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Abstract

We address a challenging lifelong few-shot image gen-
eration task for the first time. In this situation, a gener-
ative model learns a sequence of tasks using only a few
samples per task. Consequently, the learned model encoun-
ters both catastrophic forgetting and overfitting problems
at a time. Existing studies on lifelong GANs have pro-
posed modulation-based methods to prevent catastrophic
forgetting. However, they require considerable additional
parameters and cannot generate high-fidelity and diverse
images from limited data. On the other hand, the existing
few-shot GANs suffer from severe catastrophic forgetting
when learning multiple tasks. To alleviate these issues, we
propose a framework called Lifelong Few-Shot GAN (LFS-
GAN) that can generate high-quality and diverse images
in lifelong few-shot image generation task. Our proposed
framework learns each task using an efficient task-specific
modulator - Learnable Factorized Tensor (LeFT). LeFT is
rank-constrained and has a rich representation ability due
to its unique reconstruction technique. Furthermore, we
propose a novel mode seeking loss to improve the diversity
of our model in low-data circumstances. Extensive experi-
ments demonstrate that the proposed LFS-GAN can gener-
ate high-fidelity and diverse images without any forgetting
and mode collapse in various domains, achieving state-of-
the-art in lifelong few-shot image generation task. Surpris-
ingly, we find that our LFS-GAN even outperforms the ex-
isting few-shot GANs in the few-shot image generation task.
The code is available at Github.

1. Introduction
Deep learning has achieved remarkable success in recent

years, particularly in a single task learning on a large dataset
such as ImageNet [9] or FFHQ [24]. However, obtaining a
large amount of refined data for real-world applications is
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prohibitively expensive, and there are many domains where
only limited data can be collected, such as the artistic do-
main. Additionally, when faced with long sequences of
tasks over time, it is inevitable to train a new model for each
target task.

In this context, many studies have recently highlighted
the importance of lifelong few-shot learning. Lifelong few-
shot learning combines two challenging settings: lifelong
learning and few-shot learning. It seeks to overcome catas-
trophic forgetting [32, 12, 26] when learning a sequence of
tasks over time, while learning from limited data without
any overfitting problem. By integrating the concepts of life-
long and few-shot learning, lifelong few-shot learning holds
great potential for real-world applications where data is lim-
ited or costly to obtain, and where learning a new model for
each task is not practical.

Previous studies on lifelong few-shot learning have pri-
marily focused on discriminative tasks [1, 31, 21, 38, 37,
39]. However, lifelong few-shot learning on generative
tasks is unexplored before. Lifelong few-shot image gen-
eration task involves training a model to generate realis-
tic and diverse images from handful training images, while
continually learning new tasks and preserving the ability to
generate images from the previous domains (see Figure 1).
There are two key challenges in this setting. First, since the
model learns tasks sequentially, it easily forgets the ability
to generate samples of the previous tasks. Second, since
the model learns from a biased and sparse distribution, it
suffers from the mode collapse problem [2], i.e., it is prone
to re-generate the same training samples or produce similar
images regardless of the noises provided. Addressing these
challenges is critical to enable the successful application of
lifelong few-shot image generation in the real-world, where
data is limited or costly to obtain.

To alleviate catastrophic forgetting, recent studies in the
field of lifelong image generation have proposed a weight
modulator inspired by the affine transformation [20], which
enables generative models to learn task-specific informa-
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Figure 1: Illustration of our proposed lifelong few-shot image generation task. We construct a sequence of few-shot tasks. In
the training phase, the model learns each task from the pretrained model. By updating only task-specific parameters applied
to the model, the model can learn the current task without forgetting. In the inference phase, we can generate high-fidelity
and diverse images of not only the current task but also the previous tasks by adopting task-specific parameters to the model.

