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Figure 1. The proposed approach can produce plausible results both on complex scene images as well as on face images. The scene image
inputs are taken from the Places 2 [67] dataset and the face image input is from FFHQ [27] dataset. The bubble chart on the right shows
the advantage of our network over state-of-the-art approaches. The size of the bubble signifies the relative number of parameters of each
approach and the number inside of the bubble shows the absolute number of model parameters. Our approach achieves a low FID, while
being one order of magnitude smaller and faster than recent SOTA approaches.

Abstract

In recent years, many deep learning based image in-
painting methods have been developed by the research com-
munity. Some of those methods have shown impressive im-
age completion abilities. Yet, to the best of our knowl-
edge, there is no image inpainting model designed to run
on mobile devices. In this paper we present a simple im-
age inpainting baseline, Mobile Inpainting GAN (MI-GAN),
which is approximately one order of magnitude computa-
tionally cheaper and smaller than existing state-of-the-art
inpainting models, and can be efficiently deployed on mo-
bile devices. Excessive quantitative and qualitative eval-
uations show that MI-GAN performs comparable or, in
some cases, better than recent state-of-the-art approaches.
Moreover, we perform a user study comparing MI-GAN re-
sults with results from several commercial mobile inpaint-
ing applications, which clearly shows the advantage of
MI-GAN in comparison to existing apps. With the pur-
pose of high quality and efficient inpainting, we utilize an
effective combination of adversarial training, model re-
parametrization, and knowledge distillation. Our models
and code are publicly available at https://github.
com/Picsart-AI-Research/MI-GAN .

1. Introduction
The task of image inpainting is to complete the missing

regions in images in a realistic and visually plausible way.
Image inpainting algorithms have found their applications
in such problems as image restoration, removal of unwanted
objects, etc.

Nowadays, in the era of fast evolving gadgets, partic-
ularly smartphones, image/video editing applications are
growing furiously. The usage of mobile devices for mak-
ing creative visual content by professionals as well as by
consumers shows a great increasing tendency. A lot of mo-
bile applications such as Photoshop Express [24], Picsart
[25], Snapseed [39], TouchRetouch [18] empower the users
to create awesome content utilizing AI-powered tools. One
of the most popular such tools, object remover, allows its
users to remove unwanted objects (e.g. watermarks, lines,
people or random objects in the background, etc.) from their
photos. So millions of users every day benefit from image
inpainting technologies integrated in various mobile appli-
cations.

Current AI-based state-of-the-art inpainting algorithms
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such as Co-Mod-GAN [65], SH-GAN [58], LaMa [53], or
LDM [46] include an inference of a heavyweight neural net-
work, which is often not feasible to do on low-end mobile
devices (see Tables 1, 2). Therefore the processing is be-
ing done on server-side resulting in dependency on Internet
connection, speed, traffic and server usage costs for image
editing companies.

To address this problem we propose a simple baseline for
high-quality mobile image inpainting which is an order of
magnitude lighter and computationally more efficient than
current state-of-the-art neural networks while showing sim-
ilar or sometimes even better performance (see Fig. 1).

Motivated by the generative nature of the image comple-
tion problem we design MI-GAN, Mobile Inpainting Gen-
erative Adversarial Network, which benefits from a hy-
brid system consisting of adversarial training, model re-
parametrization, and knowledge distillation. Thanks to ad-
versarial nature of the MI-GAN training, image comple-
tion results appear to be visually plausible without pro-
ducing blurry regions and pattern-like artifacts. Model re-
parametrization further increases the output quality at no
cost of efficiency. Finally, knowledge distillation by a
stronger network also improves the generative ability of MI-
GAN.

Due to excessive evaluations MI-GAN shows great per-
formance in terms of both quantitative and qualitative com-
parison with existing state-of-the-art methods.

To summarize, our contributions are three-fold.

• We propose MI-GAN, to the best of our knowledge the
first mobile generative image inpainting network.

