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Figure 1: Sample face images from the FFHQ dataset (first row) as well as their corresponding 3D (third row) and frontal 2D
reconstruction (second row) from facial templates in the whitebox template inversion attack against ArcFace. Values show
the cosine similarity between the templates of the original and frontal reconstructed face images.

Abstract

Face recognition systems are increasingly being used in
different applications. In such systems, some features (also
known as embeddings or templates) are extracted from each
face image. Then, the extracted templates are stored in the
system’s database during the enrollment stage and are later
used for recognition. In this paper, we focus on template
inversion attacks against face recognition systems and in-
troduce a novel method (dubbed GaFaR) to reconstruct 3D
face from facial templates. To this end, we use a geometry-
aware generator network based on generative neural ra-
diance fields (GNeRF), and learn a mapping from facial
templates to the intermediate latent space of the genera-
tor network. We train our network with a semi-supervised
learning approach using real and synthetic images simul-

taneously. For the real training data, we use a Generative
Adversarial Network (GAN) based framework to learn the
distribution of the latent space. For the synthetic training
data, where we have the true latent code, we directly train
in the latent space of the generator network. In addition,
during the inference stage, we also propose optimization
on the camera parameters to generate face images to im-
prove the success attack rate (up to 17.14% in our exper-
iments). We evaluate the performance of our method in
the whitebox and blackbox attacks against state-of-the-art
face recognition models on the LFW and MOBIO datasets.
To our knowledge, this paper is the first work on 3D face
reconstruction from facial templates. The project page is
available at: https://www.idiap.ch/paper/gafar
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1. Introduction
Automatic face recognition (FR) has become a well-

known biometric authentication tool which has been widely
used in different applications, including smartphone locks,
border controls, etc. In such systems, generally, some fea-
tures (also referred to as facial embeddings or facial tem-
plates) are extracted from users and stored in the system’s
database during the enrollment stage. In the recognition
stage, either verification or identification, similar features
are extracted from the user and are compared with the fea-
tures in the system’s database. Therefore, facial features
play the main role in automatic face recognition systems
and convey important information about users.

Template inversion (TI) attack against FR systems refers
to an attempt by an adversary to reconstruct face images
from the templates stored in the system’s database. Then,
the adversary may find sensitive information about the en-
rolled users and also can use the reconstructed face image to
impersonate and enter the system. Therefore, compared to
most attacks on FR systems which threaten the security of
the system [19, 3, 22, 18, 35, 34, 10], TI attack jeopardizes
both security and privacy of users, and thus requires further
study. In this paper, we introduce a novel method (called
geometry-aware face reconstruction, shortly GaFaR) for the
TI attack in FR systems to reconstruct a 3D face from facial
features (extracted from 2D FR models). The 3D face re-
construction provides further information than 2D face re-
construction, and in particular can be used to generate face
image from any pose to improve the attack to the FR sys-
tem. To our knowledge, this is the first paper on 3D face
reconstruction from facial templates.

Recently, neural radiance fields (NeRF) [38] absorbed
considerable attention in computer vision society due to re-
markable results in the novel-view synthesis problem. Built
upon NeRF, generative NeRF (GNeRF) methods such as
[37, 44, 56, 6, 8, 41, 42, 20, 55, 7, 12, 48, 43] combine con-
ditional NeRF with generative models for geometry-aware
image generation tasks. In these methods, a generative
model, such as a generative adversarial network (GAN), is
used to embed the shape and appearance of an object in a
latent space. Then, the latent code of the GAN, along with
the camera parameters, are fed to a NeRF for the rendering
process. Among GNeRF methods, there are several works,
such as [8, 41, 42, 20, 55, 7, 12, 48], for geometry-aware
3D face generation, which can generate face images from
different views.

