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Abstract

Data-free knowledge distillation (DFKD) is a promis-
ing approach for addressing issues related to model com-
pression, security privacy, and transmission restrictions.
Although the existing methods exploiting DFKD have
achieved inspiring achievements in coarse-grained clas-
sification, in practical applications involving fine-grained
classification tasks that require more detailed distinctions
between similar categories, sub-optimal results are ob-
tained. To address this issue, we propose an approach
called DFKD-FGVC that extends DFKD to fine-grained vi-
sual categorization (FGVC) tasks. Our approach utilizes
an adversarial distillation framework with attention gen-
erator, mixed high-order attention distillation, and seman-
tic feature contrast learning. Specifically, we introduce a
spatial-wise attention mechanism to the generator to syn-
thesize fine-grained images with more details of discrimi-
native parts. We also utilize the mixed high-order attention
mechanism to capture complex interactions among parts
and the subtle differences among discriminative features
of the fine-grained categories, paying attention to both lo-
cal features and semantic context relationships. Moreover,
we leverage the teacher and student models of the distilla-
tion framework to contrast high-level semantic feature maps
in the hyperspace, comparing variances of different cat-
egories. We evaluate our approach on three widely-used
FGVC benchmarks (Aircraft, Cars196, and CUB200) and
demonstrate its superior performance. Code is available at
https://github.com/RoryShao/DFKD-FGVC.git

1. Introduction
Fine-grained visual categorization (FGVC) aims at dis-

tinguishing subcategories from father categories, e.g., sub-

categories of birds [43], aircraft [29], and cars [23]. It has

*Corresponding authors. This work was supported in part by National

Natural Science Foundation of China under Grant (No. 62072182, No.

92270119, and No. 62172261) and Key Laboratory of Advanced Theory

and Application in Statistics and Data Science, Ministry of Education.

long been considered a more challenging issue than tradi-

tional image classification due to the subtle inter-class and

large intra-class variations [42]. To distinguish subtle diver-

sities, the current approaches commonly exploit deeper neu-

ral networks with elaborate designs [50, 26, 53] to excavate

the discriminative features effectively. Inevitably, the net-

work becomes more and more complex, which leads to an-

other problem, i.e., complicated networks are not easily de-

ployed on embedded or mobile devices. Besides, the train-

ing data of released pre-trained models are often unavailable

due to transmission, privacy, or legal issues. For example,

pre-trained models commonly need a large amount of data

such as ImageNet [24]. If the data is transmitted directly, a

large amount of bandwidth is consumed. Moreover, some

sensitive data such as e-commerce items or medical data

are usually not directly accessible to the public due to in-

tellectual property rights or privacy protection considera-

tions. To obtain a lightweight model, recent research has

made significant progress, including pruning [25], quanti-

zation [49, 27], and knowledge distillation [16]. Among

them, knowledge distillation (KD) is a popular and effec-

tive paradigm for model compression and knowledge trans-

fer [16]. It works by transferring knowledge from a cum-

bersome teacher network to a lightweight student network.

Thanks to this separable architecture, it can also be used

to solve privacy protection in data-free scenarios, which is

called data-free knowledge distillation (DFKD) [5] or zero-

shot knowledge distillation (ZSKD) [33].

Fortunately, a series of DFKD methods have been pro-

posed [5, 33, 30, 11, 47, 12]. The existing approaches can

be divided into two paradigms. The first paradigm is based

on the category distribution, which exploits the out distribu-

tion of teacher and student to optimize the student and gen-

erator, e.g., DFAL [5], ZSKT [30], DFAD [11], ZSKD [33].

Such a paradigm commonly fails to generate realistic sam-

ples due to the lack of semantic-related information, es-

pecially when it comes to complex samples. The second

paradigm is based on prior distribution, which exploits the

prior information (i.e., BatchNorm) to optimize synthetic

images for distillation, e.g., MAD [10], CMI [12], DFQ [8],
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ADI [47]. This paradigm can produce realistic features and,

therefore, gives the student a noticeable improvement.

Although the existing methods have achieved inspiring

achievements in coarse-grained classification, in practical

applications, sub-optimal results are achieved due to the

subtle variations widely found in different scenarios. The

main reasons for this situation are as follows: Firstly, for

FGVC tasks, the variances of the same category are more

prominent than that of coarse-grained classification due to

different factors, such as viewing angles, lighting, back-

grounds, occlusion, etc. Secondly, compared to coarse-

grained categories, the feature discrepancies of different

categories in FGVC are not obvious. Besides, in the data-

free scenario, the model can not access the raw data directly.

