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Abstract

We propose Spatio-temporal Crop Aggregation for video
representation LEarning (SCALE), a novel method that en-
joys high scalability at both training and inference time.
Our model builds long-range video features by learning
from sets of video clip-level features extracted with a pre-
trained backbone. To train the model, we propose a self-
supervised objective consisting of masked clip feature pre-
dictions. We apply sparsity to both the input, by extracting
a random set of video clips, and to the loss function, by
only reconstructing the sparse inputs. Moreover, we use di-
mensionality reduction by working in the latent space of a
pre-trained backbone applied to single video clips. These
techniques make our method not only extremely efficient
to train but also highly effective in transfer learning. We
demonstrate that our video representation yields state-of-
the-art performance with linear, nonlinear, and k-NN prob-
ing on common action classification and video understand-
ing datasets.

1. Introduction
Videos provide rich and detailed information about ob-

jects and their activities. Their analysis is, however, made
challenging not only by the difference in the information
provided across space and time but also by the high dimen-
sionality of the data [45, 29, 70]. While computational re-
sources are expected to scale over time, so is the demand
for higher data resolution (both in space and time) and also
the need for processing data with even more dimensions,
such as videos of volumetric data [10]. Therefore, it is of
paramount importance to explore methods that drastically
reduce the computational requirements to process videos.
Moreover, the annotation of videos is an extremely costly
and time-consuming burden that makes the use of models
pre-trained in a self-supervised manner essential [44].

Self-supervised learning (SSL) is a very popular tech-
nique to reduce the need for annotation because it can build
useful representations from unlabeled data through an arti-
ficial goal, also called pseudo- or pretext-task. These repre-

sentations can either be evaluated through K-nearest neigh-
bor or linear probing [71, 72] or through fine-tuning (i.e.,
as the initialization parameters of the trained model) [25,
54, 35] on a downstream task, where only a small labeled
dataset is available. More remarkably, SSL pre-trained
models can outperform models that were pre-trained on an
annotated dataset [53, 4].

SSL methods for video representation learning present
fundamental scalability challenges [54, 45, 29, 65]. A first
major challenge is that training models from scratch for any
new pseudo-task is not sustainable. A more viable setting
is one where the processing of videos is broken down into
multiple steps. First, one pre-processes video clips (spatio-
temporal crops) only once via some pre-trained general-
purpose model (e.g., trained via self-supervised learning
[18, 23, 26, 44, 7, 37, 41]). In general, the idea is that this
(compressed) local representation is stored and used later
for other training purposes or retrieval. Then, one can train
more efficiently other super-features that aggregate infor-
mation from these local representations. Within this set-
ting, we address two questions: 1) Can one further improve
the performance of pre-computed video features by train-
ing a model on top of them? 2) Can such training be made
computationally scalable? In this paper, we show that both
questions have a positive answer. The answer exploits four
fronts:

1. Input Sparsity: Sparsity in the input to the model [54,
25, 3, 19, 1] drastically reduces computational load and
memory requirements, leveraging information redun-
dancy in images and videos [16]. Inspired by prior
work, we extract a sparse set of clips from a video
(these are spatio-temporal video crops and not image
patches or video tubelets); each clip is fed separately
to a neural network so that we obtain a set of video clip
representations.

2. Output Sparsity: Another way to reduce the compu-
tational cost is to use a sparse reconstruction output
instead of a dense one [71, 51, 59, 5]. This is not
just a reduction of the number of terms in the loss
function, but also in the number of actual outputs of
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the model, and thus also a reduction of the compu-
tations needed to obtain them. This is in contrast to
MAE-based SSL methods for vision, where the pro-
posed pseudo-tasks are based on the reconstruction of
the whole input [25, 54, 19, 16], and even if the loss
uses a subset of the tokens (the masked ones) for the
loss calculation, the remaining tokens are still part of
the decoder’s output and computational graph.

3. Dimensionality Reduction: Inspired by prior
work [71, 41, 13], instead of directly processing the
raw input data, we work in the latent space. This
allows us to further reduce the dimensionality of both
input and output data.

4. Use of a Pre-trained Backbone: To reduce training
time and further speed up the processing per iteration,
we exploit SSL pre-trained models. These pre-trained
backbones already learn very strong short-term spatio-
temporal features, and our approach is a way to extract
longer-term features (see LVU results 2) by building
a video representation on top of a set of pre-trained
features (one for each video clip).

To integrate all these components, we propose a novel
SSL method that we call Spatio-temporal Crop Aggregation
for video representation LEarning (SCALE). Given an input
video, SCALE extracts a random set of clips and produces
an embedding for each clip through a pre-trained backbone,
which is kept frozen. These initial embeddings are then
augmented in two ways: 1) each one is refined into a more
discriminative feature, and 2) the set of all embeddings is
summarized in a global feature. These global features can
learn long-term correlations in the whole video by aggregat-
ing the short-term information in each clip embedding. The
combination of the initial embeddings with their refinement
and the global feature is then used in an ensemble for appli-
cations on new downstream tasks.