In our proposed TI method, we use a geometry-aware
face generator network based on GNeRF, and learn a new
mapping from facial templates to the intermediate latent
space of the generator network. We train our network using
real and synthesized images simultaneously with a semi-
supervised learning approach. For real training data where
we do not have the corresponding latent code (i.e., unsuper-

vised), we use a GAN-based framework to learn the distri-
bution of the latent space. For the synthetic training data
where we have true values of latent codes (i.e., supervised),
we directly learn the latent space. Because we have 3D re-
constructed face, we can use any arbitrary pose to inject
the the FR system for the attack. Therefore, during the in-
ference stage, we also use optimization on the camera pa-
rameters to improve the attack against the FR system. We
evaluate the performance of our proposed method in the
whitebox (i.e., where the adversary knows the internal func-
tioning and parameters of the FR model) and blackbox (i.e.,
where the adversary does not have information about the
internal functioning of the FR model) attacks against state-
of-the-art (SOTA) FR systems. For evaluation, we consider
FR systems with the LFW [23] and MOBIO [36] datasets
and evaluate our attack if the reconstructed face can be used
to enter the system. Fig. 1 illustrates sample face images
from FFHQ [26] dataset and their 3D reconstruction from
ArcFace [11] templates using our attack.

To elaborate on the contributions of this paper, we list
them hereunder:

• We propose a novel template inversion method to re-
construct 3D faces from the facial templates of a face
recognition system. To our knowledge, this paper is
the first work on 3D face reconstruction from facial
templates.

• We use a geometry-aware generator network based on
GNeRF, and learn a mapping from facial templates to
the intermediate latent space of the generator network.
We train our mapping network using a GAN-based
framework and a semi-supervised learning approach
using real and synthetic face images.

• We use optimization on the camera parameters in the
geometry-aware generator network during the infer-
ence stage. The optimization of camera parameters can
find a pose that improves the success attack rate.

The remainder of the paper is organized as follows. First,
we review the related works in the literature in Sec. 2. Then,
we present our proposed method in Sec. 3. Next, we de-
scribe our experiments in Sec. 4 and discuss limitations and
ethical considerations in Sec. 5. Finally, the paper is con-
cluded in Sec. 6.

2. Related Works

Generally, the methods in the literature for reconstruct-
ing face from facial templates generate 2D face images.
In [57], authors proposed two methods based on optimiza-
tion and learning to reconstruct 2D low-resolution face im-
ages from facial templates in the whitebox scenario. In the
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Table 1: Comparison with related works.

Ref. 2D/3D Resolution Whitebox/ Method Available
Blackbox Basis code

[57] 2D low whitebox
1) optimization

✗
2) learning

[9] 2D low both∗ learning ✗

[33] 2D low blackbox learning ✓

[16] 2D low both† learning ✗

[49] 2D low both† learning ✗

[1] 2D low blackbox learning + opt. ✗

[14] 2D high blackbox learning ✓

[51] 2D high blackbox optimization ✓

[15] 2D high blackbox optimization ✗

[Ours] 3D high both‡ learning ✓

∗The method is based on the whitebox attack, and is also applied in the blackbox
scenario by removing a loss term that required the FR model.
†The method is based on the whitebox attack, and is extended to the blackbox with

knowledge distillation of the FR model.
‡The method is based on the whitebox attack, and is extended to blackbox using a

different FR model.

optimization-based method, they used a gradient ascent-
based algorithm to reconstruct the face image, and opti-
mized the generated image to minimize a multi-term loss
function, including the ℓ2 distance between target templates
and templates of the reconstructed face image. In addition,
they applied total-variation and Laplacian pyramid gradient
normalization [5] on the reconstructed image to generate a
smooth image. In their learning-based method, they used a
deconvolutional neural network to reconstruct face images
and trained it with the same loss function that they used in
their optimization-based method.

In [9], a multi-layer perceptron (MLP) is trained to
find facial landmark coordinates (optimized using the mean
squared error) from the given template. They also trained
a convolutional neural network (CNN) to generate face tex-
ture (optimized using mean absolute error) from the target
template. Then, they used a differentiable warping to com-
bine estimated landmarks (from MLP) and textures (from
CNN) and reconstruct low-resolution face images. In the
whitebox scenario, they further optimized MLP and CNN
by minimizing the distance between templates of recon-
structed and original face images. However, in the blackbox
scenario, they trained MLP and CNN separately, and used
warping in the inference only.

In [33], two new deconvolutional networks are proposed,
called NbBlock-A and NbBlock-B, and are trained with
pixel loss (ℓ1 norm of reconstruction error) and perceptual
loss (distance of middle layers of VGG-19[46] when given
the reconstructed and original face images) to reconstruct
low-resolution face images in the blackbox scenario. In [16]
and [49], a same bijection-learning-based method is used to
train GAN models with PO-GAN [25] and TransGAN [24]
structure, respectively. The method is based on whitebox
attack and for training the GAN model, authors also mini-
mized the distance between target templates and templates

extracted from the reconstructed face images using the FR
model. In the blackbox attack, they proposed to use the dis-
tillation of knowledge to train a student network that mim-
ics the target FR model and used the student network in
their method. However, they did not report any detail (and
no published source code) about the training of the student
network (e.g., network structure, etc.).

In [1], a 3-step method is proposed to reconstruct low-
resolution face images in the blacbox scenario. First, they
trained a GAN for general face generation. In the second
step, they trained a MLP to map target templates to embed-
dings of a known FR model. In the final step, they found
a latent code in the input of their generator (of their GAN)
which generates a face image that maximizes two terms; the
discriminator score (for being a real face image) and cosine
similarity between the mapped embedding and the embed-
dings extracted by the known FR model.

In contrast to most works in the literature which gen-
erate low-resolution face images, recently there have been
few works to generate high-resolution 2D face images. In
[51], a grid-search optimization using the simulated anneal-
ing [50] approach is used on the latent vector (i.e., input
noise) of StyleGAN2 [28] to find latent codes that can gen-
erate face images which have templates similar to the target
templates. However, their proposed method is computation-
ally expensive, and they reported their evaluation on only
20 face images. In [15], a similar optimization to [51] on
the latent vector of StyleGAN2 [28] is considered, but it is
solved using the standard genetic algorithm [47]. In con-
trast to [51, 15] which are based on optimization, in [14],
a learning-based method is proposed in the blackbox sce-
nario. The authors proposed to generate some face images
using StyleGAN2 [28] and extract the templates using the
FR model. Then, they trained a MLP to map facial tem-
plates to the input latent codes of StyleGAN2 [28].

Tab. 1 compares our proposed method with the previous
works in the literature. To our knowledge, our proposed
method is the first work on 3D face reconstruction from
facial templates (extracted from 2D face recognition mod-
els). Furthermore, unlike most works in the literature, our
method generates high-resolution face images. Last but not
least, our method can be used in both whitebox and black-
box attacks against FR systems.

3. Proposed Method
In this paper, we consider a threat model as described

in Sec. 3.1 and use the proposed 3D face reconstruction
method (dubbed GaFaR) described in Sec. 3.2. After train-
ing and in the inference stage, we use an optimization on
the camera parameters as described in Sec. 3.3 to generate a
2D face image with a pose that can lead to a higher success
attack rate (SAR) and inject the face image into the system.
Fig. 2 depicts the block-diagram of the proposed method.
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3.1. Threat Model

We consider an attack against FR systems, where the ad-
versary gains access to the system’s database and aims to
generate a 3D reconstruction of enrolled users. To this end,
the adversary trains a network to reconstruct a 3D face given
a target facial template. Then, the adversary can use the 3D
reconstruction to impersonate users into the system (i.e.,
using a 3D face mask, etc.). For simplicity, we consider
that the adversary can inject a 2D face image (from the 3D
reconstructed face) into the system. Hence, the adversary
uses an appropriate pose to generate a 2D face image for
the attack. According to the adversary’s knowledge of the
FR model, we consider both whitebox and blackbox attacks
against FR systems. In the whitebox scenario, we assume
that the adversary has complete knowledge of the FR model
from which the templates are leaked. However, in the black-
box scenario, we assume that the adversary does not know
the internal functioning of the FR model and can only use
the FR model to generate facial template for any face im-
age. In addition, we assume that in the blackbox scenario,
the adversary has access to another FR model and knows its
internal parameters and functioning.

3.2. 3D Face Reconstruction

To reconstruct 3D faces from facial templates, we con-
sider a geometry-aware face generator network based on
GNeRF, such as EG3D [7], and learn a mapping MGaFaR :
T → W from the facial templates t ∈ T to the interme-
diate latent space W of the GNeRF model. Then, we use
the remainder of GNeRF model G(.) to synthesize an im-
age Î = G(ŵ, c) from an arbitrary view using the mapped
intermediate latent vector ŵ and camera parameters c. We
consider a network with two fully-connected layers with the
Leaky ReLU activation functions for our mapping network
MGaFaR.

We train the mapping network MGaFaR with a semi-
supervised approach using synthetic and real data. For the
real data, we consider a set of real face images {Ireal,i}Ni=0

and extract the facial template treal,i = F (Ireal,i) from each
face image Ireal,i using the FR model F (.). As we do not
have the true value of intermediate latent space W of the
GNeRF model to generate the real face image, we consider
training our mapping network using this data as unsuper-
vised learning. On the other hand, for the synthetic data,
we use the pre-trained geometry-aware face generator net-
work to generate a set of random face images {Isyn,i}Mi=0.
Therefore, as opposed to real data, we have the true value
of intermediate latent space w ∈ W to generate the same
synthetic face image. Hence, we consider training our map-
ping network using the synthetic data as supervised learn-
ing. We train our mapping network simultaneously using
real and synthetic training data as follows:

Unsupervised learning using real data To train our
mapping network MGaFaR(.) with the real data, we use
a GAN-based framework based on Wasserstein GAN
(WGAN) [2] algorithm to learn the distribution of interme-
diate latent space W of the GNeRF model. In this frame-
work, our mapping network MGaFaR generates a latent code
ŵ = MGaFaR([n, t]) using the facial template t and a ran-
dom vector n ∈ N . We can also generate real latent codes
w = M(z) ∈ W for training our GAN using the GNeRF
mapping function M and a random vector z ∈ Z . Then,
we can use a critic network C(.) to score the latent codes
generated by our mapping MGaFaR(.) and GNeRF mapping
M(.). Therefore, we can train the critic network C(.) and
our mapping MGaFaR using the following loss functions:

LWGAN
C = Ew∼M(z)[C(w)]− Eŵ∼MGaFaR([n,t])[C(ŵ)]

(1)

LWGAN
MGaFaR

= Eŵ∼MGaFaR([n,t])[C(ŵ)] (2)

In addition to the WGAN training, we use the generated
face image Î = G(MGaFaR([n, t]), c) to optimize our map-
ping network using the following loss function:

Lrec
real = LPixel + LID, (3)

where LPixel and LID are pixel loss and ID loss, respectively,
and are defined as:

LPixel = Eŵ∼MGaFaR([n,t])[∥I −G(ŵ, c)∥22] (4)

LID = Eŵ∼MGaFaR([n,t])[∥Floss(I)− Floss(G(ŵ, c))∥22]
(5)

The pixel loss minimizes the pixel-level reconstruction
error and ID loss helps the network to generate face images
with a similar facial templates extracted by Floss. To cal-
culate the ID loss in Eq. (5), we use the same FR model as
the one by which leaked templates are calculated (i.e., F ) in
the whitebox scenario. However, in the blackbox scenario,
we use another FR model that we assume the adversary has
access to. The critic network is a fully-connected network
with three layers and Leaky ReLU activation function.

Supervised learning using synthetic data To train our
mapping network MGaFaR(.) with synthetic data, we can
directly learn the GNeRF intermediate latent code w =
M(z). In addition to directly learning w, we use the gener-
ated face image to train our mapping network by minimiz-
ing the following multi-term loss function:

Lrec
syn = Lw + LPixel + LID, (6)

where LPixel and LID are pixel loss and ID loss, respectively.
Furthermore, Lw is w-loss to directly learn the latent space

19665



U
ns

up
er

vi
se

d
Le

ar
ni

ng
Su

pe
rv

is
ed

 L
ea

rn
in

g

Training (Semi-supervised Learning)

Inference

Feature
Extractor

GNeRF
mapping

Our new
mapping

GNeRF Generator 
and RendererOriginal Real 

Face Image  .

Reconstructed 
Face Image  .camera parameters (c)

Facial
Template ( )

Noise

Critic

GNeRF Generator 
and Renderer

Synthetic
Face Image  .camera parameters (c)

GNeRF
mapping

Noise

Feature
Extractor

Our new
mapping

GNeRF Generator 
and Renderer

Reconstructed 
Face Image  .camera parameters (c)

Facial
Template ( )

Our new
mapping

GNeRF Generator 
and Renderer

Reconstructed 
Face Image  .   

camera parameters (c)

Noise

Database Feature
Extractor

Leaked Facial 
Template ( t )

Grid Search (GS) or Continuous Optimalization (CO)

Facial
Template (   )

Noise

Noise

Figure 2: Block-diagram of the proposed method: In the training process, a semi-supervised approach is used to learn our
mappingMGaFaR (depicted with a green block) from the facial templates to the intermediate latent space of the GNeRF model
using real data (unsupervised, where we don’t have the corresponding latent code) and synthetic data (supervised, where we
have the corresponding latent code w), simultaneously. During the inference stage, the leaked template t is given to our
mapping network to find corresponding latent code ŵ =MGaFaR([n, t]). Then, ŵ along with camera parameters c are given
to the generator and renderer of GNeRF G to generate a reconstructed face image Î = G(ŵ, c). Finally, an optimization
(either grid search or continuous optimization) is applied on two of the camera parameters, θ and ψ, from c, to find the best
pose that minimizes the distance between leaked template t and the template of reconstructed face image.

by minimizing mean squared error between w and ŵ =
MGaFaR([n, t]) as follows:

Lw = Ew∼M(z)[∥w −MGaFaR([n, t])∥22] (7)

3.3. Camera Parameters Optimization

During the inference stage, after generating a 3D recon-
struction of face using our method described in Sec. 3.2, we
optimize the camera parameters to find a pose that increases

the SAR. Among different camera parameters c, the param-
eters which correspond to the camera rotation can change
the pose of the generated face image. Note that by varying
the camera rotations, we aim to change the pitch and yaw
rotations of the 3D reconstructed face and do not modify
the roll rotation. In fact, the roll rotation of the face will be
eliminated through face alignment as a preprocess prior to
feature extraction in the FR system. To optimize camera pa-
rameters, we consider two different approaches as follows:
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Grid Search (GS) For the grid search, we consider pre-
defined steps to change the camera pitch θ ∈ Θ and yaw
ψ ∈ Ψ rotations of camera parameters c. We gener-
ate the 2D face image for all values of camera rotation
steps (θstep and ψstep) and find the facial template for each
generated image. Then, we select the face image Î =
G(MGaFaR([n, t]), c) that has a template t̂ = F (Î) with
the minimum mean squared error with the target template
t. Note that the grid search can be applied in both whitebox
and blackbox scenarios using the FR model F .

Continuous Optimization (CO) In our continuous opti-
mization approach, we start from the frontal image and use
Adam [30] optimizer to solve the following minimization
using ŵ =MGaFaR([n, t]):

min
θ,ψ

∥F (G(ŵ, c)), t∥22 , (8)

In this optimization, we find the parameters θ and ψ for
camera rotation that lead to a face image with templates
close to the target template t. In contrast to the grid search
approach, the continuous optimization can be applied only
in the whitebox scenario.

4. Experiments
4.1. Experimental Setup

Face Recognition models In our experiments, we con-
sider different SOTA FR models including ArcFace [11],
ElasticFace [4] as well as four different FR models with
SOTA backbones from FaceX-Zoo [53], including Atten-
tionNet [52], HRNet [54], RepVGG [13] and Swin [32].
The recognition performance of these models are reported
in the supplementary material.

Datasets All the mentioned FR models are trained on the
MS-Celeb1M dataset [21]. To train the face reconstruc-
tion network, we assume that adversary does not have any
knowledge of the dataset used in training FR model, and
uses a different dataset. To this end, we consider the Flickr-
Faces-HQ (FFHQ) dataset [27], which consists of 70,000
high-quality images crawled from internet (with no iden-
tity label), for training our face reconstruction network. We
randomly split FFHQ into train (90%) and test (10%) set.

To evaluate the vulnerability of FR models, we use
two other datasets, including Labeled Faces in the
Wild (LFW) [23] and MOBIO [36] datasets. The LFW
dataset consists of 13,233 face images of 5,749 people col-
lected from internet, where 1,680 people have two or more
images. The MOBIO dataset includes face images of 150
people captured using mobile devices in 12 sessions for
each person1.

1The results on AgeDB [39] dataset is also reported in the supplemen-
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Figure 3: Sample face images from the FFHQ dataset (first
row) and their corresponding frontal (second row) recon-
structed face images using our method in the blackbox at-
tack against ElasticFace using ArcFace for Floss. The val-
ues show the cosine similarity between templates of original
and frontal reconstructed face images.

Evaluation Protocol For evaluation with each of the
LFW and MOBIO datasets, we build a separate FR system,
and use the reference templates (i.e., enrolled in the sys-
tem’s database) as input to our face reconstruction method.
Then, we inject the reconstructed face image as a query to
the system and evaluate the adversary’s success attack rate
(SAR) to enter the FR system. We should note that for each
image, we use only one reconstructed face image as a query
to the FR system and evaluate the SAR.

Implementation Details and Source Code In our exper-
iments, we use the grid search (in both whitebox and black-
box attacks) and continuous optimization (in whitebox at-
tacks only) to optimize camera parameters, as described in
Sec. 3.3, in the inference stage. For grid search, we consider
ψ ∈ [−45◦,+45◦] and θ ∈ [−30◦,+30◦] for a 11× 11 grid
with step sizes of ψstep = 9◦ and θstep = 6◦. In the continu-
ous optimization approach, we use 121 iterations of Adam
optimizer [30] with the learning rate of 10−2. An ablation
study on these hyperparamters and the corresponding exe-
cution times are reported in the supplementary material. All
our models (for different FR models and different scenar-
ios) are trained in 15 epochs (each takes around 2 days) on
a system equipped with a single NVIDIA RTX 3090 GPU.
For GNeRF, we used a pretrained model of EG3D [7] in our
experiments and generate 512×512 resolution face images.
The input noise z to GNeRF model has 512 dimensions and
the noise n in the input of our mapping networkMGaFaR has
16 dimensions. For unsupervised learning using real face
images (FFHQ), we assume that camera parameters for real
face images as frontal view. The source code of our experi-
ments are publicly available2.

tary material.
2https://www.idiap.ch/paper/gafar
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Table 2: Evaluation of blackbox attack against SOTA FR models at systems’ FMR=10−3 on the LFW and MOBIO datasets
in terms of success attack rate (SAR). For attacks using our proposed method, we use ArcFace and also ElasticFace as Floss
to calculate the ID loss in Eq. (5). The values are in percentage.

LFW MOBIO
ArcFace ElsFace Att.Net HRNet RepVGG Swin ArcFace Els.Face Att.Net HRNet RepVGG Swin

NBNetA-M [33] 4.32 10.90 1.24 1.60 1.13 3.82 0 2.38 0 0 0 0
NBNetA-P [33] 16.83 26.98 0.66 1.44 5.72 9.70 4.76 16.19 0.48 0 14.29 7.14
NBNetB-M [33] 10.98 21.44 3.22 4.47 3.21 11.23 1.90 3.80 3.33 7.14 3.33 8.57
NBNetB-P [33] 40.26 58.16 16.29 18.42 15.24 40.76 15.24 43.81 31.90 26.67 23.81 44.29
Dong et al. [14] 13.21 12.61 3.90 4.07 3.22 12.38 3.33 8.10 10.48 6.67 9.05 3.33
Vendrow and Vendrow [51] 57.70 53.03 21.12 18.85 9.62 46.84 29.05 43.81 27.14 26.67 20.95 45.24
[Floss= Els.Face] GaFaR 51.78 - 18.07 11.68 11.63 47.15 47.62 - 54.29 43.33 45.71 70.48
[Floss= Els.Face] GaFaR + GS 61.56 - 23.56 17.21 15.82 54.08 64.76 - 63.81 55.23 58.57 82.38
[Floss= ArcFace] GaFaR - 74.54 33.59 37.80 25.40 67.11 - 84.76 72.38 76.67 72.86 89.05
[Floss= ArcFace] GaFaR + GS - 78.67 38.42 43.27 29.84 70.82 - 86.62 80.00 83.80 73.33 93.33

Table 3: Evaluation of whitebox attack against SOTA FR models at systems’ FMR = 10−3 on the LFW and MOBIO datasets
in terms of success attack rate (SAR). The values are in percentage.

LFW MOBIO
ArcFace ElsFace Att.Net HRNet RepVGG Swin ArcFace Els.Face Att.Net HRNet RepVGG Swin

GaFaR 79.84 62.32 27.00 31.87 17.33 74.08 82.86 81.43 64.29 71.43 53.81 94.76
GaFaR + GS 82.52 68.71 32.42 37.48 19.83 76.06 85.23 82.38 70.47 81.42 59.52 94.29
GaFaR + CO 84.25 71.69 34.53 39.53 20.44 77.36 89.05 84.29 75.71 81.43 62.86 95.71

4.2. Analyze

Blackbox Scenario To evaluate the proposed method in
the blackbox attack against SOTA FR models, we consider
ArcFace and also ElasticFace as Floss to calculate the ID
loss in Eq. (5). Tab. 2 compares the performance of the
proposed method with blackbox face reconstruction meth-
ods in the literature in terms of SAR for systems config-
ured at false match rate (FMR) of 10−3. Similar results
for FMR = 10−2 are reported in the supplementary ma-
terial. As this table shows, the frontal reconstruction by
our method (i.e, GaFaR) achieves superior performance
than previous methods in the literature. Furthermore, cam-
era parameter optimization (i.e., GaFaR+GS) improves the
performance of our attack up to 17.14% compared to our
frontal face reconstruction (i.e, GaFaR). Comparing the use
of ArcFace and ElasticFace as Floss, the performance of at-
tacks with the ArcFace model is better. This is due to the
fact that ArcFace has a higher recognition accuracy than
ElasticFace. Fig. 3 shows sample face images reconstructed
from ElasticFace templates in the blackbox attack (using
ArcFace for Floss).

Whitebox Scenario Tab. 3 reports the performance of the
proposed method in the whitebox attack3 in terms of SAR
for FR systems configured at false match rate (FMR) of
10−3. Similar results for FMR = 10−2 are reported in
the supplementary material. According to this table, all

3The whitebox attack methods reported in Tab. 1 do not have available
source code, and we could not reproduce their results.
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Figure 4: Sample face images from the FFHQ dataset (first
row) and their corresponding frontal (second row) and cam-
era parameters sub-grid (third row) reconstructed face im-
ages using our method in the whitebox attack against Arc-
Face. The values show the cosine similarity between tem-
plates of original and frontal reconstructed face images.

these FR models are highly vulnerable to our attack. Fur-
thermore, the camera parameter optimization improves the
performance of GaFaR. Comparing grid search with contin-
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Table 4: Ablation study on the proposed semi-supervised
learning approach and evaluation of loss terms in the white-
box attack against ArcFace model in terms of success attack
rate (SAR) on the LFW and MOBIO datasets. The SAR val-
ues are in percentage and for an attack without any camera
parameter optimization (GS/CO).

approach Loss Functions
LFW MOBIO

FMR=10−2 FMR=10−3 FMR=10−2 FMR=10−3

supervised

Lrec
syn = Lw + LPixel + LID 83.80 69.467 90.96 82.38

Lrec
syn = Lw + LPixel 31.75 13.92 43.81 8.57

Lrec
syn = Lw + LID 0.86 0.30 0 0

Lrec
syn = Lw 33.69 15.43 32.38 9.52

unsupervised

Lrec
real = LPixel + LID 0.44 0.15 0 0

[without WGAN]
Lrec

real = LPixel + LID 67.72 45.76 70.48 31.90
[with WGAN]
Lrec

real = LID 54.51 30.83 52.86 19.52
[with WGAN]
Lrec

real = LPixel 2.21 0.40 0 0
[with WGAN]

semi-supervised Eqs. (1) to (3) and (6) 89.27 79.84 95.71 82.86

uous optimization, results show that with the same number
of iterations continuous optimization achieves better perfor-
mance. In addition, comparing these results with recogni-
tion performance of FR models (available in the supplemen-
tary material), we conclude that models with higher recog-
nition accuracy are more vulnerable to our attack. Compar-
ing results in Tab. 2 and Tab. 3, we observe that when we
use ArcFace as Floss in our loss function, blackbox attacks
achieve better results than whitebox attacks for most cases,
which can be explained considering the superior recogni-
tion performance of ArcFace than other FR models. Fig. 4
shows sample face images reconstructed from ArcFace tem-
plates in the whitebox attack. This figure also presents a grid
of reconstructed face images with different poses4.

Ablation Study We evaluate the effect of our semi-
supervised learning approach in our proposed method com-
pared to fully supervised learning and fully unsupervised
learning approach. In each case, we evaluate the effect of
each loss function too. Furthermore, for the fully unsu-
pervised learning approach, we evaluate the effect of GAN
learning which we used in our method. Tab. 4 reports our
ablation study in whitebox attack against ArcFace model
on the LFW and MOBIO datasets in terms of SAR at sys-
tem’s FMR of 10−2 and 10−3. As these results show, the
proposed semi-supervised approach achieves a better per-
formance than fully supervised learning and fully unsuper-
vised learning approaches. Furthermore, each of our loss
terms has an important effect on the performance. In par-
ticular, using WGAN for real data, where we don’t have the
true value of intermediate latent codes, helps the network to

4Samples of reconstructed face images with the camera parameters grid
used in our grid search optimization are presented in the supplementary
material.

O
ri

gi
na

l
R

ec
on

st
.

0.160 0.150 0.170 0.160

Figure 5: Sample failure cases from the LFW dataset (first
row) and their corresponding frontal (second row) recon-
structed face images using our method in the whitebox at-
tack against ArcFace. The values below each image show
the cosine similarity between templates of original and re-
constructed face images.

learn the distribution of GNeRF intermediate latent space
W . Otherwise, the generated latent code by the mapping
network will be out of distribution, and therefore generator
part of GNeRF will not generate face-like images.

5. Discussion
Limitations In spite of the considerable success attack
rate of our method in our experiments, the reconstructed
face images from some facial templates fail to attack the
system. Fig. 5 illustrates sample failed cases in the whitebox
attack against ArcFace. As these sample images show, the
failed reconstructions reflect a bias in the generated faces
for dark skin and also old people. Such a bias in final re-
sults can be caused by inherent biases of each of the datasets
used to train the FR model, GNeRF model, and our face
reconstruction model. In addition to bias, comparing at-
tacks against different FR models in Tabs. 2 and 3 shows
that FR models with worse recognition performance have
lower SAR and more failed cases.

Ethical considerations This work is proposing a new
method for a TI attack against FR models. The 3D re-
constructed face can be used to generate 3D face masks or
2D printed photographs for presentation attacks against FR
models. In addition to the security threats, the reconstructed
face images can reveal important privacy-sensitive informa-
tion of enrolled users, such as age, gender, ethnicity, etc.
We do not condone using our work with the intent of attack
to real FR systems. As a matter of fact, the main motivation
for this work is to show such a vulnerability in the FR sys-
tems, and to encourage the scientific community to develop
and propose the next generation of safe and protected FR
systems. Along the same lines, data protection regulations,
such as the European Union General Data Protection Reg-
ulation (EU-GDPR) [17], consider biometric data as sensi-
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tive information, and put legal obligations to protect them.
To this end and to mitigate such threats, several biometric
template protection schemes are also proposed in the litera-
ture [40, 29, 31, 45]. We should also note that the project on
which the work has been conducted has passed an Internal
Ethical Review Board (IRB).

6. Conclusion
In this paper, we proposed a new method (dubbed Ga-

FaR) to generate 3D face reconstruction from facial tem-
plates for a TI attack against FR models. We used a
geometry-aware face generation network based on GNeRF
and trained a mapping from facial templates to the inter-
mediate latent space of the GNeRF model using a semi-
supervised learning approach. To train our model, we used
synthetic and real face images. For the synthetic training
data, we had the latent code of each face image and could
train our mapping with supervised learning. For the real
training data, we used a GAN-based framework to learn
the distribution of latent space. In the inference stage,
we used optimization on the camera parameters to find the
pose which increases the success attack rate. We evaluated
our method on the whitebox and blackbox attacks against
SOTA FR models on the LFW and MOBIO datasets. To
our knowledge, this paper is the first work on 3D face re-
construction from facial templates (extracted from 2D face
recognition models).
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[34] Sébastien Marcel, Julian Fierrez, and Nicholas Evans. Hand-
book of Biometric Anti-Spoofing: Presentation Attack Detec-
tion and Vulnerability Assessment. Springer Nature, 2023.
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