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Abstract

Computer graphics (CG) rendering platforms produce
imagery with ever-increasing photo realism. The narrow-
ing domain gap between real and synthetic imagery makes
it possible to use CG images as training data for deep learn-
ing models targeting high-level computer vision tasks, such
as autonomous driving and semantic segmentation. CG im-
ages, however, are currently not suitable for low-level vision
tasks targeting RAW sensor images. This is because RAW
images are encoded in sensor-specific color spaces and in-
cur pre-white-balance color casts caused by the sensor’s
response to scene illumination. CG images are rendered di-
rectly to a device-independent perceptual color space with-
out needing white balancing. As a result, it is necessary
to apply a mapping procedure to close the domain gap be-
tween graphics and RAW images. To this end, we intro-
duce a framework to process graphics images to mimic RAW
sensor images accurately. Our approach allows a one-to-
many mapping, where a single graphics image can be trans-
formed to match multiple sensors and multiple scene illumi-
nations. In addition, our approach requires only a handful
of example RAW-DNG files from the target sensor as param-
eters for the mapping process. We compare our method to
alternative strategies and show that our approach produces
more realistic RAW images and provides better results on
three low-level vision tasks: RAW denoising, illumination
estimation, and neural rendering for night photography. Fi-
nally, as part of this work, we provide a dataset of 292 real-
istic CG images for training low-light imaging models.

1. Introduction
Access to large datasets of high-quality images remains

a critical factor for training deep learning models. For many
computer vision tasks, data acquisition is time-consuming,
expensive, and error prone. This is particularly true for
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Figure 1. Images (A) and (B) started as RAW-DNG images, one
from a Nikon, the other from a Samsung camera. RAW images are
shown as insets. Both DNGs have been rendered by Adobe Pho-
toshop to sRGB based on the DNG’s metadata. One is a computer
graphics image converted to a RAW-DNG using our method; the
other is a real sensor RAW image. Can you tell which is CG and
which is real? See Sec. 3.3.

camera engineers who often require sensor-specific train-
ing data. Any time a new sensor is introduced on a smart-
phone or other camera platform, training images specific
to the new sensor must be captured. Computer-generated
(CG) imagery has long been viewed as a promising solu-
tion to the data acquisition bottleneck. The main challenge
with graphics imagery is the domain gap between synthetic
and real data. Fortunately, the visual gap is rapidly closing
thanks to the improved realism of graphics engines.

CG imagery has been successfully used to augment or
even replace real training data for applications such as au-
tonomous driving [46, 42], semantic segmentation [16, 44],
and facial landmark detection [51]. There are now compa-
nies dedicated to generating CG images for training com-
puter vision AI models [2, 4, 7]. Graphics platforms, such
as Unreal [6], Unity [5], and Blender [1], typically render
images directly to a device-independent display-referred
color space—namely, standard RGB (sRGB). Moreover,
computer graphics are implicitly white-balanced during
rendering. Cameras also process RAW sensor images to
sRGB. However, unlike graphics, a RAW image represents
the sensor’s direct response to physical radiance from the
scene. RAW images are in a sensor-specific color space
defined by the spectral sensitivities of the sensor’s color fil-
ters. In addition, RAW images exhibit a strong color cast
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due to scene illumination. Cameras have dedicated image
signal processors (ISPs) that apply a series of operations
to convert the RAW sensor image to the final sRGB im-
age [20]. Among the ISP operations is a white-balance
step to remove the color cast due to the scene illumination
and a color space transformation step to convert the RAW
image from its sensor-specific color space to the device-
independent sRGB color space. For low-level vision tasks,
such as illuminant estimation, that train DNN-models di-
rectly on RAW images, graphics images cannot be directly
used. As a result, a mapping procedure explicitly targeting
the conversion of graphics to RAW is needed.

