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Abstract

Current adversarial attacks on motion estimation, or op-
tical flow, optimize small per-pixel perturbations, which are
unlikely to appear in the real world. In contrast, adverse
weather conditions constitute a much more realistic threat
scenario. Hence, in this work, we present a novel attack on
motion estimation that exploits adversarially optimized par-
ticles to mimic weather effects like snowflakes, rain streaks
or fog clouds. At the core of our attack framework is a
differentiable particle rendering system that integrates par-
ticles (i) consistently over multiple time steps (ii) into the
3D space (iii) with a photo-realistic appearance. Through
optimization, we obtain adversarial weather that signifi-
cantly impacts the motion estimation. Surprisingly, meth-
ods that previously showed good robustness towards small
per-pixel perturbations are particularly vulnerable to ad-
versarial weather. At the same time, augmenting the train-
ing with non-optimized weather increases a method’s ro-
bustness towards weather effects and improves generaliz-
ability at almost no additional cost. Our code is available
at https://github.com/cv-stuttgart/DistractingDownpour.

1. Introduction

Adversarial attacks that pose a severe threat to neural
networks have recently been introduced in the context of
optical flow. There, the goal is to compute the pixel-wise
2D motion f between two consecutive frames I1 and I2 of
an image sequence over time. Current attacks on optical
flow [1, 17, 31, 36, 37] modify these two frames in the 2D
space and consequently ignore the actual 3D geometry of
the scene as well as the objects moving within. Moreover,
when modifying pixels, they impose bounds on the pertur-
bation’s Lp norm rather than imposing visual constraints,
which yields attacked images that lack naturalism. There-
fore, robustness analyses with these attacks might not nec-
essarily reflect the robustness of optical flow methods in the
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Figure 1. Weather attacks with adversarial fog, snow, rain and
sparks to perturb optical flow estimation with GMA [15]. Our
weather attacks obey the 3D geometry and camera motion, which
is visible in the dynamic motion blur.

real world – where perturbations are more likely to appear
in the form of weather phenomena.

This work investigates whether naturally occurring
weather effects like snow, rain or fog can be manipulated to
serve as adversarial samples for motion estimation. How-
ever, simulating weather in this context requires special
care: First, the motion of weather elements should be con-
sistent with the 3D geometry of the scene. Snowflakes
should disappear behind objects and their falling distance
should appear larger when closer to the camera. Second,
their motion should be coherent in time. A raindrop should
fall from top to bottom over the first and second frame, and
a fog cloud between two objects should remain there – even
if the camera moved or rotated.

Taking all this into account, we propose an adversar-
ial attack framework that augments images with particle-
based weather effects that feature a high degree of realism:
We create weather particles with a view-consistent 3D mo-
tion over time, insert them into the 3D scene in a depth-
aware manner, and ensure photo-realism through visual ef-
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fects. This enables us to generate adversarially manipulated
weather that significantly deteriorates optical flow predic-
tions, while still satisfying the spatiotemporal and visual
constraints of naturalistic weather. Our proposed augmenta-
tion and attack procedure can generate a wide range of par-
ticle effects, where single particles or super-particles move
independently of the remaining scene content. Fig. 1 shows
examples of adversarial snowflakes, rain streaks, fire sparks
and fog clouds, that differ in size, speed or motion blur,
color and transparency.

Contributions. Our contributions are three-fold:

(i) We present a differentiable particle-to-scene rendering
framework that generates realistically moving particles
in the 3D scene over multiple time steps. It supports
a multitude of particle effects ranging from rain and
snow over sparks to mist and fog.

(ii) Based on this differentiable rendering framework, we
devise the first adversarial weather attacks for optical
flow. They optimize 3D spatial positions and color
properties of particles in the scene rather than 2D per-
pixel perturbations, resulting in highly realistic images
with regard to particle motion and appearance.

(iii) While being visually indistinguishable from benign
weather augmentations, our adversarial weather a-
chieves significant degradations of optical flow predic-
tions. Interestingly, this particularly holds for methods
with high robustness towards small Lp perturbations.

2. Related work

Tab. 1 provides an overview of weather attacks or spa-
tiotemporal weather augmentations, without direct links to
motion estimation and optical flow. Before we discuss these
methods in more detail, we review attacks and robustness
towards weather for motion estimation with optical flow.