• We develop a customized knowledge distillation
method that is suitable for our model and problem,
as well as we implement a model re-parametrization
strategy which enhances the quality of results.

• While being computationally more efficient and lighter
than the existing state-of-the-art image completion ap-
proaches, MI-GAN produces similar or even better im-
age inpainting results. Furthermore, in comparison
to existing commercial mobile inpainting applications,
MI-GAN results are generally rated higher by human
evaluators.

2. Related Work
2.1. Image Inpainting Methods

The task of image inpainting was and is being actively
investigated by researchers during past decades. Classi-
cal approaches use diffusion processes [5, 6, 50, 8, 32] or
exemplar-based techniques [17, 56, 20, 2, 4, 16, 31, 13] for
coherent image restoration and completion. Although the
classical methods greatly recover textures and preserve im-
age structures, they lack of semantic understanding of the

image context. Hence learning-based approaches were de-
veloped and later improved.

Early deep learning papers on image inpainting were try-
ing to fill small missing regions by image-to-image discrim-
inative models [57, 28, 44, 36]. Later, by using gener-
ative adversarial networks (GANs) [19], researchers were
able to reach extra-high quality in image inpainting task
[60, 42, 59, 33, 65, 53, 58, 66]. Some papers [36, 60, 42]
additionally design special convolution layers to efficiently
use the information in the known region of deep features.
RFR [33] suggests a recurrent feature reasoning module
which utilizes correlations between neighboring pixels to
fill the missing pixels. With their contextual residual ag-
gregation mechanism Yi et al. [59] enables ultra-high res-
olution inpainting (up to 8K). Several methods [65, 58, 66]
benefit from a strong generative model StyleGAN-v2 [54]
and make adoptions to image inpainting task. [65] in-
troduces co-modulation blocks conditioning StyleGAN-v2
modulated architecture with the input image. SH-GAN [58]
introduces spectral hint units to generate high-frequency de-
tails.

By benefiting from the Fourier analysis, LaMa [53] uses
Fourier convolutions and greatly improves inpainting of
repetitive patterns. ZITS [15] improves over LaMa by intro-
ducing a structure restoration mechanism with transform-
ers. MAT [34] combines the strengths of convolutional and
transformer-based models for large-hole inpainting.

Recently, diffussion models [22, 52] were introduced
and impacted the image inpinting task [46, 40, 48]. Palette
[48] provides an image-conditioned diffusion model for
image-to-image translation tasks, namely, colorization, in-
painting/outpainting, and JPEG restoration. RePaint [40]
adopts the unconditional pretrained Denoising Diffusion
Probabilistic Model (DDPM) [22] for image inpainting task
by guiding its backward process with inpainting masks.
LDM [46] applies a diffusion process in its latent space
which particularly allows conditioning on textual prompts,
by so extending its image inpainting abilities to text guided
completion.

2.2. Lightweight Generative Modeling

Although generative adversarial networks are able to cre-
ate extremely high quality images often indistinguishable
from reality with a naked eye, they require a tremendous
amount of computations and memory consumption. For this
purpose some methods [1, 10, 35, 9, 26, 45, 61, 62, 37] de-
sign lightweight generative models. [1] firstly applied the
concept of knowledge distillation on GANs and showed
incredible compression rates (e.g. 87:1 on CelebA [38])
while preserving the original quality. [10] utilizes the stu-
dent discriminator in a triplet loss to enforce it benefit
from teacher generated images also. In [35] the authors
propose semantic preserving distillation loss for image-to-
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Figure 2. The overview of our method. The generator of MI-GAN consists of two branches: the main branch with a Unet like architecture
and the painting branch. The main branch consists of a linear projection layer, depthwise separable convolutions, and bilinear resizing
operations. The painting branch completes the missing region with layer-by-layer inpainting similar to the manual work of some experts.
The training is conducted by using adversarial loss function and knowledge distillation. The discriminator is similar to the encoder of the
main branch, having also residual connections and fully connected layers (more details can be found in supplementary material). As a
teacher network in our experiments we take Co-Mod-GAN [65]. Please zoom in for better view.

image translation task to preserve the semantic relations be-
tween the teacher and the student features. TinyGAN [9]
and TinyStarGAN-v2 [26] are distilling high-fidelty image
generation networks BigGAN [7] and Stargan-v2 [12] re-
spectively. [45] proposes a GAN compression method with
a student discriminator-free online distillation scheme. Re-
cently in [62] the authors introduce wavelet knowledge dis-
tillation to transfer the high-frequency detail generating in-
formation from the teacher generative model to the stu-
dent. [37] proposes a content-aware compression paradigm,
which leverages generated contents to guide the process of
pruning and distillation.

3. Method

3.1. Architecture

We introduce a simple baseline for mobile image inpaint-
ing which benefits from a combination of adversarial learn-
ing, model re-parametrization, and knowledge distillation.
Formally, given an input image Iorig ∈ RH×W×3 and a bi-
nary mask M ∈ {0, 1}H×W indicating the known region
with 1-values and the missing region with 0-values. MI-
GAN takes the concatenated input In = [Iorig ⊙M,M ] ∈
RH×W×4 and returns a completed image Ic which is fi-

nally composited with the original image by using the bi-
nary mask M :

Icompos = Iorig ⊙M + Ic ⊙ (1−M). (1)

The overview of our method is shown in Fig. 2.
We design a generative adversarial network, the gen-

erator of which consists of two parts: a U-Net [47] like
main branch utilizing depthwise separable convolution lay-
ers [51], and the painting branch imitating the inpaint-
ing process of experts. Being inspired by the architecture
of StyleGAN [27], the concept of our painting branch is
greatly aligned with the inpainting task. Indeed, similar to
experts (artists), our painting branch paints the missing re-
gion iteratively layer-by-layer in the RGB-space starting
from the overall structure and ending with the final result.

The main branch architecture of MI-GAN starts with a
convolution layer to project the 4-channel input space to
a higher 128 dimension. Then a fully-convolutional en-
coder+decoder, consisting of depthwise separable convolu-
tions and bilinear resizing operations, is applied resulting
in a tensor with dimensionality H × W × 128. All con-
volutional blocks are using the LeakyReLU activation. In-
spired by StyleGAN, to generate high-frequency details, we
also add a random noise component (with a learnable noise
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Figure 3. The structure of our depthwise separable convolution layers showing (a) the model re-parametrization during training and (b)
the utilization of the fused weights during the inference. We apply bilinear resizing in the case when the depthwise separable convolution
block changes its input resolution. In the case of both training and inference in each pointwise convolution layer a random noise with a
trainable amplitude is applied.

amplitude) to the pointwise convolution layers of the de-
coder of the main branch (see Fig. 3). The painting branch
takes the intermediate tensors from the main branch decoder
and “paints” them to the RGB-space with projection con-
volutional layers, resulting in images xi ∈ R

H

2i
×W

2i
×3 for

i = 0, 1, . . . , 6. Then, the final image Ic ∈ RH×W×3 is
obtained by “painting” (adding) the images xi as layers on
top of each other: x̂6 = x6,

x̂i = BilinearUp(x̂i+1) + xi, i = 5, 4, . . . , 0,

Ic = x̂0,
(2)

where BilinearUp is the bilinear upsampling operation
with scaling factor equal to 2.

After the painting branch returns the inpainted image Ic,
we get the final result by using Eq. 1.

3.2. Training

To train MI-GAN we use a combination of an adver-
sarial and a knowledge distillation loss functions Ladv and
LKD respectively. For an adversarial training we borrow
the discriminator architecture from StyleGAN [27] and re-
place convolutional layers with depthwise-separable convo-
lutions. Also, similar to StyleGAN [27], we utilize a non-
saturating (with softplus non-linearity) loss function with
R1-regularization [41] for discriminator training. For the
generator MI-GAN the adversarial component of the loss
function will accordingly be as follows:

Ladv = Ex,m∼Pc,m [SoftP lus(−Dw(Gθ(x,m),m))],
(3)

wherePc,m is the joint distribution of corrupted images
(which should be inpainted) and the corresponding missing
regions, Dw is the discriminator, and Gθ is the generator,
i.e. our MI-GAN.

For a knowledge distillation we choose Co-Mod-GAN
[65] as a teacher network for MI-GAN due to its strong
generative ability inherited from StyleGAN-v2 [54]. Simi-
lar to us, inspired by StyleGAN, Co-Mod-GAN also has a
painting branch. Hence we put a knowledge-distillation loss
between the inpainted regions of intermediate results of the
painting branches of Co-Mod-GAN and MI-GAN:

LKD =

3∑
i=0

∥(xi − xC
i )⊙ (1−Mi)∥, (4)

where xi and xC
i are the intermediate results of painting

branches of MI-GAN and Co-Mod-GAN respectively, and
Mi ∈ {0, 1}

H

2i
×W

2i is obtained by resizing the binary mask
M to the size of xi (with the nearest neighbour interpola-
tion). In Sec. 4.6 we discuss the effect of knowledge distil-
lation loss.

So the final loss function for MI-GAN generator will be
the weighted combination

L = λ1Ladv + λ2LKD. (5)

In our experiments we take λ1 = 1, λ2 = 2.

3.3. Model Re-Parametrization

Re-parametrization is widely used for such tasks as com-
pact model design [29], neural architecture search [11, 63]
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FFHQ Places2 FLOPS Params
Method FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ (GFLOPS) (×106)

LaMa 32.71 0.259 22.00 0.378 32.05 27.05
Co-Mod-GAN 4.70 0.257 9.32 0.397 91.21 79.17
SH-GAN 4.33 0.254 7.40 0.392 91.27 79.21
ZITS - - 16.78 0.356 295.72 78.49
MAT 7.00 0.231 14.38 0.394 140.74 59.78
LDM - - 13.40 0.385 6,896.16 387.25
HiFill - - 81.27 0.488 18.14 2.72

MI-GAN (ours) 4.99 0.257 11.83 0.394 11.19 5.95

Table 1. Quantitative comparison of our method with state-of-the-
art approaches on 256 resolution images.

and pruning [14]. Inspired by recent work on online re-
parametrization [23], we adopt the technique to our archi-
tecture. We skip the linear scaling layer, instead we use
weight normalizations described in [49]. We apply the re-
parametrization for all convolution layers in MI-GAN ar-
chitecture.

For a convolutional layer Li during training we define
n kernels ω1

i , ω
2
i , . . . , ω

n
i ∈ RCO×CI×k×k, where CO and

CI are the numbers of output and input channels of Li re-
spectively (for depthwise convolutions CI = 1 regardless
of input channel number of Li), and k is the kernel size.
Then we initialize the kernels randomly from standard nor-
mal distribution, combine them via summation, and scale
the result to have standard deviation equal to 1:

ωi =
1√
n

n∑
j=1

ωj
i . (6)

This follows by a weight normalization operation ω̂i =
ωi

∥ωi∥ . Finally ω̂i is being used as a convolutional (or depth-
wise convolutional) kernel:

Li(x) = Conv(x, ω̂i) + bi, (7)

where bi is the convolutional bias initialized with zeros.
During inference all additional parameters are fused and ω̂i

is directly applied in Eq. 7.
Our re-parametrization for depthwise-separable convo-

lution blocks is shown in Fig. 3. In our experiments we
take n = 9 to somehow “compensate” and make the net-
work’s capacity close to the capacity of its teacher network.
The impact of the re-parametrization trick is discussed in
Sec. 4.6.

4. Experiments
4.1. Implementation Details

Our experiments are conducted on Places2 [67] and
FFHQ [27] datasets. Though our proposed model is fully
convolutional, and can be used for inference on varying res-
olutions and aspect ratios, we create separate architectures
for training on 256 and 512 resolution inputs. The purpose

of having separate architectures is to minimize the FLOPS
and the memory usage for higher resolution inputs. The
architectural details of our models can be found in the sup-
plementary material.