To train SCALE, we introduce two novel pseudo-tasks,
which aim to improve the discriminability of the embed-
dings of each video clip as well as obtain a global repre-
sentation of the video. One task, which we call Masked
Clip Modeling (MCM), is the reconstruction of a video clip
embedding as in masked autoencoders [54]. Masked em-
beddings are combined with positional encodings so that
the model can (spatio-temporally) relate the missing input
embeddings to the other available embeddings (similarly to
BERT in Natural Language Processing [12]). A second
task is to train the model to output a global feature token
(which we refer to as CLS, just for consistency with previ-
ous works [7, 12, 14, 55, 9]) for a set of clips via contrastive
learning, so that the global feature is invariant to the cho-
sen set of clips from the same video, but can discriminate
summary features of clips from other videos. Both tasks are
trained via contrastive losses.

SCALE consistently improves upon pretrained features,
with more evident gains considering the computational cost
of other methods. For instance, SCALE outperforms Video-
MAE [54] by 0.3% (1600 epochs checkpoint – fine-tuning)
and ρBYOL [18] by 0.6% (800 epochs checkpoint – linear
probe) on Kinetics400 with 64 V100 GPUs in about 5 mins.
In contrast, VideoMAE takes 27.7 hours to gain 0.5% (800
to 1600 epochs checkpoint), and ρBYOL needs 48 hours
to gain 0.4% (200 to 400 epochs checkpoint) with the same
resources.

To summarize our contributions, we propose SCALE, a
novel and highly scalable video representation method that

• is trained via novel pseudo-tasks on sets of video clips
(in contrast to existing methods that work only with
pairs of clips at a time [44, 18, 45]);

• results in video feature representations with a sig-
nificant performance improvement in k-NN (re-
trieval), linear, and nonlinear probing across a wide
range of datasets for action classification (UCF [48],
HMDB [34], SSv2 [22], Kinetics400 [33]) and long-
form video understanding (LVU [63]);

• achieves consistent transfer learning performance im-
provement across diverse SotA pre-trained backbones
(architectures, scale, and pre-training tasks). For ex-
ample, our nonlinear probed model even outperforms
fully fine-tuned SVT [44] on HMDB [34].

2. Related Work

Our approach relates to many prior works on (self-
supervised) representation learning. In particular, SCALE
relates to SSL approaches on videos, methods that rely on
multiple views of the data, and predictive methods, where
part of the data is predicted from another part.
Self-Supervised Video Representation Learning. Early
SSL approaches on video were based on pseudo tasks, e.g.,
the recognition of transformations of video frame sequences
[38, 6, 62]. More recently, popular methods developed
on images have been successfully translated to video, e.g.,
contrastive methods [18, 23, 26], clustering-based methods
[44, 7], or predictive approaches [37, 41]. Often, these ap-
proaches are tailored to video data by including additional
learning signals, e.g., by combining contrastive methods
with temporal constraints [11] and pretext tasks [32], or by
incorporating audio [39], or optical flow [24]. These ap-
proaches typically learn representations with limited tempo-
ral extent, which can serve as backbones for our approach.
Learning from Multiple Views. Several methods have ex-
ploited multiple views (e.g., generated through space-time
cropping) to represent and learn from videos. For exam-
ple, many SSL approaches rely on multiple views of the
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data, e.g., in contrastive formulations [18, 44, 42], or pre-
dictive learning [45], where invariance to views is the goal.
Other approaches aim to learn from the relation between
two views, e.g., by predicting overlap [69], the relative dis-
tance [49], or cross-view feature prediction [68, 52] and re-
construction [40]. Besides exploiting multiple views for
SSL, some works also propose general multi-view video
models, e.g., by capturing and fusing features at different
spatio-temporal resolutions [67], by aggregating informa-
tion over longer time-spans [64, 47, 65, 57], or by select-
ing important frames [21]. These approaches, however, are
learned end-to-end. In contrast, we propose a more scalable
approach by learning a global video representation of pre-
trained features extracted over multiple crops using self-
supervision.

Predictive Learning. One of our proposed SSL objectives
is a prediction of space-time crop features given other video
crop features. This approach is similar to masked token pre-
diction as in BERT [12] and relates to several other meth-
ods in the literature. Masked input reconstruction methods
have recently become popular on images [25] and success-
fully translated to video [54, 16]. Other approaches for-
mulate masked prediction tasks in the learned feature space
[71, 52, 13] or some fixed latent space [51]. Another line
of work considers directional predictions (e.g., into the fu-
ture) often formulated via contrastive predictive coding [41]
applied to video [37, 36, 50, 66, 20]. These masked pre-
diction tasks are typically formulated on a fixed grid (e.g.,
at the level of patches or frames). In contrast, our formula-
tion is continuous, predicting features of arbitrarily sampled
space-time crops.