Optical flow attacks and robustness to weather. Current
optical flow methods based on neural networks are suscep-
tible to adversarially modified input images, which dramat-
ically alter the attacked flow prediction. Existing adversar-
ial attacks on optical flow methods generate either pertur-
bations with small Lp norms [1, 17, 36, 37] or adversarial
patches [31]. Koren et al. [17] add a constraint to modify
semantically coherent pixels only, but none of the attacks
introduces geometrical constraints for plausible motion in
the 3D space or over time. Regarding the robustness of opti-
cal flow towards weather conditions, few methods explicitly
consider rain [18, 19], snow [34] or fog [49, 50]. However,
adversarial attacks have not yet been used to assess the ro-
bustness of optical flow methods towards weather effects.

Adversarial weather attacks. In contrast, adversarial at-
tacks that imitate weather effects have been investigated for

Method W
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Adversarial weather attacks

Sava et al. [35] �   # ✓ - -
Zhai et al. [52] �    ✓ - -
Marchisio et al. [23] � � ### ✓ - -
Gao et al. [8] � �  ## ✓ - -
Wang et al. [44] �   # ✓ - -
Kang et al. [16] ��   # ✓ - -
Machiraju et al. [21] �   # ✓ - -
Gao et al. [7] �    ✓ ✓ -

Realistic weather augmentations

Rousseau et al. [33] �  ## - ✓ -
Starik & Werman [38] �   # - ✓ -
Volk et al. [41] �    - ✓ ✓

Garg & Nayar [9] �    - ✓ ✓

Halder et al. [10] ��   # - ✓ ✓

Tremblay et al. [40] ��    - ✓ ✓

von Bernuth et al. [42] ��    - ✓ ✓

Wiesemann & Jiang [46] �    - ✓ -

Ours ���    ✓ ✓ ✓

Table 1. Generating rain �, fog � and snow � in images. The
methods may support adversarial attacks, respect the scene’s 3D
geometry or ensure temporal consistency over frames.

classification [7,8,16,23,53], object detection [8,35,52], in-
stance segmentation [8], human pose estimation [44] or au-
tonomous steering [21]. They range from rain [8,23,35,52]
over snow [8, 16, 23] to fog [7, 16, 21] and shadows [53].
As these weather attacks have only been applied to single
images rather than sequences, they do not consider tempo-
ral consistency. With exception of [7], they also neglect the
3D scene geometry. Both shortcomings prevent their appli-
cation to realistic motion estimation scenarios. Moreover,
the visual results of weather attacks are often only moder-
ately convincing [16, 23] compared to conventional, non-
differentiable rendering of weather effects [9, 40, 42]. Wea-
ther effects and attack capabilities are summarized in Tab. 1.

Realistic weather augmentations. Before applying any
vision-based method in the real world, testing its perfor-
mance under non-perfect weather conditions is crucial. As a
result, there are numerous augmentations to transform clean
images into their bad-weather counterparts, e.g. via mod-
eled distributions [11, 28], generative networks [20, 29, 32,
43, 45, 51], or classical rendering techniques [40, 42].

However, only a few augmentations respect the 3D ge-
ometry of the scene and, ideally, create time-consistent ef-
fects for realistic motion of weather across multiple frames
and camera perspectives, see Tab. 1. All such augmen-
tations use classical rendering because generative mod-
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Figure 2. Model for particle motion in the 3D space.

els [20,32,45] cannot ensure the spatiotemporal consistency
of their generated effects. Augmentations that respect both,
3D geometry and temporal consistency were proposed for
rain [9, 41], rain & fog [10, 40], or fog & snow [42]. Aug-
mentations that respect only the 3D geometry but not the
temporal consistency exist for rain [33,38] and fog [46]. To
ensure a realistic 3D motion in time, our attack explicitly
models the trajectory of weather particles, which is close
in spirit to the augmentation of Halder et al. [10], and its
extension by Tremblay et al. [40]. However, unlike all dis-
cussed rendering approaches, our augmentation is differen-
tiable and thus can readily be used for adversarial attacks.

3. Adversarial weather for motion estimation
To study the robustness of optical flow methods towards

weather effects, we design an adversarial attack frame-
work that augments image sequences with particle-based
weather. There, we augment an image sequence with
parametrized particles to simulate snowflakes, rain streaks
or fog clouds of realistic appearance and motion. Then, we
optimize the particle parameters to cause wrong flow pre-
dictions with these snowy, rainy or foggy images.

