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Abstract

Gigapixel Whole Slide Images (WSIs) aided patient di-
agnosis and prognosis analysis are promising directions in
computational pathology. However, limited by expensive
and time-consuming annotation costs, WSIs usually only
have weak annotations, including 1) WSI-level Annotations
(WA) and 2) Limited Patch-level Annotations (LPA). Cur-
rently, Multiple Instance Learning (MIL) often exploits WA,
while LPA usually assign pseudo-labels for unlabeled data.
Intuitively, pseudo-labels can serve as a practical guide for
MIL, but the unreliable prediction caused by LPA inevitably
introduce noise. Furthermore, WA-supervised MIL training
inevitably suffers from the semantical unalignment between
instances and bag-level labels. To address these prob-
lems, we design a framework called Learning from Noisy
Pseudo Labels for promoting Multiple Instance Learning
(LNPL-MIL), which considers both types of weak annota-
tion. Specifically, for the LPA-trained weak classifier, we
design a Super-Patch-based LNPL (SP-LNPL) method to
reduce false positives in the noisy pseudo-labels and then
select more accurate Top-K key instances. In MIL, we pro-
pose a Transformer aware of instance Order and Distribu-
tion (TOD-MIL) that strengthens instances correlation and
weakens semantical unalignment in the bag. We validate
our LNPL-MIL on Tumor Diagnosis and Survival Predic-
tion, achieving state-of-the-art performance with at least
2.7%/2.9% AUC and 2.6%/2.3% C-Index improvement with
the patches labeled for two scale. Ablation study and visu-
alization analysis further verify the effectiveness.

1. Introduction
In Computational Pathology (CPATH), limited by the

high-resolution, wide-field of view property (about 50,000
× 50,000 pixels) of Whole Slide Images (WSIs) [46] and
the biomedical backgrounds required for data annotations,
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Figure 1. Background and Motivation. Top Row. Definition
of LNL and MIL. Second Row. LNL and MIL related problems
in WSI. Bottom Row. LNL assists MIL training with Top-K key
instances selection and more accurate instance pseudo-labels.

WSIs usually only have two types of weak annotation [26] :
1) WSI-level Annotations (WA); 2) Limited Patch-level
Annotations (LPA). Currently, Multiple Instance Learning
(MIL) is often used to address vital WSI-level tasks in
CPATH, e.g., cancer subtype diagnosis, patient prognosis,
therapeutic-response prediction, and biomarker prediction
[8,13,33,34,39]. As shown in Fig. 1, applying weak annota-
tions will inevitably introduce noise. Designing the frame-
work to facilitate WSI-level tasks with both types of weak
annotation is still a challenging problem in CPATH.

Intuitively, LPA can help WA-supervised MIL training
explore the correlation information between instances and
help select Top-K key instances. Unfortunately, the meth-
ods for utilizing LPA, such as Fully Supervisd Learn-
ing (FSL) [1, 58] and Semi-Supervised Learning (SSL)
method [17, 18, 36], still cannot get satisfactory results.
Specifically, only weak classifiers can be trained with LPA,
and the pseudo-labels usually contain a lot of noise. Be-
sides, when the labeled and unlabeled data come from dif-
ferent centers, differences in tissue preparation and scanners
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further amplify the effect of patch-level noise [6, 25]. As
a Learning from Noisy Labels (LNL) problem described
in Fig. 1, an effective Learning from Noisy Pseudo Labels
(LNPL) method is urgently needed in LPA utilization.

Furthermore, in WA-supervised MIL training, not all
patches can accurately inherit WA. Here, we discuss two
typical scenarios: 1) Partial patches can independently in-
herit WA, e.g., for the Tumor Diagnosis in Camelyon16 [5],
only a tiny percentage of tumor patches can inherit WA.
2) No patches can independently inherit the WA, e.g., for
the Survival Prediction in TCGA [32], only the joint repre-
sentation of many patches, such as the tumor microenviron-
ment, can inherit WA. In this paper, we describe this label
ambiguity [9] as a semantical unalignment between patches
and WSI-level label. To address this problem, on the one
hand, some studies combine MIL assumptions [8, 27, 57],
or prior medical knowledge [1, 24] to select Top-K key in-
stances that can semantically align with the bag-level label.
On the other hand, some studies employ feature-based end-
to-end training, i.e., bag-level labels directly guide feature
aggregation so that the semantically unaligned feature will
be paid less attention. Among them, various forms of at-
tention such as bypass attention [11, 33, 34, 62], non-local
attention [28], and self-attention [14, 16, 40, 41], are widely
used. Besides, spatial information and long-distance de-
pendencies in the bag [22, 29, 40] are also widely explored.
Currently, most studies explore the ideal case that only WA
participates in MIL training. A promising direction is how
to combine LPA to promote MIL training, i.e., strengthen
instance correlation and weaken semantical unalignment.