3. Scalable Video Representation Learning

To describe SCALE, we first define some basic notation
and functions, including a general contrastive loss notation
that we use for all training losses.

3.1. Notation

We use lower-case letters (e.g., z) to denote generic vec-
tors and capital letters (e.g., Z) to denote their sets. The
expression a ⃝⃝c b denotes the concatenation of a and b. We
also avoid indicating the parameters of networks (usually
denoted by θ) if their presence and role are clear from the
context. Throughout the description of the method we refer
to the training of neural networks and therefore at each iter-
ation of the training we sample a minibatch of videos. All
the equations in the next sections are written for a single
video in the minibatch. Although we do not explicitly indi-
cate it, all the contrastive losses also use the other videos in
the minibatch as negatives.

3.2. Contrastive Loss

InfoNCE is a powerful method for representation learn-
ing [41] that can be used to maximize the mutual informa-
tion between two variables. Because we use this loss be-
tween different variables throughout our method, we intro-
duce here a unified notation. Let the paired sets A and B
have N elements each, A = {ai}Ni=1 and B = {bi}Ni=1,
where ai are vectors of dimension dA and bi are vectors
of dimension dB . We also introduce two Multi Layer Per-
ceptrons (MLP), parameterized with θA and θB , to project
these vectors onto a common space of dimension d. After
feeding the elements ai and bi to the MLPs and normalizing
them, we obtain

ãi =
MLPθA(a

i)

∥MLPθA(a
i)∥

and b̃i =
MLPθB (b

i)

∥MLPθB (b
i)∥

, (1)

where ∥ · ∥ denotes the L2 norm. We define the per-element
loss based on the relative similarity of ãi and b̃i, and by
using a temperature τ

ℓ̃i(A,B, θA, θB) = − log
exp

(
ãi·b̃i
τ

)
N∑
j=1

exp
(

ãi·b̃j
τ

) . (2)

We then make the loss symmetric [43] by using

ℓi(A,B, θA, θB) = ℓ̃i(A,B) + ℓ̃i(B,A). (3)

Finally, we define the contrastive loss
Lcntr(A,B, θA, θB) as the mean of ℓi

Lcntr(A,B, θA, θB) =
1

N

N∑
i=1

ℓi(A,B, θA, θB). (4)

As mentioned earlier on, for simplicity, in the rest of the
paper we will not indicate the parameters of the MLPs, and
simply write Lcntr(A,B) or ℓi(A,B).

3.3. Training SCALE

In our method, we integrate 4 principles to drastically re-
duce the computational complexity of learning a video rep-
resentation: Input sparsity, output sparsity, dimensionality
reduction, and use of a pre-trained backbone. Moreover, we
introduce two pseudo-tasks to train the model. One task is
based on the (contrastive) reconstruction of a masked video
clip given some context video clips. The second task is to
build a global representation that is (contrastively) invariant
to the set of input sampled video clips. The overall training
scheme of SCALE is illustrated in Figure 1.
Input sparsity. As a first step, rather than processing a
whole video, we collect a sparse set of short video clips
from the same video. Given a video V ∈ RH×W×T×3,
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ℓj (Ĉ2, C2)

⋯

⋯

⋯

⋯ ℒcntr(CLS1,CLS2)

MCM loss

MCM loss

SET loss

Figure 1. Video Representation Learning with SCALE. For each video, SCALE extracts two sets of video clips V 1
1 , . . . , V

1
K and

V 2
1 , . . . , V

2
K . Each video clip is processed separately through a frozen backbone E❄ and results in encoded video clips C1

1 , . . . , C
1
K

and C2
1 , . . . , C

2
K . Then, a random set of encodings in each set is masked and reconstructed at the output of the predictor network (a trans-

former) (ℓi). The predictor network is also fed a class token CLS. The corresponding output token encodes a summary CLSm of the m-th
set of video clips. The objective for these summary tokens is to be similar only when encoding video clips from the same video (LSET).

