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Abstract

Neural Radiance Field (NeRF) has been a mainstream in
novel view synthesis with its remarkable quality of rendered
images and simple architecture. Although NeRF has been
developed in various directions improving continuously its
performance, the necessity of a dense set of multi-view im-
ages still exists as a stumbling block to progress for practi-
cal application. In this work, we propose FlipNeRF, a novel
regularization method for few-shot novel view synthesis by
utilizing our proposed flipped reflection rays. The flipped
reflection rays are explicitly derived from the input ray di-
rections and estimated normal vectors, and play a role of
effective additional training rays while enabling to estimate
more accurate surface normals and learn the 3D geometry
effectively. Since the surface normal and the scene depth are
both derived from the estimated densities along a ray, the
accurate surface normal leads to more exact depth estima-
tion, which is a key factor for few-shot novel view synthesis.
Furthermore, with our proposed Uncertainty-aware Empti-
ness Loss and Bottleneck Feature Consistency Loss, FlipN-
eRF is able to estimate more reliable outputs with reducing
floating artifacts effectively across the different scene struc-
tures, and enhance the feature-level consistency between
the pair of the rays cast toward the photo-consistent pixels
without any additional feature extractor, respectively. Our
FlipNeRF achieves the SOTA performance on the multiple
benchmarks across all the scenarios.

1. Introduction
Neural Radiance Field (NeRF) [24] has achieved great

success in rendering photo-realistic images from novel
viewpoints. However, the necessity of a dense set of train-
ing images remains as a practical bottleneck since it suf-
fers from significant performance degradation when trained
with sparse views.

There are two mainstreams for few-shot novel view syn-
thesis: pre-training and regularization methods, both of
which focus on learning the 3D geometry efficiently from
sparse inputs. The pre-training methods [43, 5, 6, 39, 20,

(a) Sparse training views
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Figure 1: Synthesis results from sparse inputs. Our Flip-
NeRF significantly improves rendering quality compared to
other baselines. Compared to the vanilla mip-NeRF [1] and
MixNeRF [31], which is the state-of-the-art regularization
method, ours reduces the noises and floating artifacts no-
ticeably with superior surface normal estimation. Although
Ref-NeRF [36] estimates smooth normal vectors, it shows
much inferior rendering results to ours with a large chunk
of noise under the few-shot setting.

12, 19, 29, 35, 14] require large-scale datasets consisting of
different scenes with multi-view images for injecting prior
knowledge during the pre-training, while the regularization
methods [25, 31, 15, 11, 30, 8, 17] are optimized per scene,
exploiting additional training resources, e.g. unseen view-
points [25, 15, 17], depth map generation [8, 30], off-the-
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shelf models [11, 25], and so on, for an effective regulariza-
tion to alleviate overfitting. Although the prior arts achieved
promising results in novel view synthesis from sparse in-
puts, there still exist hurdles to overcome. The large-scale
datasets, which are used for pre-training methods, are ex-
pensive to collect and the NeRF model is prone to perfor-
mance degradation for the out-of-distribution dataset. On
the other hand, the regularization methods heavily rely on
additional training resources which might not always be
available and require many heuristic factors, e.g. the choice
of off-the-shelf models, the hyperparameters for sampling
unseen viewpoints, and so on.

In this paper, we propose FlipNeRF, which is an effec-
tive regularization method exploiting the flipped reflection
rays1 as additional training resources with filtering the inef-
fective newly generated rays. We derive a batch of flipped
reflection rays from the original ray directions and esti-
mated surface normals so that they are cast toward the
same target pixels of the original input ray. Compared to
the existing regularization methods which have mainly fo-
cused on the accurate depth estimation from limited input
views [31, 25, 15, 30, 8], our FlipNeRF is trained to recon-
struct surface normals accurately by learning to generate
effective reflection rays to be used in training. Since both
estimated surface normals and depths are derived from the
volume densities representing underlying 3D geometry, ac-
curately estimating the surface normals of an object natu-
rally leads to more accurate depth maps.

Furthermore, we propose an effective regularization loss,
Uncertainty-aware Emptiness Loss (UE Loss), to reduce
the floating artifacts effectively while considering the un-
certainty of the model’s outputs by using the estimated
scale parameters for mixture models. Since our FlipNeRF is
built upon MixNeRF [31], which is a regularization method
achieving promising results by modeling input rays with
mixture density models [2], we are able to apply our pro-
posed loss without any modification of the architecture by
using the estimated scale parameters of each sample along
a ray, which stand for the uncertainty of the samples’ esti-
mated probability density distributions.

Additionally, inspired by [6, 11, 15] which address the
feature-level consistency of targets under the sparse input
setting, we encourage the consistency for the pairs of bot-
tleneck features between the original input rays and flipped
reflection rays. We leverage a Jensen-Shannon Divergence,
which is based on the similarity between the probability dis-
tributions, to make the pairs of bottleneck feature distribu-
tions of original and flipped reflection rays more similar to
each other improving feature consistency.

We demonstrate the effectiveness of our proposed Flip-
NeRF through the experiments on the multiple bench-

1The term ‘flipped’ is used because the reflected ray has an opposite
direction (from an object to a camera).

marks, e.g. Realistic Synthetic 360◦ [24], DTU [13], and
LLFF [23]. Our method achieves state-of-the-art (SOTA)
performances compared to other baselines. Especially, ours
outperforms other baselines by a large margin with more ac-
curate surface normals under the extremely sparse settings
such as 3/4-view setting which are the most challenging
ones. Our contributions are summarized as follows:
• We propose an effective training framework for NeRF

with sparse training views, called FlipNeRF. It leverages
flipped reflection rays to provide additional training re-
sources, resulting in more precise surface normals with
our proposed masking strategy to filter the ineffective
rays.

• We also propose an effective regularization loss,
Uncertainty-aware Emptiness Loss (UE Loss), which re-
duces floating artifacts with considering the uncertainty
of outputs, leading to more reliable estimation.

• We enhance the consistency of bottleneck features be-
tween the original input rays and flipped reflection rays by
Jensen-Shannon Divergence, coined as Bottleneck Fea-
ture Consistency Loss (BFC Loss), improving the robust-
ness for rendering from unseen viewpoints.

• Our FlipNeRF achieves SOTA performance over the
multiple benchmarks. Especially, ours outperforms other
baselines by a large margin in more challenging scenar-
ios, e.g. 3/4-view.

2. Related Works
2.1. Neural Radiance Field

Recently, Neural Radiance Field (NeRF) [24] has shown
impressive performance and potential in the novel view syn-
thesis task. NeRF represents a scene with an MLP, mapping
coordinates and viewing directions to its colors and volume
density, and then creates a novel view through volume ren-
dering. Subsequent studies have developed NeRF in several
directions, e.g. using conical frustums instead of rays [1],
reparameterizing an input viewing direction as its reflection
direction [36], and so on. These works have made signifi-
cant progress by addressing the various issues in novel view
synthesis, but there still exists a limitation in that NeRF re-
quires a dense set of training images and a lengthy training
time. Many studies have addressed these issues [10, 28, 5],
including the utilization of various data structures for faster
training and inference [9, 42] and attempts to train NeRF
with only a few training images. Our work focuses on en-
hancing the performance of NeRF when a sparse set of
views are provided as training images.

2.2. Few-Shot Novel View Synthesis

There are two main approaches for a few-shot novel view
synthesis: the pre-training and the regularization method.
The pre-training methods require a large dataset of multi-
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Figure 2: Overall framework of FlipNeRF. Our FlipNeRF utilize the newly generated flipped reflection rays with our
proposed UE Loss and BFC Loss as well as existing MSE, NLL and Orientation losses. See Sec. 3 and Fig. 3 for more details
about generation process of flipped reflection rays and the loss terms.

view scenes to provide prior knowledges of 3D geometry
to a NeRF model and then optionally finetune on the tar-
get scene [5, 6, 12, 19, 29, 35, 39, 43]. On the contrary, the
regularization methods [31, 15, 11, 25, 8, 30, 17] are opti-
mized per scene without pre-training process by exploiting
additional training resources, e.g. depth maps [8, 30] and
semantic consistency [11], as an extra supervision. Among
them, [25, 15, 17] adopt an unseen viewpoint sampling
strategy to make up for insufficient training views. How-
ever, these sampling processes require many hand-designed
factors such as the ranges of rotation, translation, jittering,
and so on, which can introduce artificial biases. Our work
proposes a novel regularization approach to derive a set of
flipped reflection rays from estimated surface normals and
utilizes these for regularization, which does not require a
heuristic factor to be finetuned, resulting in more effective
training strategy with limited inputs.

2.3. Surface Normal Reconstruction

There is a line of research to recover accurate textures
and lighting conditions of objects with NeRF [26, 41, 38, 7,
34, 44, 3]. Although these earlier studies successfully recon-
struct the high-quality isosurfaces derived from the scene
representations, their rendering quality for novel views is
still inferior to the NeRF-like models. Meanwhile, Ref-
NeRF [36] achieved superior performance with remarkable
quality of surface normals compared to the existing NeRF
models. Since the normal vectors utilized in NeRF frame-
work are derived from the negative normalized density gra-
dients [34, 3, 36], which represent the underlying geometry
of 3D scenes, learning an accurate density distribution along
a ray is a key factor for surface normal reconstruction. How-
ever, for the few-shot novel view synthesis, the prior works
mostly focus on the accurate depth estimation without atten-
tion to the surface normals, both of which are derived from
the estimated volume densities. In this work, we approach
the few-shot novel view synthesis problem with focusing on
the surface normals, which is another critical factor for an
effective learning of 3D scene geometry. To the best of our
knowledge, our work is the first attempt to focus on the sur-

face normal estimation for few-shot novel view synthesis.

