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Universidad de Granada, Granada, Spain

{arne, pablomorales, rms}@decsai.ugr.es

Abstract

Medical image segmentation is a challenging task, par-
ticularly due to inter- and intra-observer variability, even
between medical experts. In this paper, we propose a
novel model, called Probabilistic Inter-Observer and iNtra-
Observer variation NetwOrk (Pionono). It captures the la-
beling behavior of each rater with a multidimensional prob-
ability distribution and integrates this information with the
feature maps of the image to produce probabilistic segmen-
tation predictions. The model is optimized by variational
inference and can be trained end-to-end. It outperforms
state-of-the-art models such as STAPLE, Probabilistic U-
Net, and models based on confusion matrices. Additionally,
Pionono predicts multiple coherent segmentation maps that
mimic the rater’s expert opinion, which provides additional
valuable information for the diagnostic process. Experi-
ments on real-world cancer segmentation datasets demon-
strate the high accuracy and efficiency of Pionono, making
it a powerful tool for medical image analysis.

1. Introduction

Artificial Intelligence (AI) algorithms have shown re-
markable progress in image analysis, holding great promise
for faster and more accurate diagnostic procedures [13, 27,
26, 3]. Nevertheless, in medical practice, there exists a
high degree of variability among the opinions of different
medical experts, even when the same expert assesses the
same data at different times. This inter- and intra-observer
variability has been reported across various tasks, includ-
ing MRI-based segmentation of HCC lesions [7], lung can-
cer segmentation in CT scans [14], and multiple fields in
pathology [21, 2, 5, 22]. It leads to uncertainties when ap-
plying AI models because in contrast to other classification
tasks, there is not a single ground truth.

Especially in the medical domain, the careful model-
ing of uncertainties in its different forms has a high prior-
ity to minimize the risk of relying on incorrect predictions
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Figure 1. The proposed Pionono model. The labeling behavior
of each rater r is represented by a multivariate Gaussian distri-
bution q(z|r). The drawn samples z̃j are concatenated with the
extracted features v of fω and then fed into the segmentation head
fθ . The output simulates the inter- and intra-observer variability
of annotations and is optimized using the real annotations sr of
each rater. The model is trained end-to-end with a combination
of log-likelihood loss (LL) and Kulback Leibler (KL) divergence
between posterior and prior, combined in the overall loss LELBO.

[17, 26, 15, 13, 10]. In recent years, probabilistic methods,
such as Bayesian Neural Networks [8] and sparse Gaussian
processes [10, 33] have gained more and more attention, be-
cause they are able to account for uncertainties in a sound
manner. They showed promising results when modeling un-
certainty in the network weights [8], data ambiguities[15] or
attention weights [26]. Although inter- and intra-observer
variability is often mentioned as a key challenge when ap-
plying AI to medical data [21, 16, 28, 18], to the best of our
knowledge there is no method that explicitly models these
two types of uncertainty for medical image segmentation.

To address this gap, we propose a novel approach called
the Probabilistic Inter-Observer and iNtra-Observer varia-
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tion NetwOrk (Pionono), depicted in Figure 1. This model
accurately accounts for inter- and intra-observer variability
using probabilistic deep learning. Specifically, each rater’s
labeling behavior is represented as a probability distribution
in latent space, and optimized using the log Evidence Lower
BOund (ELBO) in an end-to-end training process. The vari-
ance of each rater’s distribution models the intra-observer
variability, while the differences between the distributions
models the inter-observer variability. When two raters ex-
hibit similar labeling behavior, their probability distribu-
tions overlap substantially, while different labeling behavior
results in a small overlap of distributions.

The approach is validated in extensive experiments of
prostate and breast cancer segmentation, using ’gold’ labels.
They reflect the expert agreement to show that our proba-
bilistic modeling improves the predictive performance and
estimates the predictive uncertainty. Furthermore, we also
test its capability to model each rater’s labeling behavior.
As shown in the experiments, it can simulate expert opin-
ions for a given test image in a consistent manner, provid-
ing a realistic estimation of “what expert X would say in this
case”. Our contributions can be summarized as follows:

• We propose Pionono, a probabilistic deep learning
model that uses probability distributions in latent space
to represent inter- and intra-observer variability. It can
be trained with labels of multiple raters.

• The model is able to provide accurate segmentation
predictions (compared to the expert agreement and dif-
ferent expert opinions), outperforming existing state-
of-the-art algorithms such as STAPLE, Probabilistic
U-Net and models based on global or local confusion
matrices.

• Pionono provides uncertainty estimations that indicate
areas where the predictions are not conclusive.

• The proposed model can provide several coherent seg-
mentation hypotheses, simulating different medical
experts.