3.1. Particle-based weather augmentation

The generation of spatiotemporally consistent and visu-
ally appealing weather imposes several constraints on the
particles: Because motion estimation detects moving ob-
jects in a 3D scene, a simple 2D animation of the weather
particles in the image plane is not realistic enough. Instead,
we model their 3D motion, which also respects object depth
and camera motion. Moreover, expanding our pursuit of re-
alism to the appearance of the weather effects, the particles
are integrated with appropriate visual effects. These include
an occlusion-aware depth placement as well as out-of-focus
and motion blur. Finally, the parametrized particles need to
be rendered in a differentiable manner to allow their adver-
sarial optimization.

To create weather-augmented 2D images I1, I2, we ini-
tialize 3D particles and then render them into the images.
During the initialization, we generate a fixed set of particles

Flake initialization

Frame I1 Frame I2

+ Scaling

+ Transparency

+ Out-of-focus blur

+ Motion blur & Occlusions

+ Color additive + Color alpha blending

Figure 3. Breakdown of our realistic snow rendering.

P in the 3D scene and equip them with properties: initial 3D
positions p1, 3D motion m, 3D offsets δp1 before and δp2

after the motion, shapes, scaling, color γ and transparen-
cies θ (see Fig. 2 for the motion model). Here, p1, m, δp1

,
δp2

∈ R3 are vectors and γ, θ ∈ R scalars. For the differ-
entiable rendering of particles in both frames, we make use
of the 3D scene information and assume that a depth map of
the scene D ∈ RH×W , camera poses T1, T2 ∈ SE(3) and
a camera projection matrix P are given. Below, we describe
initialization and rendering in more detail.

Weather particle initialization. To initialize the particle
positions, we uniformly sample a fixed number of points p1
from the 3D scene that is visible in the first frame I1 or –
after adding the 3D motion m – in the second frame I2.
Every particle is assigned a 2D gray-scale particle tem-
plate B ∈ Rh×w (billboard), randomly sampled from a
template library and rotated by a random angle (Fig. 3,
row 1). Then, each particle template is scaled by its par-
ticle’s inverse depth (row 2), and the particle transparency θ
is set to a depth-dependent value (rows 3). Finally, we gen-
erate realistic out-of-focus blur by convolving the particle
template with a disk-shaped point spread function (row 4).

Weather particle rendering. We render the particles with
their associated motion blur, 3D positions, colors and trans-
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parencies in the given input frames in four steps, detailed
below: We initially add motion blur particles, then project
all particle templates onto the image plane, subsequently
handle occlusions and finally update the pixels with the col-
ored particle template.

First, if motion blur is added, each initial particle is re-
placed by K particles. These are evenly spaced along the
3D motion vector and their transparency is reduced to 1

K ;
Otherwise, the rendering proceeds as described below. In
contrast to simple 2D approximations, this true motion blur
respects 3D motion and camera motion (Fig. 3, row 5).

Second, for each particle, we compute the 2D points in
both frames from its position in 3D. This yields the center
positions pI1, pI2 ∈ R2 of the 2D particle templates in the
2D images I1, I2 ∈ RH×W×3. Using the camera projec-
tion matrix P and the relative transformation matrix Trel =
T2T

−1
1 , we project the 3D points and their motion-displaced

positions into the first and second frame, respectively:

pI1 = P
(
p1+δp1

)
, (1)

pI2 = P
(
Trel(p1+δp1

) + (m+δp2
)
)
. (2)

Because this maps the template to subpixel locations, in-
terpolating the 2D particle templates at the true pixel loca-
tions becomes necessary. Using bilinear interpolation en-
ables differentiation w.r.t. the 3D particle positions.

Third, we handle occlusions by multiplying the parti-
cle template with a visibility map. The visibility map
V ∈ Rh×w uses a scene depth map D ∈ Rh×w, cropped to
the location of B, and the particle depth d ∈ R per camera:

Vt = (1 + eβ(dt−Dt))−1 for t = 1, 2. (3)

This sigmoid function is ≈1 (full visibility) for particles
whose depth is smaller than the scene depth, and ≈0 (full
occlusion) otherwise. When the depths are similar, it creates
a smooth transition to allow differentiation. We use sharper
transitions β = 250 for pure rendering and smoother ones
β = 30 for differentiation. Overall, this yields a realistic,
occlusion-aware scene integration (Fig. 3, row 5).

Fourth and last, the particle color templates can be ap-
plied to the previously computed pixel positions. Our ren-
dering framework supports two color modes for this: addi-
tive color blending and alpha blending. Additive blending
creates a brightening effect (Fig. 3, last row left), similar to
colored light sources, by updating the pixel color as

Ic = Ic +
∑
j∈P

γj
cθ

jBj for c = R,G,B. (4)

For each particle, γc is the color per channel, θ the trans-
parency scaling and B the template, which itself is a trans-
parency map. In contrast, alpha blending creates more
“solid” particles (Fig. 3, last row right) by weighting back-
ground and particle color according to particle transparency.