For synthesized images, it is difficult for the teacher model

to capture the subtle variances of discriminative features. To

our best knowledge, there are still no specialized data-free

studies on fine-grained DFKD. Therefore, this inspires us to

explore this issue and tackle this task in a data-free scenario.

In this paper, we tackle this issue by extending DFKD

to fine-grained visual classification (FGVC) tasks and

propose an approach named DFKD-FGVC, which is

achieved by exploiting the adversarial distillation frame-

work with attention generator, mixed high-order attention

distillation (MHAD) and semantic feature contrast learn-

ing (SFCL). Concretely, as shown in Fig. 1, to promote the

generator to synthesize more fine-grained images, we ex-

ploit the generator with spatial-wise attention, which can

help the generator synthesize the images with more details

of discriminative parts. Then, to fully mine the knowledge

of discriminative features for student, we exploit the mixed

high-order attention mechanism to capture complex inter-

actions among parts and the subtle differences among dis-

criminative features of the fine-grained categories, paying

attention to both local features and semantic context rela-

tionships. Besides, to compare variances of different cate-

gories, we skillfully exploit the teacher and student model

of distillation framework to contrast semantic feature maps

in the hyperspace. To verify our approach, massive ex-

periments are conducted on three fine-grained benchmarks,

such as Aircraft, Cars196, and CUB200 to evaluate the ef-

fectiveness of our approach.

In a nutshell, our contributions are four-fold: 1) We

are the first to propose an approach for FGVC in the data-

free distillation scenario, which aims to optimize the en-

tire generation and distillation stages to focus on discrim-

inative features. 2) To synthesize more fine-grained im-

ages for adversarial distillation, we employ the generator

with spatial-wise attention, which motivates the generator

to synthesize the images with more details of discrimina-

tive features. 3) Particularly, to effectively mine the po-

tential semantic features and contextual relationships of the

fine-grained categories, we provide two strategies, namely,

MHAD and SFCL, both of which can promote the perfor-

mance of DFKD from different dimensions. 4) Extensive

experiments demonstrate the effectiveness of our approach

in the data-free setting, which achieves state-of-the-art per-

formance on the mainstream FGVC benchmark datasets.

2. Related Works
2.1. Fine-Grained Visual Categorization.

Fine-grained visual classification (FGVC) [43, 29, 23] is

much more challenging than traditional classification tasks

due to the inherently subtle intra-class object variations [42,

18]. Benefiting from the recent development of neural

networks, recent studies have moved from strongly super-

vised information with extra annotations such as bounding

boxes [2, 48, 18] to weakly-supervised conditions with only

category labels [51, 13, 41]. Current methods on FGVC can

be roughly divided into localization-based methods [13, 41]

and attention-based methods [3, 19, 31]. The core for solv-

ing FGVC is to learn the discriminative features of objects

in images. However, current approaches tackle this prob-

lem in the data-driven setting, few approaches consider this

problem in the data-free setting. Therefore, different from

the above studies, we explore the FGVC tasks in the novel

aspect of the data-free distillation scenario.

2.2. Attention Mechanism

The attention mechanism stems from human vision,

which exploits a sequence of partial glimpses and selec-

tively focuses on salient parts to capture visual structure

better. In the field of computer vision, attention mecha-

nism [40, 17, 44, 34] are mainly exploited to capture es-

sential information in various tasks such as pedestrian re-

identification [46, 20, 45], FGVC [3, 31], etc. For example,

[40] proposes the residual attention network for large-scale

classification tasks. Then Hu et al. [17] exploit a squeeze-

and-excitation (SE) block to compute channel-wise atten-

tion. CBAM [44] infers attention maps along two sepa-

rate dimensions, i.e., channel and spatial. Similar to [44],

BAM [34] also exploits the 3D attention map inference into

channel and spatial. In terms of tasks, spatial attention is

well-suited to dense prediction tasks such as semantic seg-

mentation and object detection [14], while channel attention

is a good choice for image classification. However, only

exploiting spatial attention or channel attention is coarse,

we can not capture the high-order and complex interactions

among parts [4]. Therefore, in our data-free framework, we

empirically exploit the spatial attention for our generator

and the mixed high-order attention for distillation.

2.3. Data-free Distillation.

Data-free Distillation has become a hot topic in re-

cent years, mainly due to privacy protection [28]. It ex-
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Figure 1. The whole framework of our approach. The left: The spatial attention module is plugged into each block of generator G,

which aims to focus on fine-grained semantic information from the whole process of noise z to images x̂. The intermediate: At each

block of teacher and student, the feature maps are extracted by the mixed high-order attention module to achieve MHAD. The right: In

the penultimate layer, exploiting the MLP to map the high-level semantic features of teacher and student to a common hyperspace and

compare the variances by SFCL.

ploits synthesized alternative samples to solve the dilemma

that model can not directly access the original data and

makes gratifying achievements in the task of classifica-

tion [47, 5, 11, 12]. For example, ADI [47] utilizes batch

normalization statistics (BNS) of the pre-trained teacher to

optimize the noise to synthesize high-fidelity images for

KD. CMI [12] exploits the local and global contrast of

samples to optimize the generator diversity. This kind of

method ordinarily can synthesize more realistic images and

achieve relatively better performance. DFAL [5] adopts a

generator to synthesize images, and then the student learns

the knowledge from the teacher by distillation. ZSKT [30]

exploits the adversarial distillation to transfer the knowl-

edge from teacher to student by KL and spatial attention,

while DFAD [11] only utilizes the MAE loss to fit the out-

put distribution of the teacher. All kinds of the above meth-

ods can achieve relatively inspiring achievements in coarse-

grained classification, and there is no specific research on

FGVC. Motivated by this, we conduct the study for data-

free fine-grained distillation.

3. Preliminary
Our approach follows the basic thinking of DFKD, as de-

picted in Fig. 1. First, a generator G is employed to synthe-

size a batch of images from noise z ∼ N (0, 1), G(z) → x̂,

B = {x̂1, x̂2, ..., x̂n} , n ∈ {1, ...,N}, where N is the batch

size. Then the synthesized image x̂ is input to the pre-

trained teacher T and student S to support their distillation.

Finally, the generator G is optimized by adversarial distilla-

tion.

Data-free Adversarial Distillation Essentially, Data-free

adversarial distillation is a robust minimax optimization

problem [1], which encourages the generator to minimize

the possible loss for a worst-case scenario (maximum loss)

through adversarial training under data uncertainty. In the

data-free scenario, it can be denoted as

min
S

max
G

{
Ep(z) [D(T (G(z)),S(G(z)))]− δLG

}
, (1)

where D represents the discrepancy measure, which nor-

mally exploits the Kullback-Leibler (KL) divergence as an

optimization term. δ ≥ 0 is the balance factor, and LG is

the optimization term of generator G.

Knowledge Distillation. According to the principle of clas-

sic knowledge distillation [16], the soft output of the net-

work (a.k.a. probability distribution) implies the similarity

between the current sample and other categories. Therefore,

traditional methods [8, 10, 33] usually adopt the KL Diver-

gence to measure the difference between the two distribu-

tions of teacher and student. The probability distribution

distillation can be formulated as

LKD = Ex̂ [DKL (σ(S(x̂))‖σ(T (x̂)))] , (2)

where DKL represents the Kullback-Leibler (KL) diver-

gence, and σ is the softmax operation.
Prior Information Regularization. Prior information reg-
ularization aims to regularize the feature distribution of syn-
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Figure 2. The spatial attention module of the generator, in which

⊗ denotes the element-wise multiplication and ⊕ denotes the

element-wise addition.

thesized images by prior distribution information, i.e., mean
μ and variance σ2 of BatchNorm [47], which motivates the
synthetic samples to approach the distribution of the origi-
nal samples.

LBN = min
G

∑
l

‖μl − μl(G(z))‖2 +
∥∥σ2

l − σ2
l (G(z))

∥∥
2
, (3)

where l donates the lth BatchNorm layer of the teacher

model, μ and σ2 are the batch-wise mean and variance, re-

spectively.

4. Proposed Approach
4.1. Discriminative Feature Synthesis

In the DFKD framework, it is common to exploit a gen-

erator to assist in generating alternative samples for coarse-

grained classification. However, directly applying it to syn-

thesize fine-grained samples often does not yield desirable

discriminative features. This is because the conventional

generator cannot focus on subtle discriminative features,

which decreases the ability of teacher to extract representa-

tion from various semantic parts and thus hampers the effec-

tiveness of the distillation. Differing from the traditional ap-

proaches, in our framework, we employ a DCGAN [35, 38]

generator with the attention module to increase the repre-

sentation ability of features and tell the generator where

to focus. Inspired by preceding attention works such as

CBAM [44] and CBM [34], which stacks channel atten-

tion and spatial attention in series, we exploit the atten-

tion mechanism in our approach. However, unlike the prior

approaches, we implement the attention by the encoder-

decoder manner, thinking that the non-linear convolution

can pay attention to context knowledge of features, which is

more suitable for dense generation tasks. Besides, in order

to have stability training, the spectral normalization [32] is

exploited to regularize the ConvTranspose2d layers of DC-

GAN, which controls the weights of modules by the Lips-

chitz constant.

Concretely, as displayed in Fig. 2, the noise z is input to

generator G to synthesize the alternative samples x̂. We first

divide the whole DCGAN module into four blocks. Then

we plug the attention module at each block to compute the
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stage.

low-dimensional feature maps Ad ∈ R
C/r×H×W from orig-

inal feature maps Fg ∈ R
C×H×W, where r is the scaled

scalar, C denotes channel, H and W represent the size of

the feature maps. This aims to achieve lightweight feature

maps. Next, the encoder is employed to achieve the latent

space as follows:⎧⎪⎨
⎪⎩
Ad = Cov1×1(Fg) ,

Ψ = ReLU(BN(Cov3×3(Ad))) ,

Γ = ReLU(BN(Cov3×3(MP(Ψ)))) ,

(4)

where Ψ represents features of intermediate process,

Cov1×1 and Cov3×3 denote the convolution with kernel

size of 1× 1 and 3× 3, and MP represents maximum pool-

ing.

By Eq. 4, we can get the representation of low-

dimensional latent space Γ from Ad ∈ R
C/r×H×W, and

then decode the space with maximum uppooling (MUP) to

achieve spatial-wise attention As ∈ R
C/r×H×W. This op-

eration can preserve information of the key locations in the

feature to achieve the 2D spatial attention map As as fol-

lows:{
Ψ = MUP(ReLU(BN(DC3×3(Γ)))) ,

As = Cov1×1(ReLU(BN(DC3×3(Ψ)))) ,
(5)

where DC3×3 denotes the deconvolution with kernel size

of 3 × 3, MUP represents the maximize unpooling. Then,

aggregating the attention maps to the original feature maps

to achieve F̃g is formulated as:

F̃g = λ(Softmax(As)×Fg) + Fg , (6)

where λ is the hyperparameter to balance the attention maps

with features, which defaults to 5e−2 in our experiments.

More details about the contributions of the attention gener-

ator are presented in Tab. 6.

4.2. Mixed High-Order Attention Distillation

In the stage of distillation, traditional DFKD methods [5,

11, 30] to solve coarse-grained classification commonly ex-
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ploit the distribution of output layers due to the signifi-

cant inter-class variation (compared to intra-class variation),

which enables deep networks to learn generalized discrimi-

natory features of coarse-grained classification.

However, the distribution knowledge distillation only

exploits category-related information with dark knowl-

edge [16], which lacks semantically relevant information.

We argue that this paradigm may not be ideal for FGVC,

due to the data-free scenario.

To solve the above difficulties, recent methods com-

monly exploit attention mechanism [3, 31] to capture the

discriminative features of the object. However, the exist-

ing FGVC methods of attention mechanism are mainly de-

signed for data-available scenarios, and there is no related

research in the data-free scenario. This motivates us to ex-

tend this strategy in a data-free setting. Besides, the related

attention distillation works [52, 37] only consider the low-

order attention information, which only focuses on the lo-

cal information and cannot capture the complex interactions

among parts, resulting in less discriminative attention pro-

posals and failing in capturing the subtle differences among

objects. In the data-free scenario, due to the semantic in-

formation being sparse [9], we believe that low-order atten-

tion distillation cannot fully express the knowledge of the

features. Thus we propose to exploit mixed high-order at-

tention (MHA) to distill the aggregated local features and

semantic context relation of synthesized FGVC images.

Our mixed high-order attention module is shown in

Fig. 3, in which mixed 3-order attention (i.e., R = 3) is

exploited. The feature Fm ∈ RH×W×C is first extracted by

three route 1 × 1 convolutions to achieve 3-order interme-

diate representations. In each route, the convolution layer

and produced relative representation are the same as the or-

der R. Then we multiply the representations of each order

to obtain aggregated representations. For each aggregated

representation, we exploit RELU and 1 × 1 convolution to

produce the new map which will be aggregated with global

attention maps Am. At last, the activated global attention

map Am will be multiplied with the original features Fm to

produce the final attention maps F̃m = Am ×Fm.

For teacher and student, their channels may be different.

Thus we first exploit the Adapter to upgrade the channel

of the student to the same number as the teacher, which is

also implemented by the 1 × 1 2D convolution. Therefore,

at each block of the intermediate layer of T and S , we ex-

ploit mean square error (MSE) to measure the MHAD loss,

which is formulated as:

LMHAD =
1

N× C

N∑
i=1

C∑
j=1

MSE(F t
m,Fs

m) , (7)

where N and C represent the batch size and channel, while

F t
m and Fs

m denote the attention map of an intermediate

block of teacher and student, respectively. It should be

Algorithm 1 The whole pipeline of DFKD-FGVC.

Input: A pre-trained teacher model T on real data, genera-

tor G and student network S .

Output: A well-trained student network S .

1: // Ganerator Stage
2: for number of iterations do
3: for t steps iterations do
4: Generate random noise z ∼ N (0, 1) ;

5: Synthesize supporting sample x̂ = G(z) ;

6: Optimize the generator by LBN, and −LKD;

7: Freeze S and T , and update G by Eq. 10 .

8: end for
9: end for

10: // Distillation Stage
11: for number of iterations do
12: for k steps iterations do
13: Generate random noise z ∼ N (0, 1) ;

14: Synthesize supporting sample x̂ = G(z) ;

15: Calculate discrepancy by LKD, LMHAD, and

LSFCL.

16: Freeze G and T , and update S by Eq. 11 ;

17: end for
18: end for

noted that this strategy is only exploited during our training

process, which does not participate in the inference. There-

fore, this does not affect the efficiency of the model.

4.3. Semantic Feature Contrast Learning

Since the pre-trained teacher has a higher discriminative

ability than the student, optimizing the student by compar-

ing the features of the teacher is conducive to improving

the ability of the student to distinguish right from wrong.

Therefore, in our FGVC task, we not only focus on inter-

mediate low-level feature variances but also high-level se-

mantic variances of the penultimate layer. Unlike traditional

paradigms [6, 7, 21, 39], which contrast the original [7, 21]

and augmentation data or in data-driven scenarios [6, 39].

we exploit high-level semantic features to contrast feature

representation of teacher and student and aim to learn the

variances between different categories in the data-free sce-

narios, which are more difficult than data-driven scenarios.

Specifically, in the penultimate layer, we obtain their se-

mantic feature representations and exploit the multi-layer

perceptron (MLP) to map the representations to a com-

mon space to achieve 2N feature representations as Fs =
C(S(G(z))) and Ft = C(T (G(z))), where C is the MLP

layer with two hidden linear layers. Then, we normalize the

features to a unit hyperspace and measure their similarity as

follows:

sim(Ft,Fs) =
Ft · F�

s

‖Ft‖ · ‖Fs‖
, (8)
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Table 1. Results of different data-free distillation methods on three fine-grained datasets.

Setting Prior Info. Compression Info. Accuracy

Method Data-free BN FLOPs Params. Aircraft Cars196 CUB200

ResNet-34 (T.) × × ∼3.67G ∼22M 70.15 84.22 76.87

ResNet-18 (S.) × × ∼1.82G ∼11M 68.71 77.43 58.60

ZSKD [33] � × ∼1.82G ∼11M 37.32 26.21 30.53

ZSKT [30] � × ∼1.82G ∼11M 51.16 28.48 31.88

DAFL [5] � × ∼1.82G ∼11M 43.69 37.71 31.01

DFAD [11] � × ∼1.82G ∼11M 49.51 48.72 40.15

ADI [47] � � ∼1.82G ∼11M 58.14 65.24 47.63

DFQ [8] � � ∼1.82G ∼11M 60.22 66.14 48.43

MAD [10] � � ∼1.82G ∼11M 63.74 67.53 53.43

CMI [12] � � ∼1.82G ∼11M 63.57 68.74 53.53

Ours � � ∼1.82G ∼11M 65.76 71.89 56.93

where · denotes the inner (dot) product. The cosine dis-
tance is used as the similarity metric to measure the rela-
tionship between two feature representations for contrastive
loss, which is defined as

LSFCL = min
S

{
− log

exp(sim(F i
t ,Fj

s )/τ)∑2N
k �[k �=i] exp(sim(F i

t ,Fk
s )/τ)

}
,

(9)

where �[k �=i] is an indicator function that returns 1 if i = j,

i and j ∈ 2N are the indexes of the samples in the represen-

tations, and τ denotes a temperature parameter. This loss

maximizes the representations of the different categories,

where the teacher can extract the effective features from

noisy images and pull away from the other dissimilar fea-

tures. Therefore, if one feature of the teacher is viewed as

an anchor, and the student extracts another representation

of this synthetic image as the positive. Due to the weak

ability of sample representations of the student model, such

operation of the student plays a role as augmented images.

The other 2(N− 1) features can be viewed as the negative.

Therefore, the loss LSFCL is used to optimize the student

to close to the teacher model, i.e., improving the ability of

students to distinguish different samples.

4.4. Total Objects

In the whole algorithm pipeline 1, we first optimize the

generator to synthesize more realistic diverse samples. The

total objective of the generator is

min
G

αLBN − LKD . (10)

Then, with the above strategy for the generator, we can de-

tail the total objective of the student:

min
S

LKD + βLMHAD + γLSFCL , (11)

where α, β, and γ are both hyper-parameters. The train-

ing plays an adversarial distillation to optimize both at each

iteration.

5. Experiments

5.1. Datasets and Implementation Details

Datasets. To demonstrate the effectiveness of our approach,

we conduct experiments on three fine-grained datasets.

Aircraft FGVC-Aircraft [29] contains 100 different air-

craft variants formed by 10,000 annotated images, which is

divided into two subsets, i.e., the training set with 6,667 im-

ages and the testing set with 3,333 images.

Cars196 The Stanford Cars dataset [23] contains 16,185

images from 196 categories of cars. The data is split into

8,144 training images and 8,041 testing images.

CUB200 The Caltech-UCSD birds dataset (CUB-200-

2011) [43] consists of 11,788 annotated images in 200 sub-

ordinate categories, including 5,994 images for training and

5,794 images for testing.

Implementation Details. Our method is implemented with

the PyTorch library. All the models are trained on NVIDIA

3090 GPUs with 24G memory. ResNet-34 [15] is em-

ployed as the cumbersome teacher network for all exper-

iments in this paper, and four architectures, i.e., ResNet-

18 [15], WRN40-2 [15], MobileNetV2 [36], and ResNet-

34 [15] are utilized as students. We first train the generator

for 20 steps (i.e., t=20) where the generator follows the ar-

chitecture of DCGAN [35]. Adam [22] is adopted to opti-

mize the generator with an initial learning rate of 1× 10−3

and beta is set 0.5 to 0.99. Then, we train the student 15

steps (i.e., k=15) after the generator and optimize the pa-

rameters by the SGD optimizer with a momentum of 0.9, a

batch size of 64 as default, and a weight decay of 5×10−4.

The initial learning rate starts at 1×10−2 with cosine an-

nealing for a total of 200 epochs. In the pre-trained stage,

due to subtle discrepancies that are difficult to detect, the

input images of fine-grained datasets are both resized and

randomly cropped to 224×244. In the data-free distillation

stage, all the synthetic images are the same as the size of

the original input images in the pre-trained stage. As for the
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Figure 4. Visualization synthetic images generated by some representative approaches on Aircraft, Cars196, and CUB200 datasets.

hyper-parameters, both α, β, and γ are set to 0.3, 10, and 8

by default, respectively. Floating point operations (FLOPs)

and parameters (Params) are employed to measure the com-

putation and storage cost of the networks.

5.2. Results and Comparisons

As shown in Table 1, we focus on evaluating our ap-

proach and other compared methods on three public fine-

grained datasets, i.e., Aircraft, Cars196, and Cub200. To

evaluate the effectiveness of our proposed method, we

conduct fair comparison experiments with two kinds of

DFKD methods which are primarily for general classifica-

tion tasks: (1) Without (×) prior information methods, in-

cluding ZSKT, DAFL, and DFAD; (2) With (�) prior in-

formation methods, including ADI, DFQ, MAD, and CMI.

The first two rows of the table show the results of the

teacher and student with annotated data supervision in train-

ing, which is also our target to achieve by KD. Obviously,

the performance of the methods exploiting prior informa-

tion is better than those without. For example, DFAD only

achieves 49.51%, 48.72%, and 40.15% on three datasets,

while ADI can achieve 58.14%, 65.24%, and 47.63%. This

is mainly because BN regularization has a good perfor-

mance to inverse and generate relatively realistic images,

which is particularly important for downstream distillation.

Based on the BN regularization, our approach exploits the

spatial attention generator to generate the images with se-

mantic information, which can further improve the perfor-

mance of the student.

Besides, almost all of the above approaches exploit the

vanilla KD (e.g., KL divergence) to transfer the knowledge

from the output layer, although they can perform well on

coarse-grained classification, but do not perform well on

fine-grained classification. Our method mainly adopts two

strategies to further improve the performance of the stu-

dent by about 3% on average, which indicates that vanilla

KD alone cannot complete all knowledge transfer, and

special design is necessary for FGVC tasks distillation in

DFKD. Under identical conditions, thanks to two optimiza-

tion strategies, i.e., MHAD and SFCL, our approach outper-

forms the other data-free methods to achieve state-of-the-art

performance on three datasets.

Table 2. More comparisons of different architectures’ students

with ResNet-34 on Aircraft dataset.

Student ZSKT DFAL DFAD ADI DFQ MAD CMI Ours
WRN40-2 49.13 36.83 50.44 57.83 58.26 59.85 62.43 64.54

MobileNetV2 24.39 18.51 23.01 53.66 53.93 54.61 55.04 57.37
ResNet-34 39.52 36.63 52.15 60.75 61.75 63.12 64.66 65.48

To verify the generality of our approach, we perform

distillation on another three student models with differ-

ent architectures, including heterogeneous distillation (i.e.,

WRN40-2 and MobileNetV2) and self-distillation (i.e.,

Resnet-34). For WRN40-2 and MobileNetV2, we leverage

the MLP with two hidden layers to map the dimension to

match the teacher and implement our two strategies both in

the penultimate layer. As shown in Table 2, our approach

can also achieve state-of-the-art performance in different ar-

chitectures.