To train our models on Places2 dataset we use
Places365-Standard subset, which contains ∼ 1.8 million
images. All the metrics are calculated on Places2 validation
set with 36, 500 images. For 256 and 512 resolution models
we train them for ∼ 950, 000 and ∼ 1, 600, 000 iterations
respectively. The training time for 256 and 512 resolution
models was 23 days with 2 Nvidia Quadro-RTX 8000 GPUs
and 30 days with 8 Nvidia A6000 GPUs respectively.

We train the teacher Co-Mod-GAN model and our 256
resolution model on FFHQ by using randomly chosen
60, 000 images, and evaluate all models on the rest 10, 000
images. We train our model for ∼ 800, 000 iterations for 10
days with 8 Nvidia A6000 GPUs.

Adam optimizer is used with learning rate 0.001 and
with β = (0, 0.99) both for the generator and the discrimi-
nator. We fix batch size 32 for all experiments.

4.2. Quantitative Comparison

Tables 1 and 2 show comparison of our method with
state-of-the-arts Co-Mod-GAN [65], SH-GAN [58], LaMa
[53], LDM [46], ZITS [15], MAT [34] and HiFill [59] on
Places2 and FFHQ datasets respectively. All the models
besides Co-Mod-GAN are taken from their official reposi-
tories or are kindly provided by the corresponding authors.
For Co-Mod-GAN we re-implemented it in PyTorch [43],
and trained and tested the replicated version. The FID [21]
scores of the replicated Co-Mod-GAN match the FID scores
in the original paper.

For the purpose of metric calculation we do the inference
of all models in comparison using the free-form mask gen-
eration strategy as in Co-Mod-GAN [65]. The mask gen-
eration process combines multiple brush strokes and rect-
angles. The number of brush strokes is chosen randomly
between 0 and 20. The widths of the brush strokes are cho-
sen uniformly from the range (12, 40). Generated masks
contain between 0 to 5 random rectangles up to the image
size, and between 0 to 10 rectangles having maximum side
fixed to the half of the image size. With this method of mask
generation, masked area ratio varies between 0 and 1.

We use Fréchet Inception Distance (FID) [21] as our pri-
mary metric. Also, we provide a comparison in terms of the
perceptual metric LPIPS [64]. To show the computational
complexity of the models we provide the number of floating
point operations per second (FLOPS) and for the size of the
models we report the number of model parameters.

As can be noticed from Table 1, on Places2 dataset our
model outperforms LaMa, ZITS, MAT and HiFill in terms
of FID and is comparable with LDM, while slightly under-
performs Co-Mod-GAN and SH-GAN being on par with
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Masked image LaMa Co-Mod-GAN SH-GAN ZITS MAT LDM HiFill MI-GAN (ours)

Figure 4. Qualitative results of our model and other state of the art approaches on 256 resolution Places 2 samples with free-form masks.

Masked image Co-Mod-GANLaMa SH-GAN ZITS MAT LDM HiFill MI-GAN (ours)

Figure 5. Example results of our 512 resolution model and other state of the art approaches on 512 resolution Places2 test samples using
free-form and user masks. Please zoom for a better view.

them in terms of the perceptual metric LPIPS. However
MI-GAN is almost 8 times faster and 13 times lighter than
Co-Mod-GAN and SH-GAN. This emphasizes a great gen-
erative ability of MI-GAN while being a compact model
designed for mobile devices. Let us notice that LDM and
MAT does not provide a model working on 256 resolu-
tion, so to inference on 256 resolution we resize images to
512, process them with 512 models and then resize back to
256. On FFHQ we can observe a similar picture, while our

method is even closer to Co-Mod-GAN and SH-GAN (i.e.
has similar generative ability). For LaMa to inference on
FFHQ dataset we have used the model trained on CelebA
[38] dataset. LDM, ZITS and HiFill do not provide an in-
painting model trained on faces.