where H , W and T are the height, width, and duration (in
frames) of the video, we sample 2 × K clips. We divide
the clips into two sets randomly. Each clip in the first set
V 1
i ∈ RH1

i ×W 1
i ×T 1

i ×3, with i = 1, . . . ,K, is obtained at
the spatio-temporal location X1

i , Y
1
i , Q

1
i with different data

augmentations and dimensions H1
i , W 1

i and T 1
i . Similarly,

we denote the second set of clips V 2
i , for i = 1, . . . ,K. We

also normalize their coordinates relative to the video dimen-
sions and embed them onto a feature vector P j

i by feeding
them to a learnable MLP. We denote these embeddings

P j
i = MLP

([
Xj

i

H ,
Y j
i

W ,
Qj

i

T ,
Xj

i +Hj
i

H ,
Y j
i +W j

i

W ,
Qj

i+T j
i

T

]⊤)
,

(5)

where j = 1, 2 and i = 1, . . . ,K.
Dimensionality reduction and pre-trained backbone. To
reduce the dimensionality of each video clip, we feed them
independently to a frozen encoder E❄, to obtain the encod-
ings Cj

i = E❄(V
j
i ), where j = 1, 2 and i = 1, . . . ,K. Our

framework is encoder-agnostic and thus can work with en-
coders obtained through different training schemes (super-
vised, contrastive, or autoencoder). In addition to reducing
the dimensionality, we make the training even more scal-
able by using pre-trained and frozen encoders. Note, how-
ever, that if performance is the main goal, it is possible to
also train a sparse backbone end to end with multiple clips.
Thanks to token dropping, one can drop up to 95% of the
tokens [19] and still build a good representation.
Output sparsity. As a self-supervised signal for our video

representation learning, we use a (contrastive) reconstruc-
tion loss. To reduce the computational cost, instead of pre-
dicting the features for the whole video [59, 19, 54, 16]
(asymmetric decoding), we only reconstruct a sparse set
of masked clips. Our reconstruction objective is based on
the observation that video signals carry a lot of redundancy.
Hence, we introduce a model, the predictor network, to pre-
dict masked video clip embeddings given the other video
clip embeddings (the context). We follow the general ap-
proach of BERT [12] but implement the predictor network
as a masked autoencoder, where the reconstruction is based
on a contrastive loss. The loss is applied only to a sparse set
M1 ⊂ {1, . . . ,K} of masked video clips. These clips are
replaced by a learned MSK token. All embeddings C1

i , in-
cluding the masked ones, are added to their corresponding
position encoding P 1

i and are then fed to the predictor net-
work. We also include an additional learnable CLS token
as input for the predictor network, which will be used for
tasks with multiple video clips. We denote the outputs of
the predictor network as Ĉ1

i for the tokens corresponding to
C1

i , and as CLS1 for the token corresponding to CLS. Sim-
ilarly, we feed as inputs separately from the previous set all
the video clips C2

i with their corresponding positional em-
beddings P 2

i , and the same CLS token, and obtain Ĉ2
i and

CLS2 respectively (see Figure 1 for a visual depiction of
these processing steps).

Contrastive reconstruction. Modeling all the details of a
masked clip, even in the latent space and even given the
redundancy in videos, is a demanding task. Rather than
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increasing the capacity of our model, since we are aim-
ing for scalability, we keep our predictor network a (rela-
tively) shallow network and use contrastive learning [41].
With contrastive learning, the predicted representation of
the masked tokens should only be closer to the original un-
masked clip representation (after an MLP projection) than
from all other clips from the same video and the rest of the
minibatch. Note that the rest of the clips in the same video
act as hard negatives in contrastive learning [46]. Also,
since we are using a frozen backbone, we can afford to use
large minibatch sizes, which is known to be beneficial for
contrastive learning [9]. We call this contrastive reconstruc-
tion loss the Masked Clip Modeling (MCM) loss

LMCM =
∑
i∈M1

ℓi(Ĉ1, C1) +
∑
j∈M2

ℓj(Ĉ2, C2). (6)

Multiple video clips loss. The predictor network outputs
features for each video clip that are highly discriminative.
This task is similar to that of a masked autoencoder [25] and
gives you an enhanced per-clip representation. For many
video tasks, we need a global representation for the whole
video; for that, we introduce an additional pseudo-task that
captures a more global representation of a set of video clips.
Our task takes inspiration from contrastive learning meth-
ods used in SSL, which yield representations that perform
well with linear probing [8]. The loss aims to make the
CLS1 and CLS2 tokens returned from the predictor network
more similar (recall that these two tokens are obtained from
two separate groups of video clips extracted from the same
video) than to other class tokens from other videos within
the minibatch

LSET = Lcntr
(
CLS1,CLS2

)
. (7)

In addition to our contrastive loss (InfoNCE), one can use
clustering [7] or regression [23] losses. We choose In-
foNCE for simplicity and for better compatibility between
the losses. As the overall loss, we use the sum of both loss
terms (without any weights)

L = LMCM + LSET, (8)

4. Experiments
We evaluate SCALE on several commonly used ac-

tion classification datasets for video representation learning.
As our performance metric, we primarily use linear prob-
ing and nonlinear probing [27]. For the smaller datasets,
we also use k-NN classifiers (which are training-free) and
demonstrate that the proposed method improves upon both
unsupervised and supervised backbones.