Closely related to the graphics to RAW problem is the
topic of RAW reconstruction from camera-rendered sRGB
images. These methods aim to recover the RAW sensor im-
age from the camera’s output sRGB image. Data-driven
methods, such as Cycle ISP [55] and Invertible ISP [52],
suffer from the same data acquisition bottleneck we seek to
avoid in that they require a large dataset of paired RAW-
sRGB images from the target sensor for training. Metadata-
assisted RAW reconstruction methods [53, 40, 39] assume
that samples from the RAW image are available to recon-
struct the RAW image and, therefore, cannot be applied to
our task. The method of [10] is the closest to our work.
This approach inverts ISP operations step-by-step to con-
vert camera-rendered sRGB images back to plausible RAW
images to be used for training image denoisers. However,
[10] does not strive for color accuracy which is critical for
other tasks such as illuminant estimation or color rendering.

Graphics images have several advantages over camera-
rendered images. Camera sRGB images may have limited
bit depth and resolution, and contain demosaicing or ring-
ing artifacts, residual noise, and blur due to the ISP’s RAW
image processing. Properly rendered graphics images do
not suffer from these issues and can produce significantly
higher-quality training data. Furthermore, data diversity
and concerns over privacy are less of an issue with CG.
Contributions We provide a description outlining how
graphics images are directly rendered to sRGB and how
cameras process RAW images to sRGB. Based on this in-
sight, we present a framework that converts CG images to
appear as RAW images captured by a target sensor under
varied illuminations. In contrast to existing DNN methods
that require large datasets of RAW-sRGB pairs for training,
our approach requires only a handful of RAW-DNG files
from the target sensor. We use the metadata in the DNG
files to sample the illumination space of the target sensor
and map the graphics images to a RAW color space that ac-
curately mimics the target sensor. We can save our synthetic
RAW images with the appropriate metadata back to DNG
files so that they can be rendered by any standard DNG
reader, such as Photoshop (see Fig. 1). We compare our
results to competing methods and demonstrate the useful-

ness of our approach to DNN-based RAW image denois-
ing, illumination estimation, and neural rendering. Finally,
we provide a dataset of 292 nighttime graphics images for
training neural ISPs targeting night photography based on
synthetic RAW images. To our knowledge, this is the first
work to target RAW image synthesis from CG imagery.

2. Related work
Related work is discussed regarding CG for high-level

computer vision tasks, RAW recovery methods targeting
camera images, and multi-spectral rendering.
Computer graphics in high-level vision tasks Graphics
images have been used effectively as training data for a
myriad of high-level computer vision tasks that are applied
to camera-based sRGB images, such as autonomous driv-
ing [46, 42], semantic segmentation [16, 44], facial land-
mark detection [51], optical flow [21, 12], text localiza-
tion [26], and object detection [27]. This has spawned
large synthetic datasets focusing on specific high-level tasks
(e.g, SHIFT [46], SYNTHIA [44], Sintel [12], Flying
Chairs [21]). It is noteworthy that all of these datasets are
comprised of sRGB images which are often not suitable as
training data for low-level tasks that are applied to RAW
sensor images. Allowing such images to be useful for tasks
targeting RAW images is the motivation for our work.
RAW reconstruction from sRGB camera images Early
work in the area of RAW reconstruction focused on radio-
metric calibration [19, 37, 25, 15, 14, 31]. However, these
methods typically require tedious camera calibration proce-
dures that have to be applied per camera. More recently,
DNN-based RAW reconstruction methods have been pro-
posed [55, 52, 34, 38] to model the imaging pipeline in both
forward and reverse directions. Although these methods do
not require calibration, a large number of RAW-sRGB im-
age pairs from the target sensor are needed.

Another related research direction is methods that use
specialized metadata to enable more accurate RAW recon-
struction [53, 40, 39]. This metadata is gathered at cap-
ture time and is stored along with the sRGB image to fa-
cilitate RAW reconstruction post-capture. However, neither
the DNN methods [55, 52, 34, 38] nor the metadata-assisted
methods [53, 40, 39] can be applied to graphics data since
there is no notion of an initial RAW sensor image.

A more practical approach, with minimal data require-
ments, is to reverse the sRGB image back to RAW by invert-
ing the operations of the ISP stage-by-stage [10, 32]. It is
assumed that a small set of RAW images is available to char-
acterize the sensors’ spectral response. For example, the un-
processing images (UPI) method [10] inverts the ISP stages
by randomly sampling from distributions constructed using
metadata extracted from the RAW files. However, UPI un-
processes images not to a specific sensor’s RAW color space
but to a plausible “meta” RAW color space produced by ag-
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Figure 2. An illustration of sRGB image formation for cameras versus CG renderings. A camera’s RAW sensor image formation is
impacted by the scene’s illumination and the spectral sensitivities of the color filters. Camera hardware ISPs process the RAW image to
compensate for scene illumination and convert the image to the device-independent sRGB color space. In principle, images under different
illumination should be rendered to visually similar sRGB images. Graphics images, on the other hand, are directly rendered to sRGB from
the 3D models. Furthermore, graphics renderings do not require white-balancing. Our work aims to convert sRGB graphics images to a
family of RAW images mimicking different illuminations and sensors.

gregating parameters from a mix of sensors. Hence, the
RAW images produced by this procedure are not suitable
for tasks such as illumination estimation and neural render-
ing, where accurate colors for a specific sensor are needed.

Our method converts a graphics sRGB image to a RAW
image targeting a specific sensor by applying the inverse of
the operations performed by an ISP. However, the differ-
ence in image formation between a graphics engine and a
camera ISP means that only certain operations need to be
applied to graphics sRGB images compared with camera
sRGB images. We motivate and describe what these steps
are. Moreover, unlike the sampling strategy of UPI [10],
our sampling of the illumination and color correction matri-
ces aligns closely with the operations on a real camera ISP,
and leads to more accurate RAW color recovery.
Multi-spectral rendering Another approach to generate
synthetic sensor RAW images is to directly render multi-
spectral data using a supported CG engine. However, multi-
spectral rendering is a significantly more complicated solu-
tion. Spectral information associated with all surface ma-
terials, illumination sources and texture maps need to be
known. More importantly, the target sensor’s spectral sensi-
tivity also needs to be known; information that is not easily
accessible (see Ch. 2.1.3.2 & 2.2.1 of [50]). Our method
requires no specialized rendering or sensor calibration. In-
stead, we only require RAW DNGs from the target camera.

3. Graphics to RAW

Sec. 3.1 provides a high-level overview of camera versus
graphics image formation. This is followed by a detailed
description of how white-balancing and color mapping from
RAW to sRGB are performed in Sec. 3.2. Understanding
this process makes it clear how a graphics image can be

reversed to a target sensor’s RAW color space under a target
illumination. Finally, in Sec. 3.3, we describe other camera
rendering operations and their associated metadata. This is
required to understand how a RAW-DNG file based on our
synthesized RAW can be created.

3.1. Camera versus graphics image formation

We begin by reviewing the image formation on a cam-
era and then compare it to that on a graphics engine. Each
pixel on the camera sensor has a single R, G, B color filter
arranged in a Bayer pattern. The spectral sensitivity of the
color filter array (CFA) determines the sensor’s response to
incoming light. In particular, the pixel intensity at location
x on the sensor image Ix is the product of the CFA’s spec-
tral sensitivity F , the surface reflectance P of the material
being imaged, and the spectral distribution of the illumina-
tion L in the scene, integrated over the visible spectrum Λ
as follows:

Icx =

∫
λ∈Λ

Lx,λPx,λFc,λ, c ∈ {R,G,B}. (1)

If the illumination in the scene changes, the RAW pixel in-
tensity value recorded by the sensor changes. Likewise, if
a sensor with a different CFA is used, the RAW pixel in-
tensity value changes. This is illustrated in Fig. 2. With
modern smartphones being equipped with more than one
camera, the second sensor may even be on the same device.

The camera’s ISP is responsible for processing the RAW
sensor image to the sRGB color space. The ISP processes
the RAW image to remove the color cast from the scene il-
lumination via a white-balancing operation, and transforms
the image from a sensor-specific color space to the device-
independent sRGB color space. Ideally, the ISP should
produce the same canonical sRGB representation of the
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scene, irrespective of changes in illumination or the sensor.
In practice, however, cameras apply additional proprietary
photo-finishing routines to make the image more aestheti-
cally appealing. As a result, the exact same scene may look
visually different for different cameras [20].

The image formation for graphics images is significantly
simpler. Graphics engines render directly to sRGB and have
no notion of sensor spectral sensitivities or Bayer patterns.
Moreover, CG images do not require white balancing—
renderings are implicitly white-balanced. Graphics render-
ings typically do not include additional photo-finishing op-
erations, such as tone manipulation, that need to be undone
(see supplemental material for more details). Graphics do
include a perceptual gamma encoding that is part of the
sRGB standard. Some engines, such as Unreal, allow ren-
dering to an ungamma sRGB, referred to as linear-sRGB.
From Fig. 2, we see that a single graphics image can there-
fore be mapped to different illuminations under the same
sensor or different sensors under the same illumination. To
understand how to perform this mapping, we need to pro-
vide an overview of white-balance and color correction.

3.2. Camera white-balance and color correction

Unprocessed RAW camera images contain noticeable
color cast due to the scene illumination. Cameras com-
pensate for scene illumination using an auto-white-balance
(AWB) procedure. AWB is a two step process that involves
(i) estimating the color of the illumination in the camera
sensor’s RAW-RGB color space, and (ii) correcting the im-
age based on the estimated illumination. Cameras estimate
the illuminant from the image using an onboard AWB algo-
rithm. While traditional AWB algorithms were based on
image statistics [11, 22, 47, 30], DNN-based approaches
have grown in popularity in recent years [28, 8, 9, 35]. The
estimated illuminant is saved in the ‘AsShotNeutral’ (ASN)
tag in the RAW DNG file. The second step of white-balance
correction is as simple as multiplying the image by a 3×3
diagonal matrix constructed directly from the illumination
parameters. This operation divides out the image per color
channel by the scene illumination producing an image that
appears to be lit under a neutral illumination.

After white balance has been performed, the color cast
from the scene illumination has been removed. However,
the white-balanced RAW image is still in a sensor-specific
color space. Cameras apply a color transform to map the
RAW image into a canonical perceptual color space, such
as CIE XYZ. This is done using a full 3×3 matrix called the
color space transform (CST) matrix. However, the CST is
not a fixed matrix, but varies with the illumination. This is
because white balance balances only the white/achromatic
colors; non-neutral scene materials are not guaranteed to be
properly corrected [18, 13]. Errors in non-neutral colors are
dependent on the scene illumination. Therefore, to achieve

better color reproduction, the CST matrix is computed by
interpolating, based on the estimated illuminant, between
two factory-calibrated CSTs computed for two fixed illu-
minations. These two fixed illuminants corresponding to
the pre-calibrated matrices are selected to be far apart in
terms of their correlated color temperature (CCT) values.
D65 (daylight) and Standard light A (indoor-incandescent)
are typically chosen as the illuminants on most cameras.
These factory-calibrated matrices are part of the camera’s
firmware, and are recorded in the ‘ColorMatrix1’ and ‘Col-
orMatrix2’ tags in the DNG file. Their corresponding illu-
minants are stored in the ‘CalibrationIlluminant1’ and ‘Cal-
ibrationIlluminant2’ tags in the DNG. DNG-rendering soft-
ware, such as Adobe Photoshop or Gimp, uses these tags in
the DNG metadata to interpolate a CST matrix based on the
estimated illuminant value recorded in the ASN tag.

Cameras often perform photofinishing operations in CIE
XYZ or ProPhoto color spaces because they have a wider
gamut than sRGB. Finally, they convert the photofinished
image to the sRGB space. This step uses a fixed 3× 3
‘XYZ2sRGB’ matrix. The combination of the CST and
XYZ2sRGB matrix is often called the color correction ma-
trix (CCM). As previously mentioned, CG images are ren-
dered directly to sRGB without these intermediate steps and
with an implicit white balance.