We use Meshkin’s method [27] for an order-independent al-
pha blending that can process all particles in parallel:

Ic = Ic

(
1−

∑
j∈P

θjBj
)
+
∑
j∈P

γj
cθ

jBj for c = R,G,B. (5)

3.2. Adversarial weather optimization

After the particles P are initialized and rendered, we ad-
versarially optimize certain weather parameters to change
the output f̌ of optical flow networks towards a desired tar-
get flow fT . In this context, we consider the particle motion
offsets δp1

before and δp2
after the motion as well as trans-

parency δθ and color δγ offsets. Other parameters like initial
3D positions, 3D motion and 2D template are fixed. To en-
sure a valid range of color γ and transparency θ values after
the optimization, we transform these bounded variables to
unbounded ones ηγ , ηθ via an atanh-transformation [5]

ηξ = atanh(2ξ − 1), ξ = θ, γ (6)

and optimize ηγ + δγ and ηθ + δθ in this domain. Then, our
loss function measures the difference between initial and
attacked flow via the average endpoint error (AEE) [36]:

L(f̌ , fT ,P) = AEE(f̌ , fT ) +
∑
t∈1,2

αt

|P|
∑
j∈P

∥δjpt
∥22

djt
. (7)

Additionally, this loss restricts the magnitude of the motion
offset via an α-balanced MSE-like term, where |P| is the
number of particles. It allows larger offsets δp1

, δp2
for dis-

tant snowflakes, as the same 3D motion in the background
yields smaller 2D offsets than in the foreground. Hence, we
encourage similar motion offsets in the rendered 2D images
by scaling the offsets with the inverse particle depth d.

4. Experiments

In several experiments, (i) we demonstrate our augmen-
tation framework and identify weather that strongly impacts
the optical flow estimation, (ii) we attack current optical
flow methods with adversarially optimized particles to eval-
uate their sensitivity and (iii) we augment training data with
snow to improve quality and robustness towards weather.
A full list of parameters for the experiments is given in
the supplement. Our PyTorch framework is available at
https://github.com/cv-stuttgart/DistractingDownpour.

In the experiments, we augment frames from Sintel [4],
a standard optical flow dataset providing depth and cam-
era information. We calculate the adversarial robustness
AEE(f, f̌) [36], which measures how the benign optical
flow f on unchanged images differs from the optical flow
on weather-augmented images f̌ . For robust methods, the
output should only change proportional to the input. This is
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Weather FN2
FNCR

Spy
Net

RAFT
GM

A
FF

Pa
rt

ic
le

s

1000 3.94 5.28 3.55 1.39 1.16 0.83
2000 7.58 7.94 5.33 2.97 2.51 1.86
3000 11.95 10.29 6.75 5.03 4.14 3.27
4000 17.01 12.35 7.75 7.40 5.91 4.42
5000 23.42 14.62 8.67 9.81 7.91 5.53

M
ot

io
n

bl
ur 0.0 11.95 10.29 6.75 5.03 4.14 3.27

0.0375 15.60 12.95 6.44 4.04 3.22 3.17
0.075 15.01 13.35 5.78 3.90 3.04 3.22
0.1125 13.27 12.97 5.30 3.78 2.76 2.73
0.15 10.86 11.52 4.64 3.50 2.49 2.05

C
ol

or
α

-b
ld

. white 10.03 10.70 4.95 3.88 3.74 2.93
red 9.41 9.03 3.14 2.72 2.56 2.74
green 6.81 8.46 2.84 2.44 2.35 2.11
blue 6.32 8.18 2.67 2.69 2.76 1.85
color 8.20 8.14 3.22 2.91 3.17 2.39

C
ol

or
ad

di
tiv

e white 14.05 14.68 6.47 5.49 4.63 4.68
red 12.57 12.07 4.21 3.74 2.95 3.03
green 9.02 9.64 3.68 3.16 2.76 2.56
blue 7.84 10.47 3.37 3.52 3.31 2.30
color 11.17 11.50 4.36 4.11 3.75 3.18

Si
ze

small 5.48 5.52 4.41 4.58 4.41 4.47
medium 4.45 4.47 5.63 3.04 3.03 2.50
large 2.23 2.91 3.51 1.17 1.16 0.92
fog 4.72 5.25 5.87 3.59 3.66 3.24