tion in lifelong setting [47, 8, 42, 40]. However, conven-
tional generative models [22, 24, 25, 23] consist of con-
volutional layers with high-dimensional weights, resulting
in a significant increase of the number of parameters re-
quired to modulate them. As the number of tasks increases,
the memory required to store these parameters becomes a
significant burden. Furthermore, since lifelong generative
models are designed to synthesize decent images from suf-
ficient data, they suffer from mode collapse with handful
training images. In the realm of few-shot image generation
task, many works propose regularization-based methods to
maintain the rich diversity of source models [28, 35, 45, 52].
However, they are prone to forget how to generate the previ-
ous tasks when learning a new task, since they fine-tune the
models to learn the new task. A recent study [51] has intro-
duced a modulation-based approach. This method divides
the weights into be modulated and fine-tuned parts, based
on their significance. Although this work adopts a modula-
tion technique, it suffers from catastrophic forgetting due to
its fine-tuning part.

To address these challenges, we propose a novel frame-
work Lifelong Few-Shot Generative Adversarial Network
(LFS-GAN). Our LFS-GAN learns a new task via a power-
ful weight modulation technique called the Learnable Fac-
torized Tensor (LeFT) that captures task-specific knowledge
with low memory costs while freezing learned weights from
the source task. Our proposed LeFT reduces the mem-
ory burden by decomposing the weight tensor and restor-
ing it during the forward operation to modulate the weight.
This method enables the efficient and effective generation
of high-quality images. Furthermore, we propose a cluster-

wise mode seeking loss to improve the diversity of gener-
ated images. The mode seeking loss [30] has shown its ef-
fect to diversify the generated images of GANs. However,
in a low-data circumstance, a simple application of mode
seeking loss shows less effect because the generated images
tend to be similar to the training images. Thus, we alter the
mode seeking loss to be effective in our task and achieve
greater diversity. Lastly, we find that the intra-cluster LPIPS
cannot capture the imbalanced generation with respect to
training images. To resolve this issue, we propose a novel
diversity measure called Balanced Inter- and Intra-cluster
LPIPS (B-LPIPS) to accurately evaluate generation diver-
sity in our task.

Our main contributions can be summarized as follows:

• To the best of our knowledge, we formulate and tackle
a challenging lifelong few-shot image generation task
for the first time.

• We introduce a novel weight modulation technique,
called Learnable Factorized Tensor (LeFT), which en-
ables the generative model to learn new tasks without
forgetting and significant parameter growth.

• To enhance diversity in the generated images, we pro-
pose a cluster-wise mode seeking loss that maximizes
the relative distances of intermediate latent codes, fea-
ture maps, and images.

• Extensive experiments, including our novel metric B-
LPIPS, demonstrate that LFS-GAN outperforms the
current state-of-the-art methods on generating high-
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quality and diverse images not only in lifelong few-
shot image generation task but also in few-shot image
generation task.

2. Related Work
Lifelong Image Generation. Recently, several methods
have been proposed to alleviate catastrophic forgetting in
generative models that are trained on a sequence of tasks
continuously. One such approach is Lifelong GAN [48],
which uses a knowledge distillation [16] based technique
to prevent catastrophic forgetting. As a result, even when
the generative model learns a new task, it minimally loses
the previously acquired knowledge. Another method, MeR-
GAN [44], prevents catastrophic forgetting by utilizing
memory replay techniques, such as joint retraining and
aligning replays. During joint retraining, replayed samples
are utilized, while the aligning replay forces the current gen-
erator to generate the same samples as the auxiliary gener-
ator. GAN-Memory [8] proposes a non-forgetting lifelong
image generation algorithm by using additional memory to
learn the newly arrived task. It introduces variants of mod-
ulation algorithms, such as FiLM [36] and AdaFM [50], to
learn the current task. Despite the effectiveness of these
methods, they have significant limitations in the low-data
regime, such as severe mode collapse. Additionally, these
methods require a large number of parameters for each new
task, resulting in accelerating overfitting of the network.
In contrast, our proposed approach takes into consideration
the scarcity of training data in few-shot learning scenarios
and employs a significantly reduced number of trainable
parameters, effectively mitigating the risk of over-fitting.
LoRA [18] also studies the efficient fine-tuning technique of
Transformers [5] in natural language processing area. How-
ever, its decomposition and reconstruction schemes are too
simple to apply to convolution layers of generative models.