2. Related Work
In this section, we review existing methods of probabilis-

tic deep learning and crowdsourcing for medical images and
highlight the differences to our model.

Probabilistic Deep Learning. As already indicated,
probabilistic approaches such as Bayesian neural networks
[8, 1, 15, 17] and sparse Gaussian processes [10, 33, 26]
have shown promising results in a multitude of tasks in the
medical image domain, modeling different sources of un-
certainties. Often, a general predictive uncertainty is ad-
dressed using probabilistic weight parameters [1]. This un-
certainty can be bisected into model and data uncertainty
which originate from model parameters or data ambigui-
ties, respectively [15]. Other approaches have modeled the
uncertainty of missing instance labels in multiple instance

(i) Prob. (ii) Coh. (iii) Exp. (iv) Scale
Method Uncert. Segm. Opinion

STAPLE
Prob U-Net
CM global

CM pixel
Pionono

Table 1. For AI segmentation models to achieve the best possi-
ble diagnostic support, they should address four key issues: (i)
provide a probabilistic uncertainty estimation, not only a single
prediction for a test image; (ii) provide multiple coherent segmen-
tation hypotheses; (iii) simulate different expert opinions for better
explainability and decision support; (iv) scale to a higher amount
of raters in the case that more data from different hospitals can be
integrated.

learning [20, 26] or uncertainty of out of distribution sam-
ples [17]. The uncertainty in annotations has previously
been addressed by the Probabilistic U-Net [13] (Prob U-
Net), which encodes the labeling behavior in a latent ran-
dom variable. The model is trained as a variational autoen-
coder with an encoder network predicting the latent distri-
bution. This approach models a general variability in an-
notations but lacks the explicit modeling of inter- and intra-
observer variability. Therefore, it is not able to incorporate
the rater information during training and cannot simulate
expert opinions.

Crowdsourcing. While existing crowdsourcing meth-
ods aim to capture inter-observer variability in the training
labels, this variability is often not reflected in the test pre-
dictions by probabilistic outputs [13]. The intra-observer
variability is often not modeled at all, although it is often
mentioned as a challenge in literature [21, 16, 28, 2, 7].

One way to handle multiple annotations is label fusion.
With this method, the annotations of different raters are
merged to a single set of labels. The “Simultaneous Truth
and Performance Level Estimation” (STAPLE) mechanism
performs label fusion with a probabilistic estimate of the
true labels by weighting each segmentation depending upon
the estimated performance level of each rater [32]. A su-
pervised network can then be trained on these fused labels.
More dedicated approaches incorporate different rater la-
bels using confusion matrices (CM), for example for clas-
sification of image patches with Gaussian processes [18]
or image segmentation with global confusion matrices [31]
(CM global). In this direction, also pixel-wise confusion
matrices were explored for semantic segmentation that are
estimated by a dedicated deep neural network [34] (CM
pixel). These models have shown promising results, but
come with a conceptual problem: They assume that the
pixels are statistically independent of each other, although
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neighboring pixels have a high correlation. Therefore, the
output of different segmentation hypotheses is not coherent.
Furthermore, the predictions of the mentioned approaches
[31, 34] are not modeled by a predictive distribution, but
by a deterministic point estimate. While the global con-
fusion matrix approach [31] has a limited expressiveness,
the pixel-wise calculation [34] is hard to scale for multiple
raters, because for each rater, a complete deep neural net-
work must be trained and stored.

Pionono unites the advantages of probabilistic and
crowdsourcing methods. We summarize a comparison of
different characteristics of Pionono and related methods for
image segmentation in Table 1.

3. Methods
In this section, we outline the background of the pro-

posed method. It is implemented in the Pytorch [23] frame-
work and is publicly available at https://github.
com/arneschmidt/pionono_segmentation.

3.1. Problem Definition

Let X = {xi ∈ RH×W×3}i=1,..,N be a set of images,
Sr = {sri ∈ RH×W×C}i=1,..,N the corresponding segmen-
tation maps with image dimensions H×W and C the num-
ber of classes. The segmentation maps are provided by dif-
ferent raters r ∈ R = {1, 2, ..,M}. Some or all images can
be segmented by multiple raters, such that some segmenta-
tion maps sri can be empty. The proposed model does not
require any overlap of the sets of annotated images.

If there are images available with segmentations as-
signed by expert agreements (so-called gold labels), the
model should be able to predict a gold distribution over
outputs p(Sgold) with the mean estimating the segmentation
and the variance estimating the uncertainty. In any case, the
model should model different segmentation hypotheses for
the raters {p(Sr); r = 1, 2, ..,M} for diagnostic decision
support.