Table 2. Robustness AEE(f, f̌) ↓ [36] of particle-based weather
augmentations for optical flow methods on Sintel train [4], worst
robustness is bold. “α-bld.” is “alpha blending”. The main aug-
mentations, highlighted in grey, are from top to bottom: snow,
rain, sparks and fog. They are visualized in Fig. 4.

formalized by the Lipschitz constant (the concept underly-
ing adversarial robustness), which allows robustness com-
parisons for input changes of similar magnitude. Note that
this robustness definition is independent of the ground truth
optical flow, which would be ambiguous for blurred, semi-
transparent particles using the classical definition of optical
flow. Following [36], we select RAFT [39] & GMA [15],
FlowNet2 (FN2) [14] and SpyNet [30] as optical flow meth-
ods with either high quality & low robustness, medium
quality and robustness or low quality & high robustness, re-
spectively. Additionally, we consider FlowFormer (FF) [13]
for its transformer architecture and its top results, and Flow-
NetCRobust (FNCR) [37] for its robustified design.

4.1. Weather augmentations

To observe how random augmentations change the pre-
dictions of optical flow methods, we first investigate the im-
pact of various particle effects on Sintel [4] data and se-
lect default configurations for snow, rain, sparks and fog.

Snow Sparks

Rain Fog

Figure 4. Visual examples for snow, rain, sparks and fog augmen-
tations on a single frame for highlighted effects from Tab. 2. Note
the realistic motion blur (birds-eye view) in column 1 row 4.

Then, we illustrate our flexible rendering on further datasets
and finally discuss how augmenting realistic datasets with
weather differs from augmenting the synthetic Sintel data.

Particle parameters for weather creation. We create
diverse weather effects through complex hyper-parameter
combinations in our rendering framework to test their effect
on flow predictions. The hyperparameters listed in Tab. 2
are the most prominent ones that were altered, i.e. the num-
ber of particles, the motion blur length, the color (with dif-
ferent blending modes) and the size. A full list of altered
parameters is provided in the supplement.

Tab. 2 summarizes the robustness of optical flow meth-
ods on particle-augmented Sintel training data without ad-
versarial optimization. Visualizations for all parameter se-
tups are in the supplement. Being most sensitive to the
number of particles, all methods change their prediction
strongest when many particles are present. The sensitivity
also increases for non-transparent effects, e.g. for motion
blur: 0.0 or particle size: small. Also, large color offsets
on multiple channels are strongly perturbing, i.e. most for
white or random colors. Additive blending perturbs more
than alpha blending, but the ranking across colors is the
same for both color-blending methods. To summarize, op-
tical flow methods change their predictions significantly in
the presence of many small, bright particles, which do not
exist in the standard training datasets [4,6,24,26]. However,
we find that accurate methods like FlowFormer, RAFT or
GMA are more robust, already hinting at an improved par-
ticle recognition that is discussed in the next subsection.

Because the most effective configurations, i.e. motion
blur: 0.0, color additive: white and size: small, all basi-
cally represent snow, we also select setups that represent
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KITTI Spring

Figure 5. Example augmentations for KITTI [26] and Spring [25]
datasets, with snow (top) and rain (bottom).

Augment. FN2
FNCR

Spy
Net

RAFT
GM

A
FF

snow 8.32 7.71 5.49 3.08 3.27 4.21
rain 3.70 4.99 3.59 1.51 1.91 2.67
sparks 4.16 4.28 3.15 1.43 1.91 2.73
fog 7.30 7.20 11.48 2.98 3.25 4.83

Table 3. Robustness AEE(f, f̌) [36] of random particle-based
weather augmentations for optical flow methods on KITTI
train [26], worst robustness is bold. The results correspond to the
highlighted weather augmentations in Tab. 2 on the Sintel dataset.

other weather effects for further experiments. Hence, we
choose snow (particles: 3000), rain (motion blur: 0.15),
sparks (color additive: red) and fog (size: fog) as repre-
sentative effects, which are highlighted gray in Tab. 2 and
illustrated in Fig. 4. Note that for snow, particles: 3000
is computationally more efficient than the most perturbing
configuration particles: 5000.

Augmenting different datasets. Even though we focus on
Sintel, our rendering approach also permits the augmenta-
tion of other datasets. Augmented samples from KITTI [26]
and Spring [25] are shown in Fig. 5. For KITTI, we use in-
terpolated depth maps and estimate camera poses from the
3D motion in rigid parts of the scene [2].