5.3. Visualization and Analysis

Synthetic images. To clearly evaluate the effect of synthe-

sized images, we present a visualization analysis of some

representative methods on Aircraft, Cars196, and CUB200

in this section. As we can see from Fig. 4, the first column

is the real data for reference. However, for ZSKT, DAFL,

and DFAD, there is a big gap between the generated images

and the real data. Since ADI, CMI, and Ours both exploit

the BN to regularize the features, the synthesized images

are more realistic than the other data-free methods, which

is beneficial for downstream distillation. With the assis-
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Figure 5. Visualization of t-SNE distribution on Aircraft dataset.

tance of two optimization strategies of MHAD, and SFCL,

our approach can generate better and more discriminative

foreground images compared to ADI, DFQ, and CMI. For

example, we can clearly distinguish the outline of the car

and the color of the different areas of the birds.

t-SNE. To illustrate the advantages of our approach in syn-

thesizing images having more similar distributions with real

images, we sample 10 categories from the Aircraft dataset

and visualize the representations of MobileNetV2 by t-SNE

as Fig. 5. As shown in Fig. 5(f), our approach gains ob-

viously better representations than the other methods, ac-

cording to the comparison with each other. Compared the

Tab. 1 with Fig. 4, we can conclude that the performance of

the student primarily relies on the quality of the synthetic

images and the effect of knowledge transfer in DFKD.

Attention map. To further verify the effect of our mixed

high-order attention (MHA) modules feature selection, we

visualized the generated samples through GradCAM 1, as

shown in Fig. 6. The first row is the synthesized alternative

samples of CUB200 which are generated by our attention

module. We can see the fine-grained semantic information

of different synthesized birds. For example, we can distin-

guish different beaks or wings of birds, and different col-

ors of features. When we employ the student embedded

with MHA modules to visualize birds’ discriminative fea-

tures by GradCAM, the attention maps are sparse and focus

on the discriminative parts, as shown in the second row of

the figure. For example, the wings of birds are activated,

which indicates that the wings are being paid attention to.

We can conclude that MHA modules can focus on contex-

tual semantic information on features which is based on the

attention of discriminative features.

5.4. Ablation Study

Contribution of loss. To verify the contribution of each

component, we conduct ablation experiments on the three

datasets with ResNet-18, as shown in Table 3. In the first

row is the Baseline of each benchmark, which exploits the

Eq. 10 to optimize the G, while only optimizing the S by

exploiting the LKL to distill the knowledge. Then, adding

the LSFCL component to the Baseline, the result of each

benchmark is improved by 3.07%, 2.33%, 2.92%, respec-

tively. Likewise, when we add LMHAD to the baseline, it

1https://github.com/jacobgil/pytorch-grad-cam.git

Synthetic Im
ages

A
ttention M

ap 

Figure 6. Visualization of synthetic images with attention map

generated by GradCAM on CUB200 datasets.

can also achieve significant improvement. Nevertheless, by

comparing both, we can find that the contribution of LSFCL

is relatively weaker than LMHAD, which proves the effec-

tiveness of exploiting mixed high-order attention to model

discriminative features, which has been ignored by other

methods. Finally, we add both to the baseline and obtain

the final state-of-the-art effect.

Table 3. The ablation study of our approaches with different com-

ponents. ‘+’ denotes the add operation.

Method Aircraft Cars196 Cub200

Baseline 60.30 64.80 51.34

+ LSFCL 63.37 67.13 54.26

+ LMHAD 64.86 69.92 55.71

+ LMHAD + LSFCL 65.76 71.89 56.93

Effect of hyper-parameters. In our optimization, α, β,

and γ are the major hyper-parameters for balancing the loss

terms in our framework. By adjusting the BN hyperparam-

eter in the interval between 0 to 5, we find that the optimal

value of α is 0.3. Then, we investigate the effect of β and γ
on the student ResNet-18 on the Cars196 dataset and show

the results in Fig. 7. In Fig. 7(a), we set γ as 1.0 and vary

β from 0 to 100, in which 10 is a reasonable parameter ver-

ified by our experiments. Then, we set the optimal value

of β to 10 and vary γ from 0 to 100, in which the student

network achieves the best performance when γ is set to 8,

as shown in Fig. 7(b). It is clear that, when using different

β and γ, our model stably outperforms the baseline model.