4.1. Experimental Setup and Protocols

Computational Efficiency: In Table 1, we show estimates
of the maximum batch sizes and the training throughput for

Table 1. Computational Resources. GPU VRAM usage (GB)
and max training speed (using one 3090 GPU) of ViTB with vary-
ing batch sizes and SSL tasks for videos. MoCoV3

Sparse is akin to
MSN [3]. OOM indicates Out Of Memory error.

Batch Size 8 19 57 2048 Samples/s

MoCoV3 23.47 OOM OOM OOM 8.66
VMAE 11.42 22.80 OOM OOM 33.54
MoCoV3

Sparse 5.49 9.27 23.62 OOM 28.83
SCALE 1.21 1.23 1.58 19.52 9224.65

different methods trained with the same computational and
memory resources. As can be seen, SCALE is orders of
magnitude more efficient than other SotA methods. Also
during multi-crop inference, our method only results in an
FLOP increase of approximately 0.001%.
Datasets: Following prior work [44, 18, 45] we use
Kinetics-400 [33], UCF-101 [48] (split 1), HMDB-51 [34]
(split 1), and Something-Something v2 (SSv2) [22] to train
and evaluate our models. We also use the LVU bench-
mark [63] to showcase our long-form video understanding
capabilities. Note that almost 35% of LVU videos are not
available to download from YouTube anymore; thus, our re-
sults are not directly comparable with prior methods.
Pretrained backbones: We use the pretrained checkpoints
of ρBYOL [18], SVT [44], and three variants of Video-
MAE [54] (base(B), large(L), and fine-tuned base(FT)). We
choose ρBYOL for their excellent linear performance, SVT
for the usage of ViT [14], and VMAE for showing 1) the
applicability of our proposed method to MAE models, 2)
the scalability of our method to larger models, and 3) possi-
bility of using supervisedly fine-tuned models as our back-
bone. All the models are self-supervisedly pretrained on
Kinetics-400, except the fine-tuned VMAE base that was
also supervisedly finetuned on Kinetics-400. We also used
a backbone pretrained and fine-tuned on SSv2 (VMAEB

SSv2)
for the SSv2 experiment to show the universality of SCALE
with respect to the pretraining dataset.
Self-supervised Training: For training data, we extract 16
clips of 16 frames from each video per dataset and save
their feature encodings to disk. We use PySlowFast’s com-
mon data augmentations for that [15]. For evaluation, we
follow the 5 × 3 scheme [17] (uniformly sampling 5 clips
from a video along its temporal axis and then taking 3 spa-
tial crops) and extract 15 clips from each video (except for
SSv2, where we extract 2×3 clips [58]). As the architecture
for the predictor network, we use an encoder-only Trans-
former [56] and a three-layer MLP (without batch normal-
ization [30]) for the contrastive heads. Unless stated oth-
erwise, we train our models for 500 epochs (for example,
training with VMAEB on SSV2 takes 137 minutes with one
3090 GPU) with a batch size of 512 and use all 16 clips.
Evaluation: Since our focus is on efficient and scalable
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Table 2. Long-Form Video Understanding Results. Linear and nonlinear probing accuracies on LVU [63] classification tasks. SCALE
shows significant performance improvement compared to baselines, indicating its ability to capture long-form video features. The first two
rows are greyed out as direct comparison is not possible due to the unavailability of the full dataset for download.

Relation Speak Scene Director Genre Writer Year

SlowFast+NL [17, 60] 52.40 35.80 54.70 44.90 53.00 36.30 52.50
ViS4mer [31] 57.14 40.79 67.44 62.61 54.71 48.80 44.75

SVT

Linear 64.70 35.77 62.33 37.27 54.35 52.12 28.46
SCALE linear 73.52 (+8.82) 40.65 (+4.88) 68.83 (+6.50) 46.36 (+9.09) 57.94 (+3.59) 56.38 (+4.26) 39.23 (+10.77)

MLP 67.64 39.02 66.23 45.45 56.92 57.44 36.15
Transformer 70.58 40.65 68.83 47.27 57.17 58.51 36.92

SCALE ft 76.47 (+5.89) 42.27 (+1.62) 74.02 (+5.19) 49.09 (+1.82) 58.97 (+1.80) 62.76 (+4.25) 39.23 (+2.31)

ρBYOL

Linear 52.94 38.21 53.24 36.36 51.79 57.44 33.84
SCALE linear 67.64 (+14.70) 43.08 (+4.87) 66.23 (+12.99) 44.54 (+8.18) 53.33 (+1.54) 60.63 (+3.19) 40.00 (+6.16)

MLP 62.35 41.46 62.42 47.27 52.56 59.57 40.00
Transformer 65.09 44.71 66.23 50.90 53.07 61.70 43.84

SCALE ft 67.64 (+2.55) 45.52 (+0.81) 71.42 (+5.19) 51.81 (+0.91) 55.72 (+2.65) 65.95 (+4.25) 46.92 (+3.08)

video classification, we always freeze the backbones in our
evaluation (as in our self-supervised pretraining) and either
train a linear classifier [44, 18] or fine-tune the predictor
network (the transformer) with an additional linear head.
Therefore, when we refer to fine-tuning (ft), we only adapt
the nonlinear head (e.g., predictor network) but not the
backbone. We apply a grid search for the hyper-parameters
of the heads covering learning rate, weight decay, batch
size, and optimizer type. Similar to MAE [25], we found
that applying a batch normalization layer [30] without affine
transformations is beneficial for VideoMAE models. As
the linear baseline, we consider the well-established ensem-
bling approach, i.e., we average the softmax predictions of
the 15 clips (6 for SSv2) to obtain the final prediction. For
models that process multiple clips at once (like ours), we
likewise apply a linear softmax head on the concatenation
of the individual clip features and the [SET] token before
averaging to obtain the final prediction. For the smaller
datasets, we also use k-NN classification, where, similar to
DINO [7], we always use k = 20 and work with l2 normal-
ized representations.
Nonlinear baselines: As SCALE is a nonlinear model,
we consider an MLP on top of the frozen backbone as a
nonlinear baseline. As a further baseline and to illustrate
the effect of our self-supervised pre-training, we consider
a Transformer trained on all the clip representations. This
Transformer uses the exact same architecture as SCALE,
and only differs in the initialization: in the case of SCALE
we start from our proposed SSL pre-trained weights instead
of random initialization.

4.2. Results

LVU: One of the benefits of SCALE is that it can be used
to process long videos, even though the backbones were
trained on short videos only. To demonstrate the ability
to capture long-form video features, we evaluated SCALE
on LVU [63], a benchmark that involves seven classifica-

Table 3. SSv2 Results. Linear and nonlinear probing accuracies
on SSv2 [22]. We see that both SCALE linear and SCALE ft out-
perform other methods and improve the classification accuracies
by a large margin. We also see that SCALE ft, with its better ini-
tialization, always outperforms the Transformer. VMAEB

SSv2 was
pretrained and fine-tuned on SSv2.

SVT ρBYOL VMAEB VMAEL VMAEB
ft VMAEB

SSv2

Linear 20.30 25.30 18.31 27.94 28.90 70.53
SCALE linear 25.26 27.16 21.24 30.18 33.25 70.63

MLP 21.43 26.46 19.42 27.96 29.83 70.52
Transformer 29.24 30.99 24.26 34.39 35.60 70.57
SCALE ft 29.68 31.83 25.25 36.34 37.38 70.69

tion (and two regression) tasks on minute-long videos. Past
studies [31, 60] have established that increasing the input’s
time span enhances accuracy in this challenging dataset. As
shown in Table 2, our experiments indicate that SCALE can
improve the baseline model’s performance by a consider-
able margin. Moreover, we found that fine-tuning SCALE
can lead to further enhancements.
SSv2: Multiple classes in SSv2 share similar backgrounds
and only differ in motion [28], suggesting that high per-
formance on this dataset demonstrates that the model has
captured strong motion-related contextual cues [44]. Re-
sults in Table 3 show that we outperform the state-of-the-art.
On this dataset, we see a large performance gap between
models that process single clips at a time (Linear and MLP)
and the models that work with multiple clips (SCALE and
Transformer). We can see SCALE linear is also outperform-
ing the MLP, showing that SCALE is able to capture motion
and long-form temporal features of the video. We even im-
prove the supervised model trained on SSv2 (VMAEB

SSv2).
UCF-101 & HMDB-51: For these smaller datasets, be-
sides linear and nonlinear probing, we also use k-NN prob-
ing (see Table 4 and Table 5). With SCALE k-NN, we see
a consistent improvement over the baseline and find that
pre-trained MAE-based models greatly benefit from our
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Table 4. UCF Results. Linear and nonlinear probing accuracies on
UCF-101 [48]. SCALE ft outperforms all the other models and, in
the case of ρBYOL, even gets performance close to a fully fine-
tuned model. Also, in most cases, SCALE linear outperforms the
fine-tuned Transformer and achieves state-of-the-art results in lin-
ear probing (previous SotA using RGB frames was 92.6 [45]). We
further see a significant accuracy improvement in k-NN probing,
especially for pre-trained MAE-based models. As a point of ref-
erence, the current best fully fine-tuned accuracy (which is not
comparable with our setting) is 96.8% [57].