For the image resolution 512 MI-GAN performs simi-
larly to LaMa and ZITS in terms of FID and slightly under-
performs Co-Mod-GAN, SH-GAN, LDM and MAT. Qual-
itative analysis performed in Sec. 4.3 shows that the small
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Figure 6. (a) Total rating of each method based on our user study. (b) Visual examples from the user study. Please zoom-in for better view.

Masked image LaMa Co-Mod-GAN SH-GAN MAT MI-GAN (ours)

Figure 7. Qualitative results from our model and other approaches
on FFHQ dataset samples. Please zoom for a better view.

difference in terms of FID has a small impact on visual
results. Instead, our model is more than 7.5 times faster
and 4.5 times lighter than the mentioned state-of-the-art ap-
proaches (see Table 2).

Notice that even though HiFill has less number of pa-
rameters compared to our approach, MI-GAN is computa-
tionally more efficient and significantly outperforms HiFill
quantitatively both on 256 and 512 resolutions. The rea-
son that our model is computationally more efficient is that
MI-GAN is a single-stage fully convolutional network con-
sisting of depthwise-separable convolutions, whereas HiFill
uses regular convolutions on higher resolution features and
has a costly attention mechanism in its refinement network.

To show the effectiveness of our approach on different
mask sizes, we provide FID comparisons with varying mask
ratios in the appendix. Additionally, in order to further
prove the robustness of our approach against other metrics,
we also include a comparison in terms of PSNR, SSIM [55],
P-IDS and U-IDS [65] metrics in the appendix.

4.3. Qualitative Comparison

In this subsection we discuss the qualitative advantages
of our model over some state-of-the-art approaches. As il-
lustrated in Fig. 4 our model produces semantically mean-
ingful content, even if the input mask is large. Our model
has a strong generative capability, and the results are sharp,

Method FID ↓ LPIPS ↓ FLOPS Parameters
(GFLOPS) (×106)

LaMa 12.36 0.314 128.06 27.05
Co-Mod-GAN 8.05 0.343 121.09 79.79
SH-GAN 7.03 0.339 121.15 79.82
ZITS 12.94 0.310 666.97 78.49
MAT 8.67 0.339 288.78 61.56
LDM 8.46 0.342 27,581.56 387.25
HiFill 64.07 0.438 72.12 2.72

MI-GAN (ours) 10.00 0.345 15.69 5.98

Table 2. Quantitative comparison of our method with state-of-the-
art approaches on 512 resolution images.

while approaches like LaMa [53] and ZITS [15] produce
blurry results on larger masks (see the 1st row of the figure
as an example). Besides, as can be noticed from the qual-
itative comparison, on 256 resolution images our approach
can perform better than the bigger and exceedingly compu-
tationally expensive model LDM [46].

On higher resolution images (see Fig. 5) our model still
produces semantically meaningful results. Besides, our re-
sults don’t have a color inconsistency issue unlike LDM,
LaMa and ZITS results (see the 1st row of the figure as an
exmaple).

We also conduct a qualitative comparison on face images
(see Fig. 7). On face images our model’s results are on par
with Co-Mod-GAN and SH-GAN, while being better than
LaMa and MAT.

More qualitative results can be found in the supplemen-
tary material.

4.4. User Study

In addition to comparing our MI-GAN model with SOTA
inpainting methods, we conduct a user study against 5 built-
in commercial mobile image inpainting apps. For this, we
select a diverse set of 20 real world photos from OpenIm-
ages [30] dataset with varying resolutions and, using each
method in comparison, carefully mask and remove pre-
determined objects from each photo. Then, we ask 3 people
to anonymously rate each of 5 results from 1 to 5 for each
photo and sum the given ratings for each method (see Fig.
6.a). As can be seen from the diagram, our approach has a
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256-resolution
Device Name MI-GAN speed Co-Mod-GAN speed