3.2. Proposed Model

First, we introduce the common segmentation backbone
fω with trainable weights ω. We use the well-known U-
Net architecture [25] with a Resnet34 feature extractor [9].
This model takes an image xi and extracts a feature map
vi ∈ RH×W×L with H × W being the image resolution
and L the dimensions of the feature vectors (L = 16 in the
case of U-Net). We denote the feature extraction as

vi = fω(xi). (1)

Based on these feature vectors, we could perform segmen-
tation with a segmentation head fθ:

si = fθ(vi). (2)

Now we extend this model to incorporate the inter- and
intra-observer variation. The segmentation maps are influ-
enced by the rater’s experience, assessment, and personal
choices. To encode the labeling behavior, we use a random
vector z ∈ RD. In practice, D = 8 are enough dimen-
sions to reflect different labeling behaviors. We define a
prior distribution p(z) = N (z|0, σprior ∗ I) which encodes a
generic labeling behavior without further information about
the rater. It is possible to encode prior knowledge in this
distribution, but we present a general model and leave this
for future work. We set σ2

prior = 2.0, because we observe
a realistic variability in the output for this value. In section
4.5 we prove that the model is robust for different settings
of hyperparameters D and σ2

prior.
Now, the posterior distribution of p(z|r) that depends on

the rater r should be found. We approximate it with one
multivariate Gaussian distribution for each rater:

q(z|r) = N (z|µr,Σr) ∀r = 1, ..,M (3)

where {µr,Σr}r=1,..,M are trainable parameters. The
variance of each distribution q(z|r) models the intra −
observer variability. The differences between the distribu-
tions for different raters model the inter − observer vari-
ability. To obtain the predictive gold distribution we add
another ’rater’ r = M + 1 represented by an additional
gold distribution q which is trained with the available gold
segmentations. During prediction, this distribution provides
the estimated agreement between experts.

The segmentation head fθ, parametrized by weights θ,
must be adapted to take the random vector z into account.
The approximated predictive distribution is then obtained
by:

q(si|xi, r, ω, θ) =

∫
fθ(vi, z)q(z|r)dz. (4)

The closed-form calculation is not feasible and therefore we
approximate it by Monte Carlo (MC) sampling:

s̃i,j |xi, r = fθ(vi, z̃j); z̃j ∼ q(z|r) (5)

with j = 1, ...,K indexing the MC samples. In practice,
we concatenate the feature maps vi and the latent vector z̃j ,
which is broadcasted to the image size, leading to a feature
map with dimensions H×W × (L+D). The segmentation
head consists of three layers with 1x1 convolutions and 16
filters in the first two layers and C filters in the last layer.

3.3. Training

First, all posterior distributions q(z|r) are initialized ran-
domly. Each initial value of the mean vectors µr is inde-
pendently drawn from a distribution N (0, σ2

post). We set
σ2

post = 8, because this initializes the mean vectors suffi-
ciently different for a good optimization. In section 4.5 we
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show, that the model is robust to other settings of this value.
The covariance matrices Σr are initialized with σprior ∗ I .

To optimize the parameters {µr,Σr}r=1,..,M of the
probability distribution q(z|r), we maximize the ELBO:

LELBO = Eqlog p(Sr|X, r, ω, θ)− λKL(q(Z|r)|p(Z)).
(6)

with distribution q as defined in eq. 4. The first term de-
fines a log-likelihood (LL) loss, making the model fit to the
annotations of each rater. The second term defines the KL-
divergence between the posterior distribution q(Z|r) and
the prior p(Z) and works as a regularization of the latent
distributions. The factor λ weights the regularization term
and is set to 0.0005 to balance the magnitudes of the log-
likelihood and the KL (we will check the robustness of this
hyperparameter in Section 4.5). While the KL term can be
optimized analytically, the log likelihood term must be ap-
proximated. We use the reparametrization trick [12] to split
each probabilistic sample z̃r into its probabilistic compo-
nent and deterministic parameters µr and Σr. These pa-
rameters can be optimized by backpropagation of gradients,
together with the CNN parameters ω and θ. For numerical
stability, we train the covariance matrix parameters by using
the lower triangular matrix L of the Cholesky decomposi-
tion Σr = LrLr⊤ . The log-likelihood can be optimized
with standard methods like the categorical cross-entropy.
We found that the general dice loss [30] leads to better re-
sults, so all final results are reported with this loss.

We use the Adam optimizer [11] for 100 epochs with a
learning rate of 0.0001. The model parameters µr,Σr are
optimized with a higher learning rate of ν = 0.02, because
else the gradient was not strong enough to properly learn
the rater distributions. We tested ν = 0.01, 0.02, 0.04 and
include the results in section 4.5. Both learning rates are
decreased after 40 epochs by dividing them by 1.1 in each
epoch.

3.4. Predicting

For a test image x∗, the predictive gold distribution can
again be obtained by drawing Monte-Carlo samples

s̃∗j |x∗, r = fθ(v
∗, z̃j); z̃j ∼ q(z|r = M + 1) (7)

with j = 1, ..,K indexing the MC samples and q(z|r =
M + 1) representing the gold distribution as described in
section 3.2. The mean of these samples provides the seg-
mentation hypothesis that approximates the expert agree-
ments. The variance of the samples indicates uncertainties
in the prediction.

Furthermore, the model is able to simulate intra-
observer variations of rater r′ by drawing multiple samples
of the distribution z̃′j ∼ q(z|r = r′) for the final predic-
tion. The inter-observer variations between rater r′ and r′′

can be simulated by using samples z̃′j ∼ q(z|r = r′) and

z̃′′k ∼ q(z|r = r′′) and finally taking the mean of both out-
put distributions.

The model can therefore simulate expert opinions for
a given test image. Other AI methods typically aggregate
the expertise provided by all annotators to make predictions
(e.g., using STAPLE, Prob U-Net). However, in such ap-
proaches, the knowledge of highly specialized experts can
be diluted or lost among the less experienced annotators’
knowledge. In our framework, we provide consistent pre-
dictions for each individual expert, thereby preserving their
unique expertise and contributions.

4. Experiments
In several experiments we demonstrate that the uncer-

tainty estimation of the model indicates areas of false pre-
dictions (4.2), the model is able to capture the inter and
intra-observer variations (4.3) and outperforms other related
methods (4.4). Additionally, we analyze the robustness to
hyperparameters (4.5), required resources (4.6), and limita-
tions (4.7).

4.1. Datasets

For empirical validation, three public histopathological
datasets were used. The first dataset, “Gleason 2019” [22]
was published as a MICCAI grand challenge for pathology
and includes 333 Tissue Micro Arrays (TMA) of prostate
cancer, labeled by 6 different pathologists. The TMAs were
scanned with a magnification of 40x and have a size of ap-
proximately 4000 × 4000 pixels. Of the 333 images, 244
are publicly available with labels (the test annotations of
the challenge are not available). Each pathologist annotated
between 61 and 241 TMAs with segmentation masks and
the gold labels were obtained using the STAPLE algorithm
[32], following the original work of the dataset [22]. We
resize all images to 1024 × 1024 pixels and create 4 cross-
validation splits.

The second dataset, which we will refer to as “Arvaniti
TMA” was published in 2018 [4] and includes a total of 886
TMAs of prostate cancer of which 245 images were anno-
tated by two pathologists (while the other images only have
annotations of one pathologist and are therefore discarded
in our study). The TMAs were scanned with a magnifica-
tion of 40x but the scanned area is smaller than for the Glea-
son19 dataset. The images have a resolution of 3100×3100
pixels and we resize them to 512 × 512 such that the mag-
nification matches the resized images of the Gleason 2019
dataset. Again, we split the dataset into 4 cross-validation
splits for the experimental setup.

For the classification of prostate cancer, the tissue is seg-
mented in the Gleason Grading (GG) scheme. The classes
are ’Non-cancerous’ (NC), ’Gleason 3’ (G3), ’Gleason 4’
(G4), and ’Gleason 5’ (G5) depending on the architectural
growth patterns of the tumor [28, 29]. To visualize the
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(a) Image (b) GT Gold (c) Pred. Gold (d) Uncert.

(e) Image (f) GT Gold (g) Pred. Gold (h) Uncert.

Figure 2. Gold prediction and uncertainty of the Pionono model.
The first row shows a confident prediction as the uncertainty in 2d
is low (white) for almost all the area. Indeed, the segmentation
prediction 2c is very accurate, see the ground truth (GT) 2b. The
second row shows an example of an uncertain prediction. Some
parts of the area classified as G3 (yellow) in 2g are labeled as G4
in the ground truth 2f. These areas are estimated with a high uncer-
tainty (black) in 2h, warning that these predictions are unreliable.

segmentations we use the colors: green for NC, yellow
for G3, orange for G4, and red for G5. For the evalua-
tion of algorithms for prostate cancer classification, previ-
ous works used the Cohen’s kappa coefficient [22, 4, 28]
which measures the agreement of two raters or a rater
and an AI model. To compare to previously reported re-
sults for the two datasets, we use the unweighted Cohen’s
kappa κ for the Gleason 2019 dataset [22] and the quadratic
weighted Cohen’s kappa κ for the Arvaniti TMA dataset
[4]. The main difference is that the quadratic kappa takes
the class order into account and weighs the errors based on
the quadratic distance of the predicted and the real class.