Based on two common weak annotation forms: WA and
LPA, we design a framework called Learning from Noisy
Pseudo Labels for promoting Multiple Instance Learning
(LNPL-MIL). The contributions are as follows:

1) We verify the superiority of the LNPL-MIL under two
representative WSI-level prediction tasks: Tumor Diagnosis
and Survival Prediction. Compared to a series of compet-
ing methods, our LNPL-MIL framework achieves State-Of-
The-Art (SOTA) performance: at least 2.7%/2.9% AUC and
2.6%/2.3% C-Index improvement can be achieved with the
patches labeled for two scale.

2) We design a Super-Patch-based LNPL (SP-LNPL)
method to select more accurate Top-K key instances. SP-
LNPL jointly leverages global feature distribution and the
LPA-trained weak classifier with the FSL, which can effi-
ciently reduce false positives. Compared with the FSL and
even SOTA SSL methods, SP-LNPL achieves higher met-
rics in both patch-level and WSI-level tasks.

3) We propose a Transformer aware of instance Order
and Distribution (TOD-MIL). By strengthening instances
correlation and weakening semantical unalignment in the
bag, we fully utilize WA and LPA to obtain superior perfor-
mance in WSI-related downstream tasks.

2. Related Work

2.1. Learning from Noisy Labels in WSI.

As shown in Fig. 1, the LNL problem can be defined
as the existence of a set of training instances, the labels of
the instances are known, but it is unknown whether the in-
stance labels are noisy. The LNL problem explores the dis-
tribution of the clean instances to remove noisy labels. The
methods of LNL in natural images include robust model ar-
chitecture design [55,59], regularization [48,54], loss func-
tion [20,43], and screening of training samples [45,50]. As
gigapixel images, WSIs are always influenced by noisy la-
bels. Wang et al. [51] discuss the noisy labels caused by
coarse annotations in WSIs and propose a MIL-based de-
noising method, which can achieve better results than the
deep KNN method [4]. For the inaccuracy and incom-
plete labeling problems, the superpixels method [2, 7] and
SSL method [17, 18, 30] are applied to reduce the interfer-
ence of noisy labels. Unlike the noisy annotation problem
discussed above, this paper will discuss the noisy pseudo-
labels caused by LPA-trained weak classifiers. Further,
learning from noisy pseudo-labels for promoting MIL.

2.2. Multiple Instance Learning in WSI.

As shown in Fig. 1, the MIL problem can be defined as
the existence of a set of training instances, the overall la-
bel of the instances (bag-level label) is known, but the la-
bels of each instance are unknown. The MIL problem ex-
plores how to aggregate a bag of unlabeled instances to pre-
dict bag-level labels. Limited by the difficulty of annotation
in WSI, MIL, as a weakly supervised learning method, has
been widely used in WSI-related tasks. There are currently
two mainstream studies, including image-level Top-K key
instances selection [8,15,27,57], feature-level instances ag-
gregation [21, 28, 34, 40, 62] and some composite variants
[37, 38, 56]. Currently, benefiting from the long-distance
communication ability, many MIL models [10,12,16,29,40]
adopt the Transformer to explore correlation information
between instances within a bag. Most MIL methods in
WSIs are designed when only WA exists. Some studies
also discuss a more realistic situation: LPA are also accessi-
ble. Bian et al. [7] adopt the superpixels method and mixed
supervision strategy to jointly use LPA (e.g., Gleason pat-
tern) and WA (e.g., ISUP grade). Gao et al. [17] propose
a semi-supervised multi-task learning framework to coop-
erate the weak annotation including LPA (e.g., min-point
annotation) and WA (e.g., cancer subtyping). However, the
current methods are only validated on cancer classification
tasks with large tumor areas. More general and effective
methods are still worth exploring in more complex scenar-
ios, e.g., small tumor area, LPA and WA from different cen-
ters, and regression problems such as survival prediction.
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Figure 2. Overview of LNPL-MIL Framework. a. Two typical scenarios for WSI-related tasks. b. We first use LPA to train a weak
classifier, then employ this classifier to assign pseudo-labels to unlabeled data. c. The Super-Patch-based LNPL (SP-LNPL) method looks
for the ROI super patches in the feature space to filter the suspected false positives. d. In MIL, we propose a Transformer aware of instance
Order and Distribution (TOD-MIL). It includes Convolution Assisted Transformer Encoder (C-Trans), Instance Order Aware MLP (IOA-
MLP), Bag-level Semantically Guided Attention (BG-Attn), and Instance Distribution Aware Task (IDA-Task). e. The specific form of
C-Trans. f. The specific form of IOA-MLP. g. The specific form of BG-Attn.