Few-Shot Image Generation. Recently, there has been
significant progress in few-shot classification tasks [11, 4,
3, 19]. This has led to a great interest in few-shot im-
age generation, both in conditional and unconditional set-
tings. The goal of few-shot image generation task is to
generate realistic and diverse images from a limited num-
ber of training samples. FUNIT [28] explores image-to-
image translation between source and target domains in
few-shot context. Fusion-based methods, such as F2GAN
[17], LoFGAN [14], and AGE [10], have also studied few-
shot image generation in conditional settings, where there
are a fixed number of training images per class or category.
Our work focuses on a more challenging setting, where we
have only a limited number of images per dataset or do-
main. Other studies on the unconditional setting are Fast-
GAN [29], which proposes a fast and stabilized GAN archi-
tecture and a self-supervised learning method, and MoCA

[27], which employs a prototype memory with an attention
mechanism [41]. However, these studies tackle scenarios
where the number of training samples is more than a hun-
dred, while our approach addresses the extreme few-shot
setting, where only ten training samples are available.

Many recent works have shown that leveraging pre-
trained networks trained on large datasets can be effective in
the extreme low-data regime. For instance, TGAN [43] ar-
gues that fine-tuning a network from a large source network
can lead to effective results in few-shot setting. FreezeD
[33] fine-tunes a pre-trained GAN by freezing the earlier
layers of the discriminator. BSA [34] fine-tunes the pre-
trained network by adapting batch statistics, while EWC
[28] uses the Fisher information matrix to prevent changes
in important weights. CDC [35] preserves pairwise dis-
tances among generated samples, and RSSA [45] utilizes a
self-correlation matrix for structural consistency. DCL [52]
maximizes mutual information using contrastive loss [6].

Recent work, AdAM [51], adopts a modulation-based
approach in few-shot image generation, splitting the
weights into modulated and fine-tuned components to gen-
erate appropriate images in large domain gaps. Moti-
vated by AdAM, our proposed approach also employs a
modulation-based approach. Unlike AdAM, our method
shows no forgetting in lifelong few-shot image generation
and exhibits superior generation quality and diversity.

3. Method
In this section, we first formulate lifelong few-shot im-

age generation task (Section 3.1). To learn a generative
model for this task, we propose a novel framework - Life-
long Few-Shot GAN (LFS-GAN). In Section 3.2, we intro-
duce a lightweight modulation technique - Learnable Fac-
torized Tensor. To enhance the generation diversity of our
LFS-GAN, we adopt a variant of mode seeking loss, de-
scribed in Section 3.3. Furthermore, we point out shortcom-
ings of the existing metric for detecting imbalanced gener-
ation and propose a novel diversity measure i.e., Balanced
Inter- and Intra-LPIPS (B-LPIPS) in Section 3.4.

3.1. Lifelong Few-Shot Image Generation Task

In this section, we first define lifelong few-shot image
generation task. As illustrated in Figure 1, given a se-
quence of tasks T = {T1, T2, ..., TN}, each task consists
of a dataset which contains the images, denoted as Dt =
{xt

i}ki=1. Here, k means the number of training samples, so
we can call our task as k-shot image generation task. With
few training samples, the model easily converges to the bi-
ased distribution, which causes the model to be overfitted.
Moreover, as the given sequence of tasks becomes longer,
the trained model significantly forgets the previous tasks.
Our goal is to train a model to have the following ability:
after training on the tth task, the trained model can generate
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Figure 2: StyleGAN2 generator architecture with our pro-
posed Learnable Factorized Tensor (LeFT). ”A” and ”B”
denote the affine transformation and noise injection used in
the original StyleGAN2 implementation, respectively. We
apply LeFT on FC layers and conv. layers to modulate the
original weights. The original weights are kept frozen dur-
ing learning a new task while only LeFT is trainable.

the realistic and diverse samples of both the current task Tt
and the previous tasks {T1, ..., Tt−1}.