Weather augmentations on real-world data. To test how
well our experiments on synthetic Sintel data transfer to
real-world data, we evaluate the robustness values [36]
AEE(f, f̌) on weather-augmented realistic data from the
KITTI train dataset [26]. Tab. 3 summarizes the robustness
values for all optical flow methods on KITTI data with ran-
dom augmentations using snow, rain, sparks and fog. Com-
pared to the Sintel augmentations in Tab. 2, snow, rain and
sparks (which are based on additive color-rendering) behave
similarly, i.e. snow is the most effective, sparks and rain
have comparable strength.

In contrast, fog has a larger effectiveness on KITTI as
it obfuscates more objects because the dataset has fewer
foreground objects and more scene depth than Sintel. An-

Parameters FN2
FNCR

Spy
Net

RAFT
GM

A
FF

Initial 10.23 10.68 4.42 3.80 3.77 2.56

δp1 13.54 15.65 7.08 7.39 8.64 5.33
δp2 11.99 14.21 5.64 5.83 6.69 4.04
δγ 12.86 15.95 7.52 6.00 7.58 4.74
δθ 11.70 14.45 6.75 5.29 6.24 3.56

δp1,p2 14.08 15.87 7.71 8.27 9.42 5.49
δγ,θ 14.06 16.71 8.94 7.39 8.99 5.84

δp1,p2,γ,θ 14.23 16.01 7.78 8.32 9.50 5.71

Table 4. Adversarial robustness AEE(f, f̌) ↓ [36] of adversarial
particles, optimized for combinations of particle parameters δp1 ,
δp2 , δγ and δθ on Sintel-tr115. Initial measures the robustness of
randomly initialized particles. The most vulnerable setup is bold.

other potential cause for its larger effectiveness is its addi-
tive color blending in combination with the lighter colors in
KITTI scenes. The scenes are often captured in bright or
sunny conditions, where further brightening through alpha-
blending would cause less color change. However, real sit-
uations with snow or rain in bright sunshine are not very
common. Therefore, we focus our subsequent evaluation
on Sintel data due to its dense depth fields but have seen
that results on Sintel data can generally be transferred to
real-world scenarios.

4.2. Adversarial weather attacks

With our framework to generate natural weather effects,
we now evaluate the attack capabilities of this differen-
tiable weather. First, we investigate the sensitivity of optical
flow methods toward optimizing different particle parame-
ters. Second, we attack them with snow, rain, sparks and
fog from the previous section. Third and last, we compare
the effectiveness of a non-Lp snow attack to previous Lp at-
tacks on optical flow. All attacks use α1 = α2 = 1000 in
the loss, Adam with learning rate 1e-5 and, following [36],
a zero-flow target fT = 0 which yields a white flow visual-
ization.

Investigation of weather attack parameters. To under-
stand the impact of adversarial particles on optical flow, we
consider artificial weather, initialized with 3000 gray par-
ticles that fall down without motion blur. Each particle
starts with own initial values (p1, p2, γ, θ) without offsets
δp1

= δp2
= δγ = δθ = 0. Then, we adversarially optimize

the offsets per particle, i.e. the positions before the motion
δp1 , the positions after the motion δp2 , the colors δγ and
the transparencies δθ. For optimizing δγ , δθ and δγ,θ, we
set the learning rate to 1e-3 and use a subset “Sintel-tr115”
with 115 frame pairs (the first five per scene) of Sintel-train.

Tab. 4 summarizes the adversarial robustness for the dif-
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FlowNet2 FlowNetCRobust SpyNet

Orig. Orig. Orig.

Snow rand. Snow rand. Snow rand.

Snow adv. Snow adv. Snow adv.

Orig. Orig. Orig.

Rain rand. Rain rand. Rain rand.

Rain adv. Rain adv. Rain adv.

Orig. Orig. Orig.

Sparks rand. Sparks rand. Sparks rand.

Sparks adv. Sparks adv. Sparks adv.

RAFT GMA FlowFormer

Orig. Orig. Orig.

Snow rand. Snow rand. Snow rand.

Snow adv. Snow adv. Snow adv.

Orig. Orig. Orig.

Rain rand. Rain rand. Rain rand.

Rain adv. Rain adv. Rain adv.

Orig. Orig. Orig.

Sparks rand. Sparks rand. Sparks rand.

Sparks adv. Sparks adv. Sparks adv.