3. Method

3.1. Problem Formulation

In CPATH, two common forms of annotation are WA and
LPA. MIL is often used to solve problems containing only
WA. For a bag of instances X = {(x1, y1), · · · , (xn, yn)},
bag-level (WSI-level) label Y is known, but instance (patch-
level) label y is unknown. Actually, a small number of
patch-level annotations are sometimes accessible, which is
the so-called LPA. So we further define yl to represent la-
beled y and yu to represent unlabeled y. It is worth noting
that the annotations Y and yl do not always come from the
same dataset. As shown in Fig. 2a, we discuss two scenar-
ios: 1) The same dataset contains both Y and limited yl;
2) Dataset A contains Y , and Dataset B contains limited yl.

3.2. Top-K Key Instances Selection with LNPL

As a high-resolution image, a WSI contains thousands of
patches. Since not all patches can accurately inherit WSI-
level labels, Top-K key instances selection is an efficient
way to reduce unrelated patches and alleviate high com-
putational costs. Intuitively, LPA can give guidance to se-
lect key instances. However, LPA-trained classifiers usu-
ally only have unreliable prediction, which introduces noise
inevitably. In this section, we first give formal definitions
for weak classifier and pseudo labels, and then describe the
LNPL method, which help reduce noise in pseudo-labels
and select more accurate Top-K key instances.

Weak Classifier Training and Pseudo-labels Assigning.
As shown in Fig. 2b, we first use LPA to train a weak clas-
sifier. Then, the LPA-trained weak classifier is employed to
assign pseudo-labels for the remaining unlabeled patches.
Specifically, we choose a small model, ResNet18 [19]. To
obtain a weak classifier with LPA, we simply apply the FSL
training as the baseline. For the pseudo-labels assigning, it
can be defined as follows:

yp = Fweak (x) , ŷp = argmaxyp, (1)

where yp denotes the positive probability, ŷp denotes the
assigned pseudo-label, x denotes the input patch, and Fweak
denotes the weak classifier trained with LPA.

Super-patch-based LNPL Method. Constrained by
LPA, the weak classifiers may incorrectly assign high/low
positive probabilities to some negative/positive instances in-
evitably. In contrast, the KNN search is not affected by
LPA. It can finish classification with the help of all data
and find more similar patches in high dimensional space.
Therefore, we can regard KNN search as a weak classi-
fier that learns from the coarse-grained global distribution.
Similarly, the LPA-trained weak classifier can be regarded
as learning from fine-grained local distribution. Intuitively,
combining two types of predictions leads to more accu-
rate pseudo-labels. Since false positives are more preva-
lent in Top-K instances selection and are more harmful to
WSI-level tasks, we focus on reducing false positives in the
LNPL method design.
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Currently, superpixels based clustering method [2, 7] is
adopted to reduce the influence of noisy annotations. How-
ever, the superpixels method has the following problems.
1) The clustering results based on image texture are rela-
tively rough and the clustering range is limited within the
local space; 2) The sizes of different superpixels are incon-
sistent, and it isn’t easy to quantitatively and fairly measure
which superpixel has fewer false positives.

To address these problems, as shown in Fig. 2c, we de-
sign a Super-Patch-based LNPL (SP-LNPL) method. For
Problem 1), since using the LPA-trained weak classifier to
extract features will introduce the bias of limited annota-
tions inevitably, we first employ the ImageNet pre-trained
ResNet18 to embed all the patches into task-agnostic [47]
features H. Then, we employ the H to perform global KNN
search [35] to classify similar patches into the same super
patch. For Problem 2), we first divide the H into a series of
same-sized super patches, then combining pseudo-labels to
quantitatively and fairly compare false positives across dif-
ferent super patches. Besides, since the proportion of posi-
tive patches in different WSIs is distinct, we adopt the adap-
tive threshold method to reassign ROI pseudo-labels ŷroi
for patches in each WSI. Then, the positive ratio of ŷroi is
used to measure whether the super patch is an ROI super
patch. Finally, we select the Top-K key instances with the
largest positive probability from all remaining ROI super
patches. The implementation is shown in Algorithm 1.

Algorithm 1 Super-patch-based LNPL Method
Input: The bag X with a series of instances {(x1,yp,1), . . . ,

(xn,yp,n)}. Each super patch size is w. The ratio thresh-
old of ROI positive patches in each super patch is tROI.

Output: Top-K key instances x̂1, . . . , x̂K .
%1. Feature extraction, applying the ImageNet pre-trained model.
for i ∈ [1, n] do hi ← FImageNet(xi);
%2. Feature pre-processing, padding for feature sequenceH.
Ha, Xa ← Padding ((H, X ))
%3. ROI pseudo label pre-processing.
yMid ← yp [idxMid] ◁ Find the median positive probability
for i ∈ [1, n] do ŷroi,i ← 1 if yp,i > yMid else 0;
%4. KNN search, looking for ROI super patches.
Initialize X̂ as ∅
for i ∈ [0 : N : w] do

%4.1. Select the w features closest to h1 inHa.
idx← Hnsw. query (h1, topn =w)
xidx, yp,idx, ŷroi,idx ← Xa (idx)
%4.2. Count the ratio of positive ROI pseudo-labels.
ratