBCB, 2020. 4

[19] M. Jaritz, T.H. Vu, R. de Charette, E. Wirbel, and P. Pérez.
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