The experimental results show that our proposed framework

is robust to the different parameters.

Control parameter of attention ganerator. Due to the pa-
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(a) α = 0.3, γ = 1.0, adjust β (b) α = 0.3, β = 10, adjust γ

Figure 7. Effect of hyper-parameter β and γ on Cars196 dataset.

rameter λ being exploited to control the aggregating of at-

tention and feature maps, we perform a group analysis of

this parameter. As shown in Tab. 4, we first fix the other pa-

rameters, and then the λ is set to 0, which indicates that the

generator does not exploit the attention mechanism. And

the results on the three datasets achieve 63.88, 69.24, and

54.81, respectively. From the interval 0 to 5e−2, the effect

of the generator rises significantly while the effect of the

model decays between 5e−2 and 9e−2, in which the reason-

able parameter is 5e−2. This indicates that the generator

needs to be moderate when employing attention. When the

generator pays too much attention to the attention image, it

may destroy the original synthesized images resulting in the

degradation of the model.

Table 4. The effect of λ under different parameters.

λ Aircraft Cars196 CUB200

0 63.88 69.24 54.81

1e−2 64.32 69.87 55.44

5e−2 65.76 71.89 56.93

7e−2 65.02 70.95 56.30

9e−2 64.23 70.36 55.81

Order effectiveness of MHA. We adopt mixed 3-order at-

tention distillation in our method, which is mainly due to

the 3-order attention having the ability to pay attention to

the context information. It has more information than the

1-order attention. In this section, we conduct experiments

to verify the effect of different orders on different FGVC

datasets. As can be seen from Tab 5, when exploiting the

1-order attention distillation, we can only achieve 64.31,

69.26, and 56.12 on three datasets. However, when we ex-

ploit the 3-order attention distillation, we can improve the

scores of 1.5% on average. What exceeded our expectations

is the lower effect when 2-order attention was used. We be-

lieve that the 2-order attention mainly focuses on the global

information, including the background information, which

confuses the foreground attention and reduces the effect of

attention.

Table 5. The effect of different orders on different FGVC datasets.

Order Aircraft Cars196 CUB200 Avg.

R = 1 64.31 69.26 56.12 63.23

R = 2 63.12 70.35 55.06 62.84

R = 3 65.76 71.89 56.93 64.86

5.5. Architecture of generator

As illustrated in Fig. 1, the generator with spatial-wise

attention modules is adopted in our experiments. There-

fore, we detail the architecture of the generator and attention

module as indicated in Tab. 6. Concretely, our generator is

isomorphic to DCGAN [35]. However, to facilitate the cal-

culation of the spatial-wise attention module, we divide the

generator into four blocks. At each block, we exploit spec-

tral normalization to normalize the weights of deconvolu-

tion, which aims to stabilize the training of the generator.

Then, the encoder-decoder spatial-wise attention module is

plugged into each block of the generator, in which the in-

dexes of Maxpool are also used in the MaxUnpool to focus

on the key position of synthesized features.

Table 6. The Left. Attention Generator Architectures. The noise is

mapped to the features which are upsampled to the required image

size. The SN denotes the spectral normalization, while SAM rep-

resents spatial-wise attention modules corresponding to the Right.

Attention Generator Spatial-wise Attention Modules

FC, Reshape, BN 1 × 1 C → C/r Conv

3× 3, 512 → 256, Deconv ↑2×, 3× 3, C/r → 2C/r, Conv,

SN, LReLU, SAM BN, ReLU, Maxpool

3× 3, 256 → 128, Deconv ↑2×, 3× 3, 2C/r → 4C/r, Conv,

SN, LReLU, SAM BN, ReLU

3× 3, 128 → 64, Deconv ↑2×, 3× 3, 4C/r → 2C/r, Decov,

SN, LReLU, SAM BN, ReLU, MaxUnpool

3× 3, 64 → 64, Deconv ↑2×, 3× 3, 2C/r → C/r, Decov,

SN, LReLU, SAM BN, ReLU

3× 3, 64 → 3, Conv, Tanh 1× 1, C/r → C, Conv, SoftMax

* C is the input channel of each block, while r is scale scalar.

6. Conclusion

In this paper, we address the data-free distillation for

FGVC. We propose to exploit the generator with spatial

attention to synthesize the images with discriminative fea-

tures. Then, two effective strategies are exploited to op-

timize the student by MHAD and SFCL, where MHAD

captures the discriminative features with context informa-

tion and SFCL exploits the high-level semantic features to

contrast the variances between the different categories. Ex-

perimental evidence demonstrates that both approaches can

improve the performance of the student on FGVC tasks

and outperform other data-free distillation approaches to

achieve state-of-the-art performance.
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