3.2. Learnable Factorized Tensor

To train a generative model on a sequence of tasks with-
out catastrophic forgetting on the previous tasks, we adopt
a modulation-based approach. Inspired by the style trans-
fer literature [20], we modulate the pretrained weights by
affine transformation. The affine transformation consists of
two operations - multiplication and addition. We use Style-
GAN2 [25] as our backbone, and each convolution layer
has a weight tensor W ∈ Rcout×cin×k×k. Here, cout and
cin denote the size of the output and input channels, re-
spectively, and k is the kernel size. We modulate the origi-
nal weight tensor W to obtain the modulated weight tensor
Ŵ ∈ Rcout×cin×k×k like:

Ŵ = W ⊙ Γ+B, (1)

where Γ ∈ Rcout×cin×k×k and B ∈ Rcout×cin×k×k are
the task-specific modulation parameters which are respon-
sible for multiplication and addition, respectively, and ⊙ is
a Hadamard-product. In training on each task, we set the
original weight W frozen and only the modulation parame-
ters Γ,B trainable. By training only the modulation param-
eters, we can learn new tasks while not updating the pre-
trained weights. Therefore, the model can learn multiple
tasks without forgetting. We also apply the same approach
to the fully-connected layers which consist of the weight
tensor WFC ∈ Rdout×din , where dout and din are the di-
mensions of the output and input, respectively. In Figure
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Figure 3: The reconstruction process of LeFT. The above
example assumes that the rank r=2.

2, we demonstrate which layers of the StyleGAN2 genera-
tor are modulated. However, as the weight tensor of con-
volution layers is high-dimensional, storing task-specific
modulation parameters for each task results in a serious
memory burden. Furthermore, it is well-known that adapt-
ing a number of parameters to learn each low-shot task
accelerates the over-fitting problem. To address these is-
sues, we propose a novel weight decomposition technique
called Learnable Factorized Tensor (LeFT). A key oper-
ation of LeFT is a rank-constrained decomposition. For
example, we first reshape one of the modulation parame-
ter Γ to be three-dimensional Γ ∈ Rcout×cin×K , where
K is a square of kernel size. Therefore, the original ten-
sor can be expressed using three two-dimensional matrices:
Mout

1 ∈ Rcout×r,Minst
1 ∈ Rr×r·K , and Min

2 ∈ Rcin×r,
where r is a rank. We can reconstruct the original tensor by:

M1 = Mout
1 ⊗Minst

1 , (2)
M′

1 = R1(M1), (3)

M2 = Min
2 ⊗M′

1, (4)
Γ = RΓ(M2), (5)

where ⊗ is a matrix-multiplication operation, and
R1 : Rcout×r·K → Rr×cout·K and RΓ : Rcin×cout·K →
Rcout×cin×k×k are the reshaping functions. For the addi-
tion parameter B, we reconstruct by using two-dimensional
matrices: Ain

2 ∈ Rcin×r and Ainst
2 ∈ Rr×K :

A2 = Ain
2 ⊗Ainst

2 , (6)
B = RB(A2), (7)

where RB : Rcin×K → Rcout×cin×k×k is a function oper-
ating repetition and reshaping. By the above efficient de-
composition and reconstruction scheme, we can reduce the
number of modulation parameters significantly about less
than 1%.
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From Equation 2, recovering a three-dimensional tensor
through multiplication is similar to the operation of multi-
layered perceptron (MLP). In MLP, using bias and activa-
tion functions can generally improve performance. To apply
bias and activation to the LeFT, we additionally introduce
two matrices: Aout

1 ∈ Rcout×r and Ainst
1 ∈ Rr×K . These

two matrices are also rank-constrained. We can reconstruct
the bias A1 ∈ Rr×cout·K as:

A1 = Aout
1 ⊗Ainst

1 , (8)
A′

1 = R2(A1), (9)

where R2 : Rcout×K → Rr×cout·K is a repetition and re-
shaping function. Instead of Equation 3, we add the bias A1

to the intermediate matrix M1 and apply activation function
act(·) as follows:

M′
1 = R1(act(M1 +A′

1)). (10)

We experimentally find that using ReLU function as the ac-
tivation function is most effective. The overall process is
shown in Figure 3. We also apply LeFT on fully-connected
layers. The decomposition and reconstruction processes are
described in the Supplementary.