The third dataset contains 151 WSIs for breast can-
cer segmentation that were sliced into 11,836 patches of
512x512 pixels annotated by 25 raters [3, 19]. We will
refer to this dataset as “bc segmentation”. The tissue
was segmented into “tumor”, “inflammation”, “necrosis”,
“stroma”, and “other”. Here, the gold labels were obtained
by an actual discussion of experts. We use the predefined
train/validation/test splits [19].

For all datasets we use image augmentation with the al-
bumentations library [6] by applying random flip, rotation,
shear, zoom, blur, and shifts in brightness, contrast, hue, and
saturation. This leads to a broad range of realistic transfor-
mations of the image to avoid overfitting.

4.2. Uncertainty estimation

The proposed model provides probabilistic predictions
that allow an accurate assessment of the predictive uncer-
tainty. Fig. 2 shows the model predictions and uncertainties
obtained with the gold distribution as described in section
3.2. For the first image (2a), the prediction of the model
(2c) is accurate and matches the real gold annotation (2b)
very well. The uncertainty (2d) for this predictions is low
(white), which means that there is a low risk of a wrong

prediction. Therefore, the model correctly indicates that
this prediction is reliable. For the second image 2e, some
areas that are predicted as G3 (yellow) in (2g) are actually
G4 in the ground truth gold prediction (2f). The model’s
uncertainty estimation indicates that this prediction is not
reliable: the misclassified areas are marked with a high un-
certainty (dark) in the image (2h). Therefore, the proba-
bilistic output adds valuable information to the diagnostic
process. It estimates if a prediction is reliable - or unreli-
able and should be double-checked.

4.3. Inter- and Intra-observer Variation

The Pionono model is able to capture the inter- and intra-
observer variability. This accurate probabilistic modeling of
the annotations does not only improve the predictive results
(see section 4.4), but also allows to simulate specific experts
at test time. In this section, we empirically show that the
model learns the different label behaviors of the raters and
is able to reproduce them.

In Fig. 3a we plot the inter-observer variations between
the raters. The figure shows that there is indeed a high vari-
ability among the raters, with a Cohen’s kappa ranging from
0.36 to 0.72. The simulated test predictions by Pionono
show a higher agreement with each rater than the average
agreement of the other raters, except for rater 2. For two
raters (1 and 5), the simulated predictions of Pionono are
even more than 15 percentage points higher than the av-
erage rater agreement. We also measured the IoU metric,
which was 0.574, 0.540, 0.619, 0.649, 0.692, 0.507, for the
6 raters respectively, compared to a mean inter-pathologist
IoU of 0.361. The results confirm that most raters are mod-
eled with high accuracy.

Fig. 3b shows the posterior distributions q(z|r) of
the proposed model, encoding the labeling behavior of
each rater. The following observations confirm, that these
learned distributions approximate well the real-world label-
ing behavior of the raters: (i) The four raters 3, 4, 5 and 6
show a high overlap of the distributions and corresponding
to a high labeling agreement shown in Fig. 3a. (ii) The gold
distribution (simulating raters agreement) overlaps signifi-
cantly with the distribution of these four raters. (iii) The dis-
tribution of rater 2 is far away from all other distributions.
This rater shows a different labeling behavior due to fre-
quent under-segmentation of images, assigning the ’back-
ground’ class to areas that contain tissue. (iv) Raters 1 and
6 often deviate from the other raters, especially for the dif-
ferentiation of classes G3 and G4. Their distribution ac-
cordingly has a smaller overlap with the gold distribution
and the other raters. Fig. 4 shows some visual image exam-
ples of Pionono test predictions, simulating each rater r by
drawing samples from the corresponding distribution q(z|r)
and then taking the mean of the output samples. The exam-
ples confirm that the rater differences are modeled well.
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(a) Rater simulation statistic (b) Latent distributions

Figure 3. Analyzing the labeling behavior. In Fig. (a) the agree-
ment of each rater with all other raters is depicted, measured by
the unweighted Cohen’s Kappa of the true labels [22]. The mean
agreement of each rater with all other raters is represented by a
black dot and the agreement with Piononos test predictions, sim-
ulating the corresponding rater, by a star. This confirms that the
model accurately models each rater, reaching even a higher agree-
ment than the other rater’s average, except for rater 2. Fig. (b)
shows the first two dimensions of the posterior distributions q(z|r)
with mean and covariance after training. The distributions of raters
3, 4, 5 and 6 overlap significantly with the gold distribution and
with each other, indicating a similar labeling behavior. Indeed,
these raters show the highest labeling agreement in Fig. (a).

Next, we analyze the intra-observer variations. As the
dataset does not contain multiple annotations of the same
rater for the same image, the assessment of this quality is
more difficult. Still, certain intra-observer variability can be
assessed by observing the general labeling behavior of one
annotator. For example, rater 6 tends to over-assign class
G5 (red), and rater 2 tends to not segment all image parts
that contain tissue. Interestingly, these intra-observer vari-
ations are present in the model predictions when multiple
samples are drawn from their corresponding distribution.
Fig. 5 shows visual examples of the simulated variations
of raters 2 and 6.