To convert CG images to RAW images from a specific
sensor, we need to convert from sRGB space to the sensor’s
native color space, and apply a color cast assuming an illu-
minant in the scene. We achieve this with the help of a small
set of RAW DNGs from the target sensor. We first extract
the ASN tags and build a distribution around them to ran-
domly sample illuminations from. Alternately, if the ground
truth illumination in the scene is available, (e.g., as in the
case of color constancy datasets, such as the NUS [17]), it
is more accurate to use these instead of the ASN values.
Based on the randomly sampled illuminant vector, we esti-
mate the CST matrix by interpolating between the ‘Color-
Matrix1’ and ‘ColorMatrix2’ tags in the DNG. Our method
utilizes only the metadata in the DNG files (e.g., as-shot-
neutral tags for illumination sampling, CST matrices) and
does not look at image content. As such, we require images
under different lighting conditions, regardless of the actual
scene content.

Formally, let us assume we have M DNGs from the tar-
get sensor. We denote the chromaticity values (RG and B

G ) of
M ASN parameters extracted from these DNGs by the set
D. We fit a 2D multivariate Gaussian distribution of joint
chromaticity values around the set D [41]. Then, we ran-
domly sample an illuminant L from this distribution N as:

L ∼ N (µ,Σ) , (2)
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Figure 3. A visualization of our graphics to RAW processing pipeline. Given sRGB graphics images, and a set of RAW DNGs from
the target sensor, we can convert the graphics images to realistic RAW images that mimic the illumination and spectral profile of the
target sensor. We can also save our processed RAW image and associated metadata into a DNG file that can be rendered with standard
DNG-rendering software.
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where µ and Σ are the mean and covariance of the nor-
malized chromaticity values in D, respectively, and L, µ ∈
R2 and Σ ∈ R2×2. Next, we compute the correlated
color temperature corresponding to the sampled illumina-
tion L [13, 3]. Based on the estimated CCT value, the two
pre-calibrated CSTs, SA and SD65, are interpolated as:

SL = αSA + (1− α)SD65, α ≥ 0, (4)

where

α =
CCT−1

L − CCT−1
D65

CCT−1
A − CCT−1

D65

. (5)

To process the graphics image, we first apply the inverse
of the fixed XYZ2sRGB matrix followed by the inverse of
the CST matrix (jointly called the CCM), and finally invert
the white balance. While applying the inverse WB, we han-
dle saturated pixel intensities using the highlight-preserving
transform in [10]. Fig. 3 shows an overview of our method.

3.3. Other ISP operations and saving to DNG

In addition to WB and color correction, ISPs apply other
operations to enhance the visual appeal of the image. While
most operations need to be inverted when reverting from
a camera-rendered sRGB to RAW, operations such as tone
mapping typically are not applied to graphics sRGB im-
ages. Cameras apply a digital gain to the image based on the
camera’s auto exposure algorithm. We mimic this using a
global scale factor sampled from a normal distribution, and
applied along with the white balance inversion step [10].
Camera sensors have a Bayer layout, with each photosite
housed beneath a single red, green, or blue color filter. De-
mosaicing is the process of estimating all three color values
at each pixel location. To invert this step, we simply drop
two of the three color values at each pixel location based on

the Bayer pattern. To mimic sensor noise, we can add syn-
thetic noise to the RAW image. The heteroscedastic Gaus-
sian model [23, 33, 36] is the most widely used noise model.
Heteroscedastic noise is modeled as a combination of shot
and read parameters as ni ∼ N (0, β1xi + β2), where xi,
ni are the clean, noisy pixel intensities at location i, and β1

and β2 are the shot and read noise parameters. However,
more complex models (e.g., [49]) can also be used.

Our RAW image and associated metadata can be saved in
the same DNG format as used by the target camera. Inside a
DNG, RAW data is typically stored in Bayer format before
black- and white-level adjustment, with the range of pixel
intensity values determined by the sensor’s bit depth. To
save to DNG, we scale pixel intensities according to the tar-
get bit depth. Specifically, we denormalize the image based
on the black- and white-level values as Idn = I(wl−bl)+bl,
where Idn is the image I after denormalization, and bl, wl
are the black- and white-level values, respectively. Using a
DNG from the target sensor as a reference DNG, we write
the denormalized RAW data to file. We also write our sam-
pled illuminant into the ASN tag. Our graphics DNG can be
rendered using any commercially available DNG-rendering
software. In Fig. 1, (B) is our graphics DNG mimicking a
Samsung S20 FE smartphone camera, while (A) is a real
camera DNG from the Nikon D40 DSLR camera down-
loaded from the NUS dataset [17].