3.3. Cluster-Wise Mode Seeking Loss

Diverse image generation is a major interest when the
number of training images is extremely small. Due to the
lack of concerns on diversity, the existing modulation-based
methods [8, 40, 51] show inferior diversity performance
compared to regularization-based [28, 35, 45, 52] methods.
Furthermore, rigid regularizations to preserve the diversity
of source domain often result in unnatural distortions on
generated images. To enhance diversity within the target
domain, the mode seeking loss [30] and its variants [7] have
shown diverse image generation. The mode seeking loss in-
troduced in [30] is as follows:

Lms = min(
∆z

∆I
), (11)

where I and z are the generated images and the input noise
vectors, respectively, and ∆ is a mean absolute error as a
distance measure. The mode seeking loss maximizes the
distance of images with respect to the distance of the input
noise vectors. However, in few-shot setting, the generated
images are prone to be close to the given training images.
In this situation, applying the original mode seeking loss is
not effective. Therefore, we propose a cluster-wise mode
seeking loss - a variant of mode seeking loss which is effec-
tive in few-shot scenario. Initially, we set clusters as many
as B, a batch size of the training images. We generate 4B
images and assign each of them to the perceptually closest
cluster. Different from [30], we utilize the intermediate la-
tent vector w ∈ W and the feature map Fl of layer l. We

(a) The size of each cluster. (b) I-LPIPS vs. B-LPIPS.

Figure 4: We measure the number of each cluster and its
corresponding I-LPIPS and B-LPIPS on learning Babies
task. The number of fake image is 1000 and the gray line
represents the ideal number 100. We observe (a): the distri-
bution of each cluster’s size is highly imbalanced, (b): the
I-LPIPS cannot reflect this biased distribution.

maximize w, Fl, and I with respect to z, w, and w within
each cluster ci. Thus, our cluster-wise mode seeking loss is
computed as:

dw =
∆w

∆z
, dF =

1

L

L∑
l=1

∆Fl

∆w
, dI =

∆I

∆w
, (12)

Lcms =min(
1

1
B

∑B
i=1Ez,w,F,I∼ci [dw + dF + dI ]

). (13)

We apply this cluster-wise mode collapse loss to update the
generator. The total loss functions for the generator and the
discriminator the are:

LG = LG
adv + λLcms, (14)

LD = LD
adv, (15)

where LG
adv and LD

adv are the non-saturating adversarial
losses proposed in [13], and λ is a hyper-parameter that con-
trols the effect of the proposed cluster-wise mode seeking
loss. We experimentally find that using λ = 1 is the most
effective.

3.4. Balanced Inter- and Intra-Cluster LPIPS

Introduced in [35], intra-cluster LPIPS (I-LPIPS) has
been widely used to measure diversity in few-shot image
generation task [52, 51]. In I-LPIPS metric, the fake im-
ages are clustered to the real training images by the nearest
LPIPS metric [49]. As a result, I-LPIPS is computed by av-
eraging pairwise LPIPS distance within each cluster. How-
ever, we empirically find that in some cases, the size of the
clusters can be highly imbalanced. Furthermore, there are
cases where some clusters contain no generated images that
are related to the corresponding training images. In such a
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Figure 5: Qualitative comparison on lifelong few-shot image generation task. Given source image of left, we visualize the
generated image of after each task and after the last task.

situation, intra-cluster LPIPS can not account for this im-
balance. Figure 4 shows an example of the above situation.