4.4. Model Comparison

The proposed model is compared to previously reported
results and several state-of-the-art approaches (see section
2) for medical image segmentation with labels from multi-
ple raters. For fair comparison, we use the same backbone
architecture1, epochs, learning rate, and optimizer for all
experiments. We have tuned the model-specific hyperpa-
rameters to obtain the best possible results for each method.

First, we perform experiments with the Gleason 2019
dataset with a 4-fold crossvalidation. For comparison with
previous works, we report the unweighted Cohen’s kappa
metric comparing gold predictions with gold ground truth.
Additionally, we report the accuracy. As the results in Table
2 show, the proposed Pionono model outperforms the previ-

1Only the model CM pixel uses ResNet18 to fit on the GPU.

(a) Image (b) Image

(c) GT r = 1 (d) PR r = 1 (e) GT r = 1 (f) PRr = 1

(g) GT r = 2 (h) PRr = 2 (i) GT r = 2 (j) PR r = 2

(k) GT r = 3 (l) PR r = 3 (m) GTr = 3 (n) PR r = 3

(o) GT r = 4 (p) PR r = 4 (q) GT r = 4 (r) PR r = 4

(s) GT r = 5 (t) PR r = 5 (u) GT r = 5 (v) PR r = 5

(w) GT r = 6 (x) PR r = 6 (y) GT r = 6 (z) PR r = 6

Figure 4. Inter-observer variations estimated by Pionono. For two
test images we depict the ground truth (GT) segmentations of all
raters and the predicted segmentations (PR), simulating each rater.
The proposed model is able to simulate certain labeling behavior
like the tendency of assigning class G5 (red) for raters 2 and 6 (see
g and w) where other raters assigned G4 (orange). Furthermore,
the model captures the under-segmentation by rater 2 (see i).

ously reported results [22, 24], including the winner of the
Gleason 2019 challenge [24], by a large margin of over 20
percentage points. This accounts for the exact modeling of
the raters by Pionono, but also for the different choices of
backbone architecture and other training details. Compared
to other state-of-the-art methods with the same architecture
and training details, Pionono still shows a considerably bet-
ter performance.

Next, we compare the generalization capabilities of the
models by using the Arvaniti TMA dataset as an external
test set, as reported in Table 3. This means, that the models
are trained with all images from Gleason 2019 and tested
with all images from Arvaniti TMA. As the Arvaniti TMA
dataset does not contain gold labels, the model’s gold pre-
dictions are compared to both raters independently, as previ-
ously done by Arvaniti et al. [4]. We observe that the model
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(a) Image (b) PR r = 6 (c) Image (d) PR r = 2

(e) GT r = 6 (f) PR r = 6 (g) GT r = 2 (h) PR r = 2

(i) PR r = 6 (j) PR r = 2

(k) PR r = 6 (l) PR r = 2

(m) PR r = 6 (n) PR r = 2

Figure 5. Intra-observer variations estimated by the Pionono
model. For two example images we depict the true annotation
(GT) of two different raters (r = 2 and r = 6). On the right
sides we show different coherent segmentation predictions (PR)
for each rater estimated by our model. The differences in each
column reflect possible intra-observer variations. The first exam-
ple (a) shows that rater 6 might show some variations in the as-
signed classes. While the segmentation prediction (b) is composed
by classes G3 (yellow) and G4 (orange), the segmentation sample
(f) only consists of G5 (red). Indeed, this rater often assigns class
G5 (red) in areas where other raters assign G4 (see Fig. 4) such
that this is a plausible hypothesis. In the second example (c) we
see variations due to the under-segmentation of rater 2 in some im-
ages. Our model captures this behavior and provides hypothesis of
more (d) or less (j) segmentation of class G3 (yellow).

generalizes better than all other methods, achieving a higher
agreement in terms of Cohen’s quadratic kappa with both
raters. In terms of accuracy, only ’CM global’ outperforms
Pionono by a small margin.

In the third experiment, we use the Arvaniti TMA dataset
for training and testing with the two rater annotations.
Again, the proposed model is able to outperform previously
reported results as well as other state-of-the-art methods in
terms of quadratic Cohen’s kappa. In terms of accuracy,
only the “Prob U-Net” model obtains a better result for rater
1, while Pionono reaches the best accuracy for rater 2.

To validate the model on a different kind of data, we
performed the fourth experiment on the “bc segmentation”
dataset [3]. The results are reported in Table 5 and confirm
the strong performance of the proposed Pionono model.