SVT ρBYOL VMAEB VMAEL VMAEB
ft

k-NN 87.20 85.19 35.05 49.14 96.82
SCALE k-NN 89.00 83.47 65.63 76.02 97.38

Linear 91.27 89.55 66.53 84.53 97.91
SCALE linear 92.65 91.43 74.46 86.78 98.14

MLP 91.17 93.60 71.97 87.04 98.04
Transformer 92.20 94.34 68.22 86.30 98.04
SCALE ft 92.94 95.00 76.07 89.92 98.46

FTreported 93.7 95.4 96.1 - -

Table 5. HMDB Results. Linear and nonlinear probing accuracies
on HMDB-51 [34]. Despite the small size of the dataset, we see
that SCALE ft is outperforming all the other methods, and in the
case of SVT, it even outperforms the fully fine-tuned model. We
also see that SCALE linear outperforms the Transformer in most
cases with only a single linear layer (the best linear accuracy in
the literature is 66.7% [45]). Similar to UCF results, we see a
considerable increase in the performance of k-NN classifiers for
pre-trained MAE-based models.

SVT ρBYOL VMAEB VMAEL VMAEB
ft

k-NN 51.83 49.67 21.96 29.21 72.81
SCALE k-NN 56.01 51.56 37.18 51.30 71.83

Linear 63.07 61.17 45.22 60.26 76.33
SCALE linear 66.33 63.92 52.15 62.35 78.36

MLP 63.00 64.77 49.01 62.61 77.45
Transformer 63.98 66.16 47.32 61.50 76.86
SCALE ft 68.10 66.79 51.89 64.83 79.34

FTreported 67.2 73.6 73.3 - -

training. This can be explained by the additional invari-
ance properties introduced through the SET loss term in
SCALE training. Across the board, we also see that in the
case of linear probing, not only does SCALE linear outper-
form Linear, but it also outperforms Transformer, which
leverages many more parameters. In the case of SVT,
our SCALE linear also outperforms the best reported linear
accuracy on UCF101 (92.7% vs. 92.6% [45]). Finally,
SCALE ft achieves better results than all the nonlinear base-
lines and even outperforms the fully fine-tuned SVT (68.1%
vs. 67.2%).
Kinetics-400: We present our main results on Kinetics-
400 [33] in Table 6. Our SCALE linear with SVT backbone
beats the previous state of the art (71.8% vs. 71.5% [18])
and SCALE ft can even improve the accuracy of VMAEB

ft ,

Table 6. Kinetics-400 Results. Linear and nonlinear probing ac-
curacies on Kinetics-400 [33] without any extra data and using
RGB frames only. While SCALE linear is on par with Linear, we
observe clear improvements for nonlinear probing in the case of
SCALE ft. Note that the best linear accuracy on this dataset (with-
out any extra data) is 71.5 [18] and the best full fine-tuning accu-
racy is 86.7 [61].

SVT ρBYOL VMAEB VMAEL VMAEB
ft

Linear 71.71 68.82 43.50 60.73 81.52
SCALE linear 71.78 68.38 43.96 60.66 81.44

MLP 71.19 69.42 45.48 61.64 81.27
Transformer 72.18 69.28 44.85 62.15 81.70
SCALE ft 72.38 69.63 46.15 62.67 81.84

Table 7. Kinetics-400 Low-shot Results. Linear and nonlinear
probing accuracies on 10% of Kinetics-400 [33]. SCALE is more
robust to the size of the labeled dataset. SCALE ft does not overfit
like the other nonlinear probes (MLP and Transformer) and out-
performs the baselines. VMAEB

ft is greyed out since it was already
fine-tuned on the whole labeled dataset and is only reported here
for consistency with the other tables.

SVT ρBYOL VMAEB VMAEL VMAEB
ft

Linear 66.43 56.43 31.25 48.42 79.79
SCALE linear 65.96 57.74 34.03 49.21 79.94

MLP 65.44 58.68 30.47 48.27 79.37
Transformer 64.97 58.95 29.89 48.27 79.47
SCALE ft 67.01 59.52 33.92 50.36 80.47

which is a strong supervised model, from 81.5% to 81.84%.
Following the evaluation setup of self-supervised image

representations [8, 7, 71], we also introduce low-shot K400
video classifications by sampling 10 percent of the videos
(in a class-balanced way) and training the probes only on
those. We still test on the whole evaluation set of K400.
This low-shot setting is more aligned with the typical use-
case of self-supervised models in which there is abundant
unlabeled data for training via self-supervision and a small
set of labeled data for fine-tuning. Results in Table 7 show
that our method is particularly effective in this low-shot set-
ting. While most other nonlinear probes overfit and perform
worse than the linear probes, our SCALE ft does not overfit
and clearly outperforms the baselines.

4.3. Ablations

In this section, we start from a baseline setup consisting
of a two-layer transformer with a hidden size of 256, 20%
chance of masking clips, trained with a batch size of 512
for 200 epochs, and using two sets of 8 views for represen-
tation learning. Using SCALE ft, we explore different loss
functions, masking ratios, number of layers, and finally, the
number of views during training and testing. All experi-
ments are performed on UCF and HMDB.
Loss Function: As explained in the method section, we
have two loss terms, and each of them can be enabled or
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Table 8. Loss Function. SCALE ft accuracy with different loss
function combinations (the masking ratio here is 20%). We can
see that having MCM is always beneficial, and the SET loss is
almost always helpful. We use both loss terms for our final model.