(ms, mean/std) (ms, mean/std)

iPhone7 1030.25 / 13.37 4475.33 / 39.55
iPhoneX 630.80 / 12.21 2746.00 / 28.84
iPad mini (5th gen) 552.40 / 8.10 2686.17 / 41.41
iPhone14-pro-max 296.00 / 1.35 1374.40 / 84.78
Galaxy Tab S7+ 686.17 / 12.36 - / -
Samsung Galaxy S8 1476.40 / 5.98 - / -
vivo Y12 2918.08 / 33.47 - / -

Table 3. The actual speed of our 256 model vs Co-Mod-GAN 256
model deployed on various mobile devices. The actual speed is
measured in miliseconds, the means and the stds of the speed are
presented for each mobile device. Some numbers are missing,
since Co-Mod-GAN was providing an out of memory error.

clear advantage over other methods. Fig. 6.b shows qualita-
tive samples from user study, where our result has obvious
advantage over commercial mobile apps. We include more
results in the supplementary material.

4.5. Actual Speed on Mobile Devices

Besides calculating FLOPS we also measure actual
speed of our method on real mobile devices and compare
MI-GAN with Co-Mod-GAN. As can be noticed from Ta-
ble 3 on 256 resolution inputs our method is more than 4
times faster on average than Co-Mod-GAN, which allows
MI-GAN to be used in real-world applications on mobile
devices.

All models in Table 3 are using CPUs of mobile devices
and are deployed by using the neural network framework
ONNX [3]. Nothing special was conducted to optimize the
speed or memory usage of MI-GAN on ONNX, so we be-
lieve MI-GAN can be further optimized in terms of speed
or memory consumption (particularly running it on GPUs
of mobile devices). The actual running times on 512 reso-
lution images can be found in the supplementary material.

4.6. Ablation Study

In this subsection we show the impact of our re-
parametrization trick and knowledge distillation loss func-
tion for MI-GAN 256 resolution model. Both are de-
signed to close the generative performance gap between MI-
GAN and a larger inpainting network. Table 4 shows the
quantitative effect of both. Fig. 8 shows that by adding
re-parametrization trick we increase the semantic under-
standing of the model to generate more meaningful results.
Further, the knowledge distillation adds more generative
ability. Although both modifications has positive impact,
one can notice that re-parametrization trick improves the
method drastically (see also Fig. 8).

Method FID ↓ LPIPS ↓
Baseline 14.94 0.407
Baseline + Re-Param 12.22 0.400

MI-GAN: Baseline + Re-Param + KD 11.83 0.39

Table 4. The effect of model re-parametrization and knowledge
distillation on MI-GAN 256 resolution model. As can be noticed
both have positive impact in terms of both metrics FID and LPIPS.

BaselineMasked image +Re-param +Re-param +KD

Figure 8. Visual results of ablation study on model re-
parametrization and knowledge distillation.

5. Limitations and Societal Impact

Although our method has good generation abilities pro-
ducing visually plausible results, similar to other state-of-
the-art approaches it sometimes meets difficulties when re-
constructing complex 3D structures. We hypothesize this
can be later improved by guiding the network with more in-
formation about the 3D structure of the objects in images.
For visual examples of MI-GAN’s failure cases please see
our supplementary material.

Our work aims to make the creative image editing easier
and accessible for everyone with their mobile devices. Sim-
ilar to other deep learning based image editing approaches
our method may have both positive and negative societal
impact depending on its application. As a positive impact
MI-GAN can help the users to restore old photos or re-
move unpleasant objects from their photos making them
more aesthetic. On the negative side it can be used to mis-
represent the reality by removing important facts from the
images. We strongly believe and hope that our work will
give more positive value to creative editing users than its
potential negative societal impact.
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6. Conclusion
In this paper we introduce MI-GAN, the first generative

mobile image inpainting network. By using depthwise sep-
arable convolutions, model re-parametrization, and knowl-
edge distillation, MI-GAN is able to produce high-quality
results while having a low computational cost and a small
number of parameters. Qualitative and quantitative compar-
isons show that MI-GAN is comparable or sometimes out-
performs the current state-of-the-art approaches while being
a way faster and smaller.
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