3. Method
In this work, we propose an effective regularization

method for few-shot novel view synthesis with flipped re-
flection rays. Our FlipNeRF is built upon MixNeRF [31]
which leverages a mixture model framework (Sec. 3.1). We
derive a batch of flipped reflection rays and cast them to-
ward the identical target pixels as additional training rays
(Sec. 3.2). Furthermore, we propose the Uncertainty-aware
Emptiness Loss and Bottleneck Feature Consistency Loss to
alleviate the floating artifacts adaptively based on the un-
certainty and enhance the consistency between the bottle-
neck feature distributions of the original and flipped reflec-
tion rays, respectively (Sec. 3.3 and Sec. 3.4). Finally, our
FlipNeRF is trained to minimize the MSE and NLL losses
as well as the proposed regularization loss terms with their
corresponding balancing weights (Sec. 3.5). Fig. 2 shows an
overview of our FlipNeRF.

3.1. Preliminaries

NeRF. The NeRF [24], which is an MLP-based neural
network, represents a 3D scene as a continuous radiance
field of RGB color and volume density. For every point sam-
pled along a ray, the 3D coordinates x = (x, y, z) and view-
ing directions (θ, ϕ) are mapped to the colors c = (r, g, b)
and densities σ:

F (γ(x), γ(d̂)) → (c, σ), (1)

where F (·), γ(·), and d̂ indicate an MLP, the positional en-
coding for the inputs, and the 3D Cartesian unit vector used
as an input viewing direction in practice, respectively.

The volumetric radiance field is rendered by alpha com-
positing the RGB values along an input ray r(t) = o +
td [22], where o and d denote the camera origin and un-
normalized direction vector, i.e. d = ∥d∥2 · d̂, respectively.
The volume rendering integrals are denoted as follows:

ĉ(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d̂) dt, (2)
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Figure 3: Flipped reflection ray generation. Our FlipN-
eRF generates the flipped reflection ray r′ from the esti-
mated normal vector n̂ and original input ray direction d.
With our masking strategy, r′2 is filtered out since it does
not satisfy the photo-consistency condition, i.e. θ2 is bigger
than 90◦. The smaller θ is, the more photo-consistent the
target pixel is, where the pair of r and r′ are cast.

where T (t) = exp(−
∫ t

tn
σ(s) ds) indicates the degree of

transparency. In practice, it is approximated with numerical
quadrature [24] by sampling points along a ray.

The radiance field is trained to minimize the mean
squared error (MSE) between rendered and GT pixels:

LMSE =
∑
r∈R

||ĉ(r)− cGT(r)||22 , (3)

where R is denoted as a set of rays.

MixNeRF. Built upon mip-NeRF [1], which leveraged a
cone tracing method and proposed an integrated positional
encoding to address an aliasing problem, MixNeRF [31] es-
timates the joint probability distribution of color values and
models a ray with a mixture of densities:

p(c|r) =
M∑
i=1

πiF(c;µc
i , βi), (4)

where M is the number of sampled points, F(c;µc
i , βi) de-

notes the Laplacian distribution of RGB c with location pa-
rameter µc

i ∈ {µr
i , µ

g
i , µ

b
i}, i.e. estimated RGB values of

sample, and scale parameter βi ∈ {βr
i , β

g
i , β

b
i }. The mix-

ture coefficient πi is derived from the estimated volume
density σi as follows:

πi =
wi∑M

m=1 wm

=
Ti(1− exp(−σiδi))∑M

m=1 Tm(1− exp(−σmδm))
, (5)

where wi and δi indicate the alpha blending weight and
sample interval, respectively. Thanks to the mixture model’s
capacity of representing complex distributions, MixNeRF
learns the density distribution effectively with sparse inputs
by minimizing the negative log-likelihood (NLL) in Eq. 4.

Our FlipNeRF is built upon MixNeRF leveraging the
mixture modeling framework while achieving superior ren-
dering quality with noticeably fewer artifacts and more ac-
curate surface normals to MixNeRF.

3.2. Auxiliary Flipped Reflection Ray

As shown in Fig. 3, we exploit a batch of flipped reflec-
tion rays r′ ∈ R′ as extra training resources, which are de-
rived from the original input ray directions d and estimated
surface normals n̂. First, we derive a flipped reflection di-
rection d′ from d and n̂:

d′ = 2(d · n̂)n̂− d, (6)

where n̂ denotes the weighted sum of blending weights and
estimated normal vectors along a ray, i.e. n̂ =

∑M
i=1 wini. 2

Note that we use the gradient of volume density as estimated
surface normals following [3, 34, 36].

To generate the additional training rays based on d′, we
need a set of imaginary ray origins o′ located in a suitable
space considering the hitting point and the original input ray
origins o. Since the vanilla NeRF models, which are trained
with a dense set of images, tend to have the blending weight
distribution whose peak is located on the point around the
object surface ps = o + tsd [8, 31], i.e. the s-th sample
whose blending weight is the highest along a ray. Therefore,
we place o′ so that the s-th sample of r′ is ps:

o′ = ps − tsd
′, (7)

resulting in our proposed flipped reflection ray, r′(t) =
o′ + td′. Compared to the previous unseen viewpoint sam-
pling strategies [15, 25, 17], our proposed strategy does not
rely on the randomness of unseen viewpoint sampling and
reduces the heuristic factors for sampling schemes, e.g. the
range of rotation, translation, and so on. Furthermore, since
our newly generated r′ are cast on the identical object sur-
faces where the original input rays r are cast, i.e. the target
pixels are photo-consistent for the pair of r and r′ without
any sophisticated viewpoint sampling process, we are able
to train r′ effectively with the same GT pixels of r.

However, since n̂, which are used to derive d′, are not the
ground truth but the estimation, there exists a concern that
even miscreated r′, which do not satisfy photo-consistency,
can be used for training. As a result, it might lead to per-
formance degradation while providing misleading training

2Technically, n̂ is not guaranteed to be a unit vector without an explicit
normalization process. However, we empirically found that the normaliza-
tion rather destabilizes the training and leads to the performance degrada-
tion. Kindly refer to our supplementary material for related experiments.
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cues. To address this problem, we mask the ineffective r′

by considering the angle θ between n̂ and −d̂ as follows:

M(r′) =

{
1 if arccos (−(d̂ · n̂)) < τ

0 otherwise
, (8)

where −(d̂ · n̂) amounts to cos θ of original input rays
and normal vectors, and τ indicates the threshold for fil-
tering the invalid rays, which we set as 90◦ unless speci-
fied. Through this masking process, only r′ which are cast
toward the photo-consistent point can be remained as we in-
tend. Finally, our proposed flipped reflection rays are mod-
eled by mixture density like the original input rays:

p(c|r′) =
M∑
i=1

π′
iF(c;µc

i
′, β′

i). (9)

Additionally, we leverage the Orientation Loss proposed
in Ref-NeRF [36] to penalize the backward-facing normal
vectors for learning accurate surface normals:

lOri.(r) =

M∑
i=1

wi max(0,ni · d̂)2. (10)

Unlike Ref-NeRF, we penalize underlying density gradient
normal ni instead of predicted normals.

Note that our FlipNeRF is fundamentally different com-
pared to Ref-NeRF since ours generates additional training
rays through the derivation of reflection direction without
modification to original representations while Ref-NeRF re-
placed the input viewing direction with its reflection direc-
tion, reparameterizing the outgoing radiance.

3.3. Uncertainty-aware Regularization

Several regularization techniques have been proposed to
reduce the floating artifacts present in synthesized images,
which is one of the major problems of NeRF. Among them,
we leverage the Emptiness Loss [37] which penalizes the
small blending weights along a ray as follows:

lEmp.(r) =
1

M

M∑
i=1

log(1 + η · wi), (11)

where the bigger η is, the steeper the loss function becomes
around 0.

However, the naive application of existing regulariza-
tion techniques with limited training views might not be
consistently helpful across the different scenes due to the
scene-by-scene different structure, resulting in overall per-
formance degradation. To address this problem, we pro-
pose Uncertainty-aware Emptiness Loss (UE Loss) devel-
oped upon the Emptiness Loss, which reduces the floating

artifacts consistently over the different scenes by consider-
ing the output uncertainty:

lUE(r) =
1

M

M∑
i=1

log(1 + ρ · η · wi),

where ρ =
1

3

{r,g,b}∑
c

M∑
i=1

βc
i .

(12)

ρ amounts to the average of the summation of estimated
scale parameters of RGB color distributions from all sam-
ples along a ray, which we use as the uncertainty of a ray. By
our proposed UE Loss, we are able to regularize the blend-
ing weights adaptively, i.e. the more uncertain a ray is, the
more penalized the blending weights along the ray are. It
is able to reduce floating artifacts consistently across the
scenes with different structures and enables to synthesize
more reliable outputs by considering uncertainty.

3.4. Bottleneck Feature Consistency

Motivated by previous works addressing the feature-
level consistency of multiple views for few-shot novel view
synthesis [6, 11, 15], we encourage the consistency of bot-
tleneck feature distributions between r and r′, which are
intermediate feature vectors, i.e. outputs of the spatial MLP
of NeRF, by Jensen-Shannon Divergence (JSD):

lBFC(r, r
′) = JSD(ψ(b), ψ(b′)), (13)

where ψ(·), b and b′ denote the softmax function, the bot-
tleneck features of r and r′, respectively. While the exist-
ing methods [6, 11] rely on off-the-shelf feature extractors
like 2D CNN or CLIP [27] to address high-level feature
consistency, we regulate the pair of features effectively by
enhancing consistency between bottleneck features without
depending on additional feature extractors.

3.5. Total Loss

Our FlipNeRF is not only trained to maximize the log-
likelihood of the target pixel cGT for a set of original input
rays R, but also for flipped reflection rays R′

M , where the
ineffective rays are excluded from the total flipped reflection
rays R′ by our masking strategy in Eq. 8. Likewise, the UE
Losses are applied for both R and R′

M .
Aggregating all, our total loss over a batch is as follows:

LTotal = LMSE + λ1LNLL + λ2L′
NLL

+ λ3LUE + λ4L′
UE + λ5LBFC + λ6LOri.,

(14)

where a set of λ’s are balancing weight terms for the losses.
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τ PSNR ↑ SSIM ↑ LPIPS ↓ Average Err. ↓
30◦ 18.62 0.747 0.206 0.121
60◦ 18.12 0.723 0.237 0.126
90◦ 19.55 0.767 0.180 0.101
180◦ (No masking) 18.76 0.755 0.190 0.111

Table 1: Comparison of masking conditions. Our masking
strategy with τ of 90◦ achieves the best results, filtering out
the ineffective flipped reflection rays successfully.

Training iterations
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ffe

ct
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(a) Effective r′ ratio by τ

threshold
for masking

initial phase
final phase

(b) Distribution of θ

Figure 4: Analysis of the masking strategy.

4. Experiments

4.1. Experimental Settings

Implementation details. Our FlipNeRF is built upon
MixNeRF [31] based on the JAX codebase [4], which is de-
veloped upon mip-NeRF [1]. The overall training scheme
follows [25, 31]. We adopt a scene space annealing strategy
for the early training phase. Also, we apply the exponen-
tial decay and warm up for the learning rate. The Adam
optimizer [16] and the gradient clippings by value at 0.1
and norm at 0.1 are used. We train our FlipNeRF for 500
pixel epochs with a batch size of 4,096 on 4 NVIDIA RTX
3090. Additionally, since the LLFF dataset [23] consists
of scenes with much more static movement of viewpoints
compared to other datasets, we set the threshold (τ ) of our
masking strategy as 30◦ for the experiments on LLFF. More
detailed hyperparameters and our loss balancing terms by
the datasets and the number of training views are provided
in the supplementary material.

Datasets and metrics. We evaluate the performance of
our FlipNeRF and baselines on the representative bench-
marks: Realistic Synthetic 360◦ [24], DTU [13], and
LLFF [23]. Realistic Synthetic 360◦ contains 8 synthetic
scenes, each consisting of 400 multi-view rendered images
with white background. To compare against other represen-
tative baselines [15, 11, 31, 25, 1], we evaluate our FlipN-
eRF under the scenarios of 4 and 8 views. For a fair compar-
ison, we sample the first n-image of the training set for the
n-view scenario so that the identical images are provided
for training different methods following [31]. We use 200
images of the test set for evaluation. For DTU, which pro-
vide various scenes including objects put on a white table
with a black background, we conduct experiments on the 15

specific scenes under the scenarios of 3, 6, and 9-view, fol-
lowing the experimental protocol of [43]. We also conduct
a series of experiments for the analysis of FlipNeRF un-
der 3-view setting as well as comparison against other base-
lines. Additionally, we compare our FlipNeRF against other
baselines on LLFF consisting of real forward-facing scenes,
which is often tested as an out-of-distribution dataset for
pre-training methods. Following [24], every 8th image of
each scene is used for a held-out test set and the training
views are evenly selected from the remaining images. Like
DTU, we report our results of the 3, 6, and 9-view scenarios,
following [43].

For the quantitative evaluation for rendered images, we
adopt the mean of PSNR, SSIM [40], LPIPS [45], and the
geometric average [1]. Furthermore, we also adopt the mean
angular error (MAE◦) [36] and NLL [33, 32, 21, 18] for
evaluating the surface normals and uncertainty, respectively.
Specifically, following [33], we compute the NLL by deriv-
ing the probability of the GT pixel values given a Gaussian
distribution with the estimated RGB values as mean and the
uncertainty as variance, which is derived from the weighted
sum of the blending weights and estimated scale parame-
ters along a ray in our FlipNeRF. For DTU, we report the
results evaluated by masked metrics to prevent background
bias, following [25, 31].

Baselines. We compare our FlipNeRF against the SOTA
regularization methods [11, 15, 25, 31] on Realistic Syn-
thetic 360◦ as well as the vanilla mip-NeRF [1] and Ref-
NeRF [36], which is known for achieving promising results
with accurate surface normals. Furthermore, we compare
ours against the representative pre-training methods [5, 6,
43] as well as regularization methods on DTU and LLFF.
The pre-training baselines exploit the DTU and LLFF as
pre-training dataset and out-of-distribution test set, respec-
tively, while the regularization methods, mip-NeRF and
Ref-NeRF are optimized per scene. Note that we report the
quantitative results of other baselines on DTU and LLFF
from [25], which achieved better results than its original pa-
pers by the modified training scheme, and those on Realistic
Synthetic 360◦ from [31], which trained the baselines with
the identical training views for a fair comparison.

4.2. Analysis of FlipNeRF

Analysis of flipped reflection rays. As shown in Tab. 1,
our masking strategy of filtering out the ineffective flipped
reflection rays with the threshold (τ ) of 90◦ achieves the
best performance among different options. With τ of 30◦

and 60◦, the rendering quality is rather degraded since the
newly generated rays are overly-filtered and do not provide
enough additional supervision as demonstrated in Fig. 4a.
On the other hand, when we exploit all the flipped reflec-
tion rays without masking, there exists a little improvement
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PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓ NLL ↓
MixNeRF [31] 18.95 0.744 0.203 0.113 9.99

FlipNeRF (Ours)
w/o LEmp. or LUE 19.30 0.758 0.196 0.108 4.88
w/ LEmptiness 18.62 0.749 0.204 0.118 4.92
w/ LUE 19.55 0.767 0.180 0.101 2.56

Table 2: Effectiveness of LUE. Our proposed LUE improves
the rendering quality consistently across the scenes with
considering the uncertainty.
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Figure 5: Comparison of FlipNeRF and MixNeRF. Our
FlipNeRF renders the images from novel views with much
fewer artifacts and more accurate depth maps than MixN-
eRF. Considering the standard deviation of RGB and
depths, our FlipNeRF is able to estimate more reliable out-
puts than MixNeRF. For the std. map, the darker the pixel
is, the more certain the output is.

of performance compared to 30◦ and 60◦ masking, but it is
still much inferior to 90◦ due to the negative impact from
the ineffective rays. Additionally, Fig. 4b shows the distri-
bution of θ, i.e. angles between the input viewing direc-
tions and normal vectors. As the smaller θ is, the more
photo-consistent the target pixel is, i.e. the more effective
the newly generated flipped reflection rays are for training.
Since our FlipNeRF is trained to estimate the accurate nor-
mal vectors, we are able to exploit a set of more effective
flipped reflection rays through the training, which are cast
on the more photo-consistent target pixels. Furthermore, at
the initial training phase, the invalid additional rays are fil-
tered effectively by our masking strategy, leading to high-
quality supervision and stabilizing the training.

Uncertainty-aware regularization. Tab. 2 shows the ef-
fectiveness of our proposed UE Loss. Compared to MixN-
eRF [31] which models a ray with mixture of distributions
as our FlipNeRF, ours consistently achieves more reliable
rendering results with much lower NLL. Without LEmp. [37]
or our proposed LUE, ours already outperforms MixNeRF
by a large margin. However, ours with naively leveraged
LEmp. rather shows inferior results to MixNeRF. It shows
that naive application of the existing regularization tech-
nique for reducing artifacts under the few-shot setting can
lead to overall performance degradation due to the scene-

PSNR ↑ SSIM ↑ LPIPS ↓ Average Err. ↓
w/o LBFC 18.79 0.755 0.200 0.115

w/ LBFC
MSE on b 18.83 0.755 0.197 0.113
Cos. Sim. on b 18.77 0.755 0.193 0.115
JSD on bd̂ 18.43 0.749 0.204 0.120
JSD on b 19.55 0.767 0.180 0.101

Table 3: Comparison of different strategies for LBFC. Our
LBFC achieves a significant performance gain compared to
other regularization schemes for feature consistency.

LNLL L′
NLL LUE

† LBFC LOri. PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
(1) ✓ 17.44 0.729 0.187 0.130

(2) ✓ ✓ 16.94 0.727 0.217 0.143
(3) ✓ ✓ ✓ 17.89 0.736 0.206 0.130
(4) ✓ ✓ ✓ ✓ 19.01 0.755 0.181 0.107
(5) ✓ ✓ ✓ ✓ 18.79 0.755 0.200 0.115
(6) ✓ ✓ ✓ ✓ 19.30 0.758 0.196 0.108
(7) ✓ ✓ ✓ ✓ ✓ 19.55 0.767 0.180 0.101

Table 4: Ablation study. † indicate that the losses are ap-
plied to both r and r′.

by-scene various structures. As illustrated in Fig. 5, with our
proposed LUE, ours improves both of the rendering quality
and the reliability of the model outputs by a large margin
compared to MixNeRF.

Bottleneck feature consistency. As shown in Tab. 3,
there is no significant impact on the performance with regu-
larizing the bottleneck feature b using MSE or cosine sim-
ilarity. By our proposed LBFC with JSD, we achieve a con-
siderable performance improvement. Interestingly, the per-
formance rather degrades when we apply LBFC with JSD to
bd̂, i.e. the bottleneck feature conditioned with input view-
ing direction d̂. We conjecture that the reduced feature di-
mension of bd̂ reduces the capacity of feature representa-
tions and prevents the model from improving robustness.