UCF-101 HMDB-51
SET MCM SVT ρBYOL SVT ρBYOL

✓ ✗ 91.80 92.20 64.50 63.59
✗ ✓ 92.01 93.81 62.81 64.05
✓ ✓ 93.20 92.99 64.57 65.61

Table 9. Masking Ratio. SCALE ft accuracy with different mask-
ing ratios. We observe best results around 25% similar to NLP
models [12] (15%), and different from low-level video models like
VideoMAE [54] (90%).

UCF-101 HMDB-51
Masking Ratio SVT ρBYOL SVT ρBYOL

0.15 93.18 93.25 64.37 64.83
0.25 93.20 93.81 65.49 65.62
0.35 93.15 93.06 64.18 65.22
0.45 92.96 93.02 63.39 64.96

Table 10. Transformer Capacity. SCALE ft accuracy with differ-
ent model capacities. Having more than one transformer layer and
not too few hidden channels is necessary for the best performance.

Hidden Num UCF-101 HMDB-51
Dim Layers SVT ρBYOL SVT ρBYOL

64 1 - 92.62 - 63.16
128 1 - 92.83 - 63.68
256 1 - 92.86 - 64.39
128 2 92.78 93.52 63.26 65.55
256 2 93.20 93.81 65.49 65.62
512 2 92.57 93.66 65.68 64.77
128 3 92.33 93.25 64.83 65.55
256 3 92.75 93.52 65.49 65.16
512 3 92.86 92.93 65.49 64.84

disabled for the pretraining. In Table 8 we show that having
both loss terms is better than the individual loss terms.
Masking Ratio: Masking ratio is an important hyperpa-
rameter and depends on the data modality, for example,
BERT [12] uses 15%, MSN [3] uses 30% (for ViT-Base),
MAE [25] uses 75%, and VideoMAE [54] uses 90 to 95%
masking. Since our clip representations are somewhat ab-
stract representations of the video, we expect the optimal
masking ratio to be close to NLP models rather than video
MAEs. We have observed a steady decrease in the pretrain-
ing task’s performance with higher masking ratios, so we
only tested low masking ratios in Table 9 and found out that
25% is the optimal masking ratio.

Transformer Capacity: We also explore the number of

Table 11. Number of Views. SCALE ft accuracy with different
numbers of clips and batch sizes. More views lead to consistent
improvement, and large batch sizes are not necessary because of
the hard negative samples.

Num Batch UCF-101 HMDB-51
Views Size SVT ρBYOL SVT ρBYOL

4 × 2 256 92.65 92.83 64.35 64.24
6 × 2 256 92.70 93.07 64.57 64.37
8 × 2 256 92.80 93.49 64.64 64.63
4 × 2 512 92.67 93.49 64.85 64.50
6 × 2 512 93.18 93.68 64.90 65.35
8 × 2 512 93.20 93.81 65.49 65.62
4 × 2 1024 92.75 93.36 64.77 65.15
6 × 2 1024 92.96 93.57 64.96 65.48
8 × 2 1024 93.07 OOM 65.29 OOM

transformer layers and their hidden size in Table 10. We can
see that having more than one transformer layer is necessary
for good results and too few hidden channels can hurt per-
formance. However, there is a trade-off, and deeper trans-
formers can lead to worse performance.

Number of Views: Finally, we studied the model perfor-
mance as we changed the number of views and batch size
fed to the model. As can be seen in Table 11, having more
views has a large and consistent impact on the performance,
and since we have hard negatives for contrastive loss within
the video, we are not too reliant on large batch sizes.

5. Conclusion

In this paper, we introduced SCALE, a framework for
video representation learning that aggregates the informa-
tion from multiple clips from the same video. We combine
contrastive learning and masked modeling with intuitions
from predictive coding to obtain improved global and local
representations of clips starting from frozen backbones. We
evaluated these features using a wide array of backbones
on different action classification and video understanding
datasets and achieved strong or state-of-the-art results. The
computational efficiency of our method is extremely useful
for videos and opens the possibility to a wider group of re-
searchers (with limited computational resources) to work on
video representation learning than previously possible. We
also believe that working with a set of clips is an interesting
direction for representation learning. Finally, as a surprising
and maybe alarming observation, even contrastive represen-
tations that were trained to be invariant to data augmenta-
tions and spatio-temporal crops can be used for contrastive
masked modeling. This might be due to benign memoriza-
tion [2], and understanding why this phenomenon happens
might lead to a better understanding of contrastive learning.
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