The results support our hypothesis that explicitly mod-
eling the inter- and intra-observer variations improves the

Method Unweighted κ Accuracy

Nir et al. [22] 0.51 N.A.
Qiu et al. [24] 0.524 N.A.

STAPLE 0.75± 0.006 0.834± 0.005
Prob U-Net 0.741± 0.002 0.83± 0.001
CM global 0.721± 0.018 0.814± 0.012

CM pixel 0.692± 0.019 0.791± 0.012
Pionono 0.758± 0.011 0.84± 0.007

Table 2. Cohens Kappa Comparison for the 4-fold crossvalidation
experiment of the Gleason 2019 dataset, reported by mean and
standard error.

Rater 1 Method Quadratic κ Accuracy

STAPLE 0.629± 0.002 0.718± 0.001
Prob U-Net 0.629± 0.005 0.73± 0.003
CM global 0.624± 0.003 0.728± 0.002

CM pixel 0.618± 0.007 0.72± 0.004
Pionono 0.641± 0.006 0.736± 0.004

Rater 2 Method Quadratic κ Accuracy

STAPLE 0.563± 0.002 0.621± 0.002
Prob U-Net 0.56± 0.003 0.626± 0.006
CM global 0.557± 0.003 0.638± 0.006

CM pixel 0.551± 0.006 0.626± 0.008
Pionono 0.569± 0.005 0.633± 0.005

Table 3. Cohens Kappa Comparison with the two raters of the Ar-
vaniti TMA dataset trained on the Gleason 2019 dataset, reported
by mean and standard error.

Rater 1 Method Quadratic κ Accuracy

Arvaniti et al. [4] 0.55 N.A.
Silva-R. et al. [28] 0.536 N.A.

supervised 0.658± 0.025 0.734± 0.008
Prob U-Net 0.697± 0.008 0.762± 0.004
CM global 0.677± 0.028 0.745± 0.011

CM pixel 0.647± 0.016 0.731± 0.012
Pionono 0.716± 0.011 0.751± 0.02

Rater 2 Method Quadratic κ Accuracy

Arvaniti 0.49 N.A.

supervised 0.521± 0.014 0.678± 0.014
Prob U-Net 0.534± 0.002 0.68± 0.005
CM global 0.533± 0.022 0.676± 0.011

CM pixel 0.508± 0.013 0.663± 0.008
Pionono 0.548± 0.008 0.697± 0.012

Table 4. Cohens Kappa Comparison with the two raters of the Ar-
vaniti TMA dataset trained and validated by 4-fold crossvalidation
of the Arvaniti data, reported by mean and standard error.

model’s performance. Pionono takes the different labeling
behavior into account during training which leads to accu-
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Method Unweighted κ Accuracy

STAPLE 0.647± 0.003 0.755± 0.002
Prob U-Net 0.685± 0.023 0.734± 0.004
CM global 0.654± 0.005 0.761± 0.004

CM pixel 0.689± 0.010 0.784± 0.007
Pionono 0.711± 0.002 0.799± 0.001

Table 5. Results for the breast cancer segmentation of WSIs,
reported as mean and standard error of 4 runs.

rate predictions.

4.5. Robustness to Hyperparameter Settings

To measure the sensitivity of the model regarding dif-
ferent hyperparameters, we performed studies on the 4-fold
cross-validation experiment of the Gleason 19 dataset. Ta-
ble 6 shows that the model is robust to variations of all an-
alyzed hyperparameters. We observe minor performance
drops for different values of the regularization factor λ
and the initialization variance σ2

post. In both cases, wrong
choices of the hyperparameters can hinder the correct opti-
mization of the latent distributions. Furthermore, we tested
different backbone architectures, indicating a limited per-
formance with a VGG16 backbone. Overall the perfor-
mance drops are minor and for all other settings, the model
shows highly accurate results of κ > 0.75.

4.6. Required Resources

For the Gleason 2019 dataset with images of 1024 ×
1024, the model can be trained with a batch size of 3 on
a single NVIDIA GeForce RTX 3090 with 24Gb memory.
The training takes less than 1.5h in total and test predictions
less than 0.2s per image. The trained model occupies less
than 350Mb when saved to the disk. As each additional an-
notator adds only one additional vector µr ∈ R8 and one
covariance matrix Σr ∈ R8×8, it is scalable to a large num-
ber of annotators. The model’s quick runtime and excellent
scalability make it easily applicable in clinical practice.

4.7. Limitations

As semantic segmentation itself is a challenging task,
some details of the annotator segmentations are not cap-
tured well by the model, such as the variations of class NC
(green) in the GT of Fig. 4d - 4x or class G4 (orange) in
the GT of Fig. 4f - 4z. Here, the model tends to predict
similar shapes for the raters. A possible solution is to use
more layers in the segmentation head fθ with a wider kernel
(e.g. 5×5 convolutions). This would increase the complex-
ity of the model and might enable it to capture the different
labeling behavior in even more detail.

Hyperp. Value Unweighted κ Accuracy

D 4 0.752± 0.005 0.836± 0.003
8 0.758± 0.011 0.84± 0.007
16 0.752± 0.006 0.836± 0.004

σ2
prior 1 0.758± 0.007 0.839± 0.004

2 0.758± 0.011 0.84± 0.007
4 0.757± 0.007 0.839± 0.004

σ2
post 4 0.757± 0.007 0.839± 0.004

8 0.758± 0.011 0.84± 0.007
16 0.745± 0.009 0.83± 0.005

λ 0.0001 0.744± 0.003 0.829± 0.003
0.0005 0.758± 0.011 0.84± 0.007
0.001 0.745± 0.008 0.837± 0.005

ν 0.01 0.757± 0.004 0.839± 0.002
0.02 0.758± 0.011 0.84± 0.007
0.04 0.753± 0.01 0.836± 0.005

Backbone VGG16 0.734± 0.01 0.823± 0.005
Resnet34 0.758± 0.011 0.84± 0.007
Eff.netB2 0.754± 0.01 0.836± 0.004

Table 6. Study of hyperparameter robustness using the Gleason
2019 dataset. The default hyperparameter value is marked with
bold letters. While varying one hyperparameter, all other values
are set to the default value. We observe consistent and robust per-
formance across all settings of tested hyperparameters.

5. Conclusions
In this work we present “Pionono”, a method for med-

ical image segmentation that models the inter- and intra-
observer variability explicitly with a probabilistic approxi-
mation. This is especially relevant for tasks where the la-
beling behavior of medical experts is known to vary widely,
such as in the case of prostate cancer segmentation. Our ex-
periments on real-world cancer segmentation data demon-
strate that Pionono outperforms state-of-the-art models such
as STAPLE, Probabilistic U-Net, and models based on con-
fusion matrices. Apart from the improved predictive per-
formance, it provides a probabilistic uncertainty estimation
and the simulation of expert opinions for a given test im-
age. This makes it a powerful tool for medical image anal-
ysis and has the potential to improve the diagnostic process
considerably.

6. Acknowledgements
This work was funded by the European Union’s H2020

research and innovation programme (Marie Skłodowska
Curie grant agreement No 860627, CLARIFY Project),
the Spanish Ministry of Science and Innovation (project
PID2019-105142RB-C22), and FEDER/Junta de An-
dalucı́a-Consejerı́a de Transformación Económica, Indus-
tria, Conocimiento y Universidades (project P20 00286).

21104



References
[1] Abdullah A Abdullah, Masoud M Hassan, and Yaseen T

Mustafa. A review on bayesian deep learning in healthcare:
Applications and challenges. 2022. 2

[2] Felicia D. Allard, Jeffrey D. Goldsmith, Gamze Ayata,
Tracy L. Challies, Robert M. Najarian, Imad A. Nasser, He-
len Wang, and Eric U. Yee. Intraobserver and interobserver
variability in the assessment of dysplasia in ampullary mu-
cosal biopsies. 42(8):1095–1100, 2018. 1, 2

[3] Mohamed Amgad, Habiba Elfandy, Hagar Hussein,
Lamees A Atteya, Mai A T Elsebaie, Lamia S Abo Elnasr,
Rokia A Sakr, Hazem S E Salem, Ahmed F Ismail, Anas M
Saad, Joumana Ahmed, Maha A T Elsebaie, Mustafijur Rah-
man, Inas A Ruhban, Nada M Elgazar, Yahya Alagha, Mo-
hamed H Osman, Ahmed M Alhusseiny, Mariam M Kha-
laf, Abo-Alela F Younes, Ali Abdulkarim, Duaa M Younes,
Ahmed M Gadallah, Ahmad M Elkashash, Salma Y Fala,
Basma M Zaki, Jonathan Beezley, Deepak R Chittajallu,
David Manthey, David A Gutman, and Lee A D Cooper.
Structured crowdsourcing enables convolutional segmenta-
tion of histology images. 35(18):3461–3467, 2019. 1, 5, 7

[4] Eirini Arvaniti, Kim S. Fricker, Michael Moret, Niels Rupp,
Thomas Hermanns, Christian Fankhauser, Norbert Wey, Pe-
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[18] Miguel López-Pérez, Mohamed Amgad, Pablo Morales-
Álvarez, Pablo Ruiz, Lee A. D. Cooper, Rafael Molina, and
Aggelos K. Katsaggelos. Learning from crowds in digi-
tal pathology using scalable variational gaussian processes.
11(1):11612, 2021. 1, 2
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