Figure 6. Qualitative results for weather attacks on optical flow predictions for FlowNet2 [14], FlowNetCRobust [37], SpyNet [30],
RAFT [39], GMA [15] and FlowFormer [13] (top left to bottom right). Images from the Sintel final dataset, with random initializa-
tion and after adversarial weather optimization towards zero-target (white flow). See the supplement for more visualizations.

ferent optimization parameters on all tested optical flow
methods. Considering single parameters, the particle off-
set δp1 before the motion has the strongest influence. That
motion offsets have the strongest influence on motion esti-
mation is intuitively plausible. However, our motion model
favors the first motion offset over the second, as δp1

af-
fects both frames while δp2

affects only the second one.
Jointly optimizing all parameters generally leads to the
worst degradation of optical flow estimates. Yet, focus-
ing on motion parameters δp1,p2

or hue parameters δγ,θ

alone also strongly degrades performance. Interestingly, the
tested flow methods show either a high sensitivity towards
motion, for RAFT and GMA, or a high sensitivity towards
hues, for FlowNetCRobust, SpyNet and FlowFormer. For
the latter, optimizing hues even yields the strongest degra-
dation overall. This insight is valuable for color-reduced en-
vironments, e.g. night scenes, where greater independence
of the color representation may be wanted.

Robustness against snow, rain, sparks and fog. Next, we
transition to more natural attacks with snow, rain, sparks
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Attack FN2
FNCR

Spy
Net

RAFT
GM

A
FF

snow 21.37 18.23 9.99 11.20 10.90 7.22
rain 21.95 19.85 8.37 9.53 8.22 5.82
sparks 22.76 19.54 8.25 8.72 9.39 6.41
fog 2.32 3.37 2.28 0.92 0.97 0.73

Table 5. Adversarial robustness AEE(f, f̌) ↓ [36] for adversarial
snow, rain, sparks and fog on Sintel-tr115. Worst robustness bold.

Attack FN2
FNCR

Spy
Net

RAFT
GM

A
FF

PCFA [36] 11.77 13.82 7.83 12.96 12.83 14.68
I-FGSM [37] 7.58 13.69 5.07 11.07 11.40 12.35
Snow (ours) 16.83 16.28 9.94 10.32 9.85 7.10

Table 6. Adversarial robustness AEE(f, f̌) ↓ [36] for different at-
tacks on Sintel train, the worst robustness per method is bold.

and fog. We optimize all parameters for snow, rain and
sparks, but do not optimize δp2

for fog, keeping it static
in the scene. Tab. 5 summarizes the optical flow robust-
ness against adversarial weather, again on Sintel-tr115. For
adversarial weather, the methods rank similar to pure aug-
mentation, cf . Tab. 2, but the optimization amplifies optical
flow changes. For every weather, lower-quality methods,
e.g. FlowNet2, are very vulnerable while high-quality meth-
ods, e.g. FlowFormer, are comparatively robust against any
weather. For GMA, Fig. 1 visualizes the attacked weather
and resulting flows. Remarkably, moving particles eradi-
cate the estimated motion despite their constant movement
due to falling and camera motion. When we compare ran-
domly initialized particles to their adversarial counterparts
in Fig. 6 their positions hardly differ, making the adversar-
ial sample indistinguishable from random weather to human
observers. As adversarial snow greatly affects all optical
flow methods, we select it for further analysis.

Comparison to Lp attacks. To conclude our attack evalu-
ation, we compare our adversarial snow attack to previous
attacks on optical flow and analyze the performance of op-
tical flow methods in detail. Tab. 6 compares the robustness
of optical flow methods under two Lp attacks to our non-
Lp attack with adversarial snow on the full Sintel training
set. The L2 attack PCFA [36] is the strongest adversarial
attack in the literature, while I-FGSM [37] is a weaker L∞
attack. Despite being much more constrained by its phys-
ically plausible motion, our adversarial snow can compete
with PCFA in terms of induced flow perturbation.

Surprisingly, high-quality methods like RAFT, GMA or
FlowFormer that suffer most from Lp attacks [36] offer the
best robustness towards adversarial snow. Instead, lower-

quality methods like FlowNet2 and SpyNet that are most
robust towards Lp attacks alter their predictions dispropor-
tionately to the added snow particles – or any other particle-
based weather (cf . Tab. 5). We ascribe the better weather
robustness to the more detailed flow estimations of high-
quality methods, which detect the localized motion of sin-
gle particles (cf . Fig. 6, snow and sparks on RAFT and
FlowFormer, where circular particles are visible). The less
accurate methods FlowNet2, FlowNetCRobust and SpyNet
instead propagate the detected particle motion over larger
areas, rather than attributing it to small moving objects (cf .
Fig. 6, rows 2/3, where flow predictions have few details).
Notably, the robustness of FlowNetCRobust against patch
attacks as reported in [37] does not transfer, making it one
of the most vulnerable methods irrespective of the attack.