4. Experiments
We first show visual comparisons between our method

and competing approaches in their ability to convert a
graphics image to a RAW image, and then render the syn-
thetic RAW image back to sRGB. We also evaluate our
method’s effectiveness on three tasks: (i) RAW image de-
noising, (ii) illumination estimation, and (iii) a neural ISP.

4.1. Datasets and our nighttime CG images

For the denoising and neural ISP experiments, we use the
nighttime images from the dataset of [41]. This dataset con-
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Figure 4. Comparison with UPI [10] on a CG image from our nighttime dataset. UPI samples the R
G

, B
G

chromaticity values uniformly and
independently, often resulting in samples that are very different from real illuminations. UPI’s CST matrix is also sampled independently
of the illumination. If there are N cameras {Sk}Nk=1 in the target dataset, the CST matrix is computed as a random convex combination
of the pre-calibrated CST matrices SD65

k , k = 1 to N , corresponding to the D65 illuminant from the N cameras. We adopt a multivariate
Gaussian sampling approach that closely follows the distribution of real illuminations. As performed on a real camera ISP, our CST matrix
is computed based on the CCT value of the sampled illumination, by interpolating between the two pre-calibrated CST matrices, SA and
SD65, corresponding to a specific target sensor S. The vertical bar to the left of the images represents the color of the illuminant in the
RAW space – L1 and L2 represent illuminant samplings by UPI and our method. For this example, the L2 sample is the same for both
methods. When the synthetic RAW images are rendered to sRGB using Photoshop, our method produces more natural colors.

tains 105 real low-light nighttime scenes captured in RAW
format using a Samsung S20 FE smartphone camera. To
our knowledge, a high-quality nighttime CG dataset is not
available. To address this, we generated a dataset contain-
ing 292 nighttime CG images. We used the Unreal Engine
5 [6] with path tracing to produce highly realistic images,
and output data in 32-bit floating point EXR format (see
supplemental materials for examples).

For the illumination estimation task, we use the well-
established NUS color constancy dataset [17]. The NUS
dataset has RAW images captured using nine different
DSLR cameras. For illumination estimation, we apply our
method on CG images from the SYNTHIA [44] dataset.

4.2. Comparison methods and visual results

Our closest competitor is the RAW unprocessing method
of UPI [10]. UPI assumes that the metadata from the target
sensors is available. In particular, the white-balance and
digital gain ranges, color correction matrices, and noise pa-

rameters for the target sensors have to be specified to their
algorithm. The parameters are assimilated over the pool of
target sensors. We use the official implementation from the
authors, and replace the parameters appropriately by select-
ing the cameras from the NUS dataset [17] and the night-
time dataset of [41] as the target sensors (since those are the
datasets we have selected for our experiments). UPI sam-
ples the R

G , BG white-balance gain values uniformly and in-
dependently to apply the illumination color cast. The color
space transform is computed as a random convex combi-
nation of the pre-calibrated color space transforms corre-
sponding to the D65 illuminant from all the target sensors.
This convex combination is computed independent of the
sampled illuminant. This is shown in the left column of
Fig. 4. Notice that our sampling approach, shown on the
right, is more realistic, and closely follows the processing
steps on an actual ISP—our multivariate Gaussian sampling
of the illumination produces samples close to the ground
truth illuminations, and the CST matrix is computed, based
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Figure 5. A visual comparison between EnligtenGAN [29], UPI [10], and our method. Two DSLR cameras from the NUS dataset [17] are
selected as the target sensors. The input image is from our CG dataset. The vertical bar to the left of the images represents the color of the
illuminant in the RAW space, with two random illuminants shown per sensor for each method. For both sensors, the illuminant in the first
example is chosen to be the same for EnlightenGAN [29], UPI [10], and our method, while the illuminants are different across methods in
the second example, as shown by the chromaticity plots. The sRGB outputs are rendered using Photoshop under the AWB setting.