4.3. Ablation Study

The quantitative results of our ablation study are reported
in Tab. 4. With only additionally exploiting our proposed
flipped reflection rays, our FlipNeRF achieves more degen-
erate results compared to the baseline ((1) → (2)). However,
we are able to achieve performance improvement by a large
margin with our proposed LUE and LBFC ((2) → (3) → (4)).
(5) → (7) shows that enhancing the consistency of bottle-
neck features between the pair of original and flipped reflec-
tion rays is considerably effective. Additionally, by lever-
aging LOri. from Ref-NeRF, we are able to estimate more
accurate normal vectors, leading to more effective flipped
reflection rays and performance gain ((4) → (7)).
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PSNR ↑ SSIM ↑ LPIPS ↓ Average Err. ↓ MAE◦ ↓
4-view 8-view 4-view 8-view 4-view 8-view 4-view 8-view 4-view 8-view

mip-NeRF [1] 14.12 18.74 0.722 0.828 0.382 0.238 0.221 0.121 96.05 101.21
Ref-NeRF [36] 18.09 24.00 0.764 0.879 0.269 0.106 0.150 0.058 65.62 57.93

DietNeRF [11] 15.42 21.31 0.730 0.847 0.314 0.153 0.201 0.086 - -
InfoNeRF [15] 18.44 22.01 0.792 0.852 0.223 0.133 0.119 0.073 - -
RegNeRF [25] 13.71 19.11 0.786 0.841 0.346 0.200 0.210 0.122 62.78 60.37
MixNeRF [31] 18.99 23.84 0.807 0.878 0.199 0.103 0.113 0.060 70.90 62.04
FlipNeRF (Ours) 20.60 24.38 0.822 0.883 0.159 0.095 0.091 0.055 58.72 57.17

Table 5: Quantitative results on Realistic Synthetic 360◦. Our FlipNeRF achieves the SOTA performance among other
baselines across all the scenarios and metrics.

PSNR ↑ SSIM ↑ LPIPS ↓ Average Error ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

mip-NeRF [1] 8.68 16.54 23.58 0.571 0.741 0.879 0.353 0.198 0.092 0.323 0.148 0.056

Pre-training.

PixelNeRF [43] 16.82 19.11 20.40 0.695 0.745 0.768 0.270 0.232 0.220 0.147 0.115 0.100
PixelNeRF† [43] 18.95 20.56 21.83 0.710 0.753 0.781 0.269 0.223 0.203 0.125 0.104 0.090
SRF [6] 15.32 17.54 18.35 0.671 0.730 0.752 0.304 0.250 0.232 0.171 0.132 0.120
SRF† [6] 15.68 18.87 20.75 0.698 0.757 0.785 0.281 0.225 0.205 0.162 0.114 0.093
MVSNeRF [5] 18.63 20.70 22.40 0.769 0.823 0.853 0.197 0.156 0.135 0.113 0.088 0.068
MVSNeRF† [5] 18.54 20.49 22.22 0.769 0.822 0.853 0.197 0.155 0.135 0.113 0.089 0.069

Regularization.

DietNeRF [11] 11.85 20.63 23.83 0.633 0.778 0.823 0.314 0.201 0.173 0.243 0.101 0.068
RegNeRF [25] 18.89 22.20 24.93 0.745 0.841 0.884 0.190 0.117 0.089 0.112 0.071 0.047
MixNeRF [31] 18.95 22.30 25.03 0.744 0.835 0.879 0.203 0.102 0.065 0.113 0.066 0.042
FlipNeRF (Ours) 19.55 22.45 25.12 0.767 0.839 0.882 0.180 0.098 0.062 0.101 0.064 0.041

Table 6: Comparison with baselines on DTU. Our FlipNeRF outperforms all the pre-training and regularization methods in
every scenario, especially by a large margin under the 3-view setting. † indicates fine-tuning.

PSNR ↑ SSIM ↑ LPIPS ↓ Average Err. ↓
mip-NeRF [1] 14.62 0.351 0.495 0.246

Pre-training.

PixelNeRF [43] 7.93 0.272 0.682 0.461
PixelNeRF† [43] 16.17 0.438 0.512 0.217
SRF [6] 12.34 0.250 0.591 0.313
SRF† [6] 17.07 0.436 0.529 0.203
MVSNeRF [5] 17.25 0.557 0.356 0.171
MVSNeRF† [5] 17.88 0.584 0.327 0.157

Regularization.

DietNeRF [11] 14.94 0.370 0.496 0.240
RegNeRF [25] 19.08 0.587 0.336 0.146
MixNeRF [31] 19.27 0.629 0.236 0.124
FlipNeRF (Ours) 19.34 0.631 0.235 0.123

Table 7: Comparison with baselines on LLFF 3-view. †
indicates fine-tuning.

4.4. Comparison with other SOTA Methods

Realistic Synthetic 360◦. As demonstrated in Tab. 5, our
FlipNeRF achieves the SOTA performance across all the
evaluation metrics. Compared to MixNeRF which lever-
ages a mixture model framework as ours, our FlipNeRF

improves the performance by a large margin. Noticeably,
our FlipNeRF estimates more accurate surface normals than
other baselines, leading to the performance gain with better
reconstructed fine details from limited input views as shown
in Fig. 6a. Additionally, the vanilla Ref-NeRF, which shows
great performance with accurate normal vectors, achieves
comparable or even better performance than other regular-
ization methods except ours. From this result, we are able
to expect that estimating the accurate surface normals is one
of the key factors for learning 3D geometry with sparse in-
puts. Note that the comparable MAE◦ of RegNeRF results
from the overly-smoothed depth estimation, not indicating
the high-quality of rendering results, as shown in Fig. 6a.

DTU. Our FlipNeRF achieves the best results across all
the scenarios and most of the evaluation metrics on DTU as
shown in Tab. 6. Remarkably, ours trained with 6-view out-
performs all the pre-training methods trained with 9-view
in every metric except SSIM. Furthermore, ours trained
with 3-view still outperforms PixelNeRF [43] and SRF [6]
trained with 6-view. Similar to the results on Realistic Syn-
thetic 360◦, ours outperforms other baselines by a large
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mip-NeRF [1] Ref-NeRF [36] RegNeRF [25] MixNeRF [31] FlipNeRF (Ours) Ground Truth

(a) Realistic Synthetic 360◦ 4-view

mip-NeRF [1] PixelNeRF [43] RegNeRF [25] MixNeRF [31] FlipNeRF (Ours) Ground Truth

(b) DTU 3-view

Figure 6: Qualitative results on Realistic Synthetic 360◦ and DTU. More results are provided in the supp. material.

margin especially under the 3-view, which is the most chal-
lenging scenario, with reducing the floating artifacts suc-
cessfully as shown in Fig. 6b. Since the flipped reflection
rays are effective training resources for unseen views, the
fewer the training views are provided, the more perfor-
mance gain is expected.

LLFF. Table 7 compares our FlipNeRF against other
baselines on LLFF, which is a real forward-facing dataset.
Although ours achieves the SOTA performance among
other baselines, it is much more marginal than those on Re-
alistic Synthetic 360◦ and DTU. We conjecture the reason
for the marginal improvement of our proposed method can
be the fact that a set of flipped reflection rays, which are able
to widely cover the unseen views, are not very useful for the
scenes in LLFF, where a set of camera poses are much less
dynamic than other datasets. In other words, our FlipNeRF
is able to not only achieve a competitive performance for
the scenes consisting of a set of simple camera poses, but
also render the novel views in much higher quality for more
dynamically captured scenes with only a few shots. The ren-
dered images are provided in the supp. material.

5. Conclusion
In this work, we have focused on accurate surface nor-

mals, which is another key factor for the few-shot novel
view synthesis. Our proposed FlipNeRF utilizes a set of
flipped reflection rays as additional training resources,
which are simply derived from the estimated normal vec-
tors and the input ray directions. Since it does not require a
heuristic factor to be finetuned delicately for unseen view
generation, we are able to exploit these additional train-
ing resources with much less burden. Furthermore, with
our proposed UE Loss, FlipNeRF reduces the floating arti-
facts consistently across the different scene structures while

considering the output uncertainty, leading to more reliable
outputs. Also, our proposed BFC Loss enhances the bot-
tleneck feature consistency between the rays cast on the
photo-consistent pixels without leveraging the off-the-shelf
feature extractor, leading to performance improvement un-
der the few-shot setting. Our FlipNeRF achieves the SOTA
performance with limited input views among the other few-
shot baselines and vanilla NeRF-like models. We expect
that our work is able to open another meaningful direction
for the research of few-shot novel view synthesis.

Limitations and future work. Our FlipNeRF exploits
the flipped reflection rays as a set of additional training
rays, leading to more accurate surface normal estimation.
Although Ref-NeRF achieved promising results with the
high-quality surface reconstruction, we use mip-NeRF rep-
resentation instead of Ref-NeRF for a fair comparison with
other methods which are based on mip-NeRF. However, as
shown in Tab. 6 and Fig. 6a, Ref-NeRF shows promising re-
sults without any additional consideration for few-shot set-
ting compared to the vanilla mip-NeRF. Like our FlipNeRF,
the accurate surface normal estimation leads to the compet-
itive performance of Ref-NeRF even in the few-shot sce-
narios. Therefore, a combination of our FlipNeRF training
framework with the Ref-NeRF representation or further ex-
ploration with regard to the view-dependent appearance for
the few-shot novel view synthesis can be interesting direc-
tions for future research.
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