4.3. Training with weather

As all optical flow methods change their predictions sig-
nificantly in the presence of weather, we end our experi-
ments by presenting a robustifying training strategy. Here,
we choose RAFT [39], which is the baseline architecture for
GMA and FlowFormer. We retrain RAFT from the author-
provided C+T checkpoint according to their training proto-
col [39] but augment 0%, 50% or 100% of the Sintel final
training data with random snow. We evaluate the quality,
and the robustness towards random augmentations as well
as optimized weather attacks, cf . Tab. 2 and Tab. 5.

Tab. 7 summarizes the results. Compared to standard
training, augmenting any percentage of Sintel-final frames
with snow clearly improves the robustness. Furthermore,
augmenting half of Sintel clean improves the quality on all
datasets and shows a better generalization. It is remarkable
that training with random snow has such a positive effect on
robustness and quality [39], because training with Lp pertur-
bations does not generally improve the robustness towards
adversarial perturbations. For example, FlowFormer [13]
augments its training with random noise, but is highly vul-
nerable against Lp attacks, cf . Tab. 6. Therefore, adversar-
ial training [22] is commonly used to improve the robust-
ness against Lp attacks. However, adversarial training (i)
significantly increases the training time because adversar-
ial samples are continuously included, leading to a slowly-
converging training and (ii) often lowers the quality of non-
attacked samples. Both drawbacks are not observed for
training with snow augmentations. This makes it particu-
larly noteworthy that a simple augmentation with 50% non-
Lp snow improves robustness, quality and generalization at
the same time. It also clearly shows that simulated weather
has merits for training methods that shall be exploited in the
real world, as we find that augmenting 50% of the synthetic
Sintel data with snow during training improves the accuracy
on real-world sequences from the KITTI dataset.
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Sintel EPE ↓ (te.) KITTI ↓ (tr.) Augmentation robustness ↓ Attack robustness ↓

Snow clean final F1-all snow rain sparks fog snow rain sparks fog

0% 1.642 3.167 5.65 4.19 3.60 3.64 3.54 9.93 8.02 8.47 0.87
50% 1.589 3.155 5.54 0.91 1.66 1.29 3.52 3.76 5.96 5.68 0.93

100% 1.551 3.384 5.69 0.83 1.37 1.32 3.57 3.48 5.61 5.49 1.04

Table 7. Training RAFT [39] with 0, 50 or 100% snowy Sintel-final frames during the Sintel/KITTI (S/K) training phase [39] The quality
is measured on Sintel test and KITTI train, robustness values for weather augmentations on Sintel test and weather attacks on Sintel-tr115.

5. Limitations

Although we focus on realism, our attack does not aim
at threatening optical flow methods in the real world, where
manipulating weather is clearly impossible. While most op-
tical flow attacks [1, 17, 36, 37] are not designed be directly
applicable in the real world, our adversarial weather as-
sesses methods under worst-case weather conditions, which
is a more realistic attack scenario that even allows sig-
nificant alterations without being noticeably adversarial.
Furthermore, optimizing snow on Sintel-test may take sev-
eral days on an Nvidia A100 GPU. However these higher
computational costs are tolerable in such an offline bench-
marking setting.

6. Conclusion

In this paper, we developed a novel framework for adver-
sarial attacks on motion estimation with realistic weather.
We proposed a differentiable particle renderer that can be
used to generate adversarial weather with a strong impact
on optical flow methods. With its realistic appearance, our
adversarial weather is hard to notice; yet it lets optical flow
networks predict zero-flow although the particles undergo
both individual and camera motion. Surprisingly, accurate
methods that are very vulnerable to Lp attacks appear to
be more robust towards adversarially optimized weather, as
they detect the motion of single particles rather than prop-
agating it into the wider image. Finally, we find that aug-
menting a network’s training with unoptimized weather not
only improves the robustness towards weather augmenta-
tions and attacks but also increases generalization across
datasets at a much lower cost than adversarial training.

Also, our weather attacks could easily be extended to
problems that also require 3D-awareness or temporal mo-
tion consistency. Such attacks would target domains like
monocular depth estimation [12, 48], stereo reconstruc-
tion [3, 47] or scene flow computation.
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