on the sampled illuminant, by interpolating between the two
pre-calibrated CST matrices for that specific sensor. The
RAW images corresponding to two different randomly sam-
pled illuminants L1, L2 are shown in the figure, with L2 be-
ing the same for both UPI and our method. The vertical bar
on the left of each image shows the color of the illuminant
in the RAW space. For both methods, we save the RAW
images to DNG format, and replace the ASN tag with the
sampled illumination. We use the Samsung S20 FE main
rear camera’s DNG from the dataset of [41] for this exam-
ple. The bottom row of the figure shows Adobe Photoshop’s
sRGB rendering of the DNG files with an auto white bal-
ance applied. It can be clearly observed that our method
produces a more natural color rendering that resembles the
original graphics image. Although the two sampled illumi-
nants have very different RAW color casts, applying Photo-
shop’s AWB correction on our RAW DNGs produces nearly
identical results. This is in line with our expectation that the
rendered output should be independent of the environmen-
tal illumination. However, with Photoshop’s AWB applied,
UPI’s strategy produces undesirable color casts in the ren-
dered sRGB images, even for the illuminant L2 which lies
close to the distribution of real illuminants.

We also compare against an unpaired generative ap-
proach using the well-known EnlightenGAN model [29].

We train an EnlightenGAN model per camera to map graph-
ics sRGB images to RAW images from the target sensor.
Since a single graphics image can map to many RAW im-
ages with different illumination color casts, we train En-
lightenGAN to map sRGB images to white-balanced RAW
images. The color cast is applied as a post-process step to
the output of EnlightenGAN by inverting the WB, with the
illuminant sampled from the illumination space of the target
sensor following the approach of UPI. We show results of
EnlightenGAN in the first column of Fig. 5 with two DSLR
cameras from the NUS dataset [17] selected as the target
sensors. Two different illuminations (with their colors rep-
resented by the vertical bars) are shown for each sensor. As
before, the RAW images are saved to DNG format with the
ASN tag set to the sampled illuminant. The sRGB images
are obtained using Photoshop with the AWB setting applied.
It can be observed that there are unnatural color artifacts in
the rendered output of EnlightenGAN. Fig. 5 also shows
the results of UPI and our method in the second and third
columns, respectively. Once again, our method produces
more natural colors. See supplemental for more results.

4.3. RAW denoising

We use the nighttime dataset of [41] for our RAW image
denoising experiment. Noisy RAW images at ISOs 1600
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Table 1. RAW image denoising results on the nighttime dataset
of [41].

Model ISO 1600 ISO 3200
PSNR SSIM PSNR SSIM

EnlightenGAN [29] 48.82 0.9906 47.25 0.9872
UPI [10] 49.05 0.9904 47.51 0.9873
Ours 49.37 0.9911 48.16 0.9892

Real 49.80 0.9927 48.25 0.9899

and 3200, and their corresponding clean RAW images are
available as part of the dataset. We choose the Restormer
model in the recent work of [54] as our denoiser. To gener-
ate synthetic RAW images, we use our nighttime graphics
dataset. We generate “clean” ground-truth RAW data by ap-
plying our method to these images. The dataset of [41] also
provides a calibrated noise model for the S20 FE main rear
camera, with which the dataset was captured. The calibra-
tion procedure assumes the standard heteroscedastic Gaus-
sian noise model. We use their noise generator to generate
synthetic noisy RAW images at ISOs 1600 and 3200. Sim-
ilarly, we generate noisy/clean RAW image pairs by apply-
ing UPI and EnligtenGAN on the same graphics data and
using the same noise generator. For comparison, we also
train a supervised model exclusively on real data from [41].
Additional implementation details are provided in the sup-
plementary material. PSNR (dB) and SSIM [48] values av-
eraged over the 105 real images at ISOs 1600 and 3200 in
the dataset of [41] are reported in Table 1. We outperform
both EnlightenGAN and UPI while being on par with the
model trained on real data.

4.4. Illuminant estimation

Next, we examine the task of illuminant estimation us-
ing the NUS dataset [17]. Since the NUS images are
mostly outdoor or well-lit indoor scenes, we do not use
our nighttime graphics data. Instead, we use the SYNTHIA
dataset [44]. We generate synthetic RAW data from the CG
images in this dataset using EnlightenGAN, UPI, and our
method. We use a lightweight CNN architecture from [24]
as our illuminant estimation network. Network architecture
as well as training and testing details can be found in the
supplementary material. Angular errors averaged over all
nine cameras from the NUS dataset [17] are presented in Ta-
ble 2. Our approach outperforms both EnlightenGAN and
UPI by a significant margin, and has the least gap with the
models trained on real data.

4.5. Neural ISP

For our final task of a neural ISP, we once again use
the nighttime images from the dataset of [41]. To study
the color reproduction accuracy in isolation, independent of
the effects of noise, we examine the first scenario described
in [41] of a neural ISP that renders a clean nighttime RAW

Table 2. Illuminant estimation results on the NUS dataset [17].
Angular errors are reported.

Model Mean Median Top 25% Worst 25%

EnlightenGAN [29] 7.01 6.82 3.48 11.07
UPI [10] 6.26 5.89 2.92 10.33
Ours 4.21 3.38 1.30 8.57

Real 3.02 2.17 0.75 6.77

Table 3. Quantitative results on our neural ISP task on the night-
time dataset of [41]. A lower ∆E [45] is better.

Model PSNR SSIM ∆E [45]

EnlightenGAN [29] 35.58 0.965 3.137
UPI [10] 36.43 0.966 2.907
Ours 38.10 0.974 2.301

Real 38.32 0.974 2.133

image to sRGB. In their work, the sRGB images are gen-
erated using a simplified Python-based software ISP. For
uniformity in the software ISP used throughout our exper-
iments, we use Photoshop to render their RAW images to
sRGB. A UNet [43] architecture is used as the ISP model
in [41]. We use the official implementation from the au-
thors for training and testing. We use our nighttime dataset
to generate synthetic training data for our method as well as
EnligtenGAN and UPI. More details and qualitative com-
parisons are provided in the supplementary material. Quan-
titative results are presented in Table 3. Our method per-
forms on par with the model trained on real data, while our
closest competitor UPI produces a PSNR value that is a sig-
nificant 1.6 dB lower than our result.

5. Conclusion

We have presented a framework for converting computer
graphics images to mimic RAW sensor images. As part
of this work, we described how graphics images are di-
rectly rendered to sRGB and how cameras process RAW
images to sRGB. This understanding allowed us to propose
a method to convert a graphics image to any target sen-
sor’s RAW color space, while emulating the RAW image
under different illuminations. Compared to methods target-
ing camera sRGB images, our approach produces more vi-
sually realistic results. Moreover, our proxy experiments
on three low-level vision tasks—RAW image denoising, il-
lumination estimation, and night photography rendering—
show our method provides more accurate synthetic RAW
data. To test the night photography task, we generate 292
realistic CG images of night and low-light scenes that we
will make publicly available along with our code for graph-
ics2RAW conversion. We believe this work will be another
useful tool in reducing the burden of data collection via
computer graphics imagery.
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[51] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian
Dziadzio, Thomas J. Cashman, and Jamie Shotton. Fake it
till you make it: Face analysis in the wild using synthetic
data alone. In ICCV, 2021. 1, 2

[52] Yazhou Xing, Zian Qian, and Qifeng Chen. Invertible image
signal processing. In CVPR, 2021. 2

[53] Lu Yuan and Jian Sun. High quality image reconstruction
from RAW and JPEG image pair. In ICCV, 2011. 2

[54] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In CVPR, 2022. 8

[55] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling
Shao. CycleISP: Real image restoration via improved data
synthesis. In CVPR, 2020. 2

12631