To measure diversity in aware of cluster balance, we pro-
pose a novel metric called Balanced Inter- and Intra-Cluster
LPIPS (B-LPIPS). We introduce a concept of entropy to re-
flect the balance of each cluster. For cluster ci, we can com-
pute the proportion p(ci) of the cluster:

p(ci) =
∥ci∥
N

, (16)

where ∥ci∥ is the size of the cluster ci and N is the total
number of generated images. The B-LPIPS are computed
as a weighted sum of pairwise LPIPS of each cluster:

wi = −p(ci) · log10 p(ci), (17)

B-LPIPS =

k∑
i=1

wi · P-LPIPS(ci), (18)

where k denotes the number of training images and
P-LPIPS(ci) is a pairwise LPIPS within cluster ci.

4. Experiments
4.1. Exeperimental Setup

Datasets. We used FFHQ [24], LSUN-Church, and
LSUN-Cars [46] as the source domains. The target domains
were (i) Sketches [35], (ii) Female [22], (iii) Sunglasses

[35], (iv) Male [22], (v) Babies [35], (vi) Van Gogh’s house
(vii) Haunted house, (viii) Palace, and (ix) Abandoned cars.
For source domains of LSUN-Church and LSUN-Cars, we
presented experimental results in the Supplementary.

Baselines. Since our work tackled lifelong few-shot for
the first time. We established our work on the baseline -
(i) TGAN [43]. We evaluated two distinct approaches to
our proposed lifelong few-shot image generation task - (1)
lifelong GANs and (2) few-shot GANs. For lifelong GANs,
we considered two methods: (ii) GAN-Memory [8] and (iii)
CAM-GAN [40] are modulation-based lifelong GANs. For
few-shot GANs, we evaluated four methods: (iv) CDC [35],
(v) RSSA [45], and (vi) DCL [52] are regularization-based
few-shot GANs and (vii) AdAM [51] is a modulation-based
few-shot GAN.

Metrics. In the evaluation of the generation performance,
we adopted three metrics. Firstly, the Fréchet Inception Dis-
tance (FID) score [15] was used to measure the similarity
between the generated images and real images. A lower FID
score indicates a higher quality of generation. Secondly, the
balanced inter- and intra-cluster LPIPS (B-LPIPS), which
is proposed in our paper, was used to measure the diversity
of the generated images. Finally, we used the intra-cluster
LPIPS (I-LPIPS) [35], as a traditional metric for the aux-
iliary measure of generation diversity. A higher B-LPIPS
or I-LPIPS demonstrates a greater diversity of the gener-
ated images, as they are more distinct from one another. We
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Method
Task Order AverageSketches (T1) Female (T2) Sunglasses (T3) Male (T4) Babies (T5)

FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS FID (↓) B-LPIPS (↑)
TGAN (Baseline) [43] 372.89 0.157 255.53 0.238 309.13 0.247 281.43 0.129 171.19 0.203 278.03 0.195
Lifelong
GANs

GAN-Memory [8] 69.58 0.311 71.56 0.287 87.02 0.169 99.44 0.143 177.73 0.150 101.05 0.212
CAM-GAN [40] 91.81 0.293 85.68 0.332 86.81 0.333 82.83 0.312 146.20 0.181 98.66 0.290

Few-Shot
GANs

CDC [35] 322.72 0.205 197.40 0.427 244.94 0.463 227.00 0.381 69.98 0.454 208.41 0.386
RSSA [45] 308.00 0.285 175.20 0.440 207.58 0.484 205.49 0.405 76.70 0.481 194.59 0.419
DCL [52] 297.73 0.307 170.31 0.435 191.54 0.490 194.42 0.443 77.22 0.487 186.25 0.432
AdAM [51] 161.48 0.250 179.69 0.342 217.99 0.352 163.87 0.299 110.08 0.407 166.82 0.330

LFS-GAN (Ours) 34.66 0.354 29.59 0.481 27.69 0.584 35.44 0.472 41.48 0.556 33.77 0.489

Table 1: Quantitative results on lifelong few-shot image generation task. We measured each metric after the last task -
Babies (T5). The bold value represents the best result and the underlined value represents the second best result.

sampled 5,000 images to compute FID score and 1,000 im-
ages to compute both B-LPIPS and I-LPIPS. In the main
paper, we chose B-LPIPS as a default metric for measuring
diversity. The diversity comparsion using I-LPIPS is pre-
sented in the Supplementary.

4.2. Results on LFS Task

Qualitative Results. At first, we evaluated state-of-the-
art methods on our proposed lifelong few-shot image gen-
eration task. Figure 5 shows a qualitative result of state-
of-the-art methods and LFS-GAN. As seen on the figure,
TGAN and other few-shot GANs suffered from catastrophic
forgetting. Moreover, they showed degraded quality in the
last task. It was because they learned a single model on a se-
quence of task while ruining the model due to the biased and
scarce distribution of each task. On the other hand, the im-
ages from lifelong GANs had a lot of distortions and were
similar to the training images. This result demonstrated that
lifelong GANs suffered from mode collapse. Compared to
other methods, ours could generate high-quality and diverse
images without forgetting.

Quantitative Results. As seen on Table 1, TGAN could
not generate neither high-quality nor diverse images in our
task. Lifelong GANs could generate high-quality images
compared to TGAN. However, they could not generate di-
verse images. It was because they had no concerns about the
low-data circumstance, thus they suffered from mode col-
lapse. On the other hand, few-shot GANs generated diverse
images, but they failed to generate high-quality images. We
argue that this phenomenon was because of severe catas-
trophic forgetting happening during learning on a sequence
of tasks. Unlike other methods, AdAM showed the alle-
viated forgetting. It is due to its training scheme of sepa-
rating the weights into be fine-tuned and modulated, thus
it could recover some amount of the knowledge of the pre-
vious tasks. However, our LFS-GAN could generate both
high-quality and diverse images. Furthermore, we evalu-
ated state-of-the-art methods on training efficiency. In Ta-
ble 2, we find that our LFS-GAN achieved the most efficient
parameter consumption to learn a new task.

Method
# of

Trainable Params.
% w.r.t.

Backbone
Baseline (TGAN) [43] 30.0M 100%
Lifelong
GANs

GAN-Memory [8] 5.3M 17.7%
CAM-GAN [40] 2.3M 7.7%

Few-Shot
GANs

CDC [35] 30.0M 100.0%
RSSA [45] 30.0M 100.0%
DCL [52] 30.0M 100.0%
AdAM [51] 18.9M 63.0%

LFS-GAN (Ours) 0.1M 0.3%

Table 2: Comparison on training efficiency. In the first col-
umn, there is the number of parameters to learn a new task
of each method. Since we use StyleGAN2 as our backbone,
the second column represents the percentage with respect to
the number of parameters of the StyleGAN2 generator.

4.3. Results on FS Task

Different from the proposed lifelong few-shot image
generation task, few-shot image generation task aims to
generate decent and diverse images on a single target do-
main consisting of few-shot data.

Qualitative Results. We present the generated samples of
state-of-the-art methods and LFS-GAN on the diverse tar-
get domains in the Supplementary. As seen on figure, simi-
lar to the results of lifelong few-shot image generation task,
lifelong GANs could not generate neither high-quality nor
diverse images in few-shot image generation task. On the
other hand, few-shot GANs achieved superior performance
compared to lifelong GANs. However, there were several
distortions on generated images. We insist that these dis-
tortions came from strong regularizations. They restrict the
ability to learn target domain, resulting in distortion.

Quantitative Results. As seen on Table 3, the existing
lifelong GANs failed to generate high-quality or diverse im-
ages. Surprisingly, we find that our LFS-GAN also outper-
formed the existing few-shot GANs on few-shot image gen-
eration task.
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Method
Tasks AverageSketches Female Sunglasses Male Babies

FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS FID B-LPIPS FID (↓) B-LPIPS(↑)
Baseline (TGAN) 60.57 0.335 67.63 0.318 72.81 0.391 73.44 0.319 114.29 0.414 77.75 0.355
Lifelong
GANs

GAN-Memory 69.58 0.311 71.50 0.287 87.02 0.169 99.44 0.143 177.73 0.150 101.05 0.212
CAM-GAN 91.81 0.293 85.68 0.332 86.81 0.333 82.83 0.312 146.20 0.181 98.66 0.290

Few-Shot
GANs

CDC 49.19 0.237 31.26 0.450 36.03 0.505 41.88 0.435 64.75 0.496 44.62 0.425
RSSA 56.25 0.251 34.24 0.467 44.01 0.510 44.83 0.434 72.45 0.486 50.36 0.430
DCL 58.60 0.353 35.19 0.468 33.05 0.517 44.19 0.436 66.10 0.508 47.43 0.456
AdAM 45.70 0.325 61.79 0.375 45.55 0.392 61.55 0.338 91.13 0.421 61.14 0.370

LFS-GAN (Ours) 34.66 0.354 29.59 0.481 27.69 0.584 35.44 0.472 41.48 0.556 33.77 0.489

Table 3: Quantitative results on few-shot image generation task. We conducted each task independently. The bold value
represents the best result and the underlined value represents the secondary best result.

Bias r
# of

Trainable Params.
Average

FID (↓) B-LPIPS (↑)

w/

1 108K 33.77 0.489
2 192K 40.22 0.423
4 358K 43.00 0.402
8 695K 48.27 0.370

16 1,380K 55.20 0.332

w/o

1 54K 39.42 0.416
2 96K 39.56 0.410
4 180K 44.40 0.402
8 350K 48.74 0.374

16 704K 52.42 0.326

Table 4: Ablation on the bias and the rank of LeFT.

Activation Average
FID (↓) B-LPIPS (↑)

Identity 39.87 0.451
Sigmoid 37.76 0.417

Tanh 38.25 0.440
LeakyReLU 35.42 0.437

GELU 37.78 0.448
SiLU 40.28 0.417
ReLU 33.77 0.489

Table 5: Ablation on the activation functions of LeFT.

Maximize Average
∆w/∆z ∆F/∆w ∆I/∆w B-LPIPS (↑)

0.423
✓ 0.436

✓ 0.426
✓ 0.435
✓ ✓ ✓ 0.489

Table 6: Ablation on the maximization target of the cluster-
wise mode seeking loss.

4.4. Analysis

Ablation on the LeFT components. We first inspected
the effect of the bias term and rank of LeFT in Table 4.
In most cases, the bias was responsible for improving both
quality and diversity. We found that while LeFT without
bias and of rank of 1 (the sixth row) reduced the number of
trainable parameters a lot, the bias term was more crucial
for generating high-quality and diverse images. As seen on
Table 5, we observed that applying activation functions on
LeFT generally improved the quality of generated samples
and we selected to use ReLU as an activation function of
LeFT by its decent performance in general.

Ablation on the cluster-wise mode seeking loss. Finally,
we experimented on which part to be maximized in cluster-
wise mode seeking loss (see Table 6). In this table, not to
apply cluster-wise mode seeking loss (the first row) showed
no effect on enhancing diversity compared to the finalized
method (the last row). In general, we decided to maximize
all parts by cluster-wise mode seeking loss for improved
diversity and a slight gain in quality.

5. Conclusion

In this paper, we formulate and tackle the challenging
lifelong few-shot image generation for the first time. To
generate high-quality and diverse images in our task, we
propose a novel framework Lifelong Few-Shot GAN, LFS-
GAN for short. In LFS-GAN, we learn each task by intro-
ducing a novel weight modulation technique Learnable Fac-
torized Tensor (LeFT). When learning each task, we only
train LeFT parameters while freezing the original weights,
thus we can achieve lifelong few-shot image generation
without forgetting. Moreover, we propose a variant of mode
seeking loss - cluster-wise mode seeking loss to enhance the
diversity of generated images with less affecting the qual-
ity. Extensive experiments demonstrate that our LFS-GAN
achieves state-of-the-art in generating high-quality and di-
verse images in both lifelong few-shot image generation
task and few-shot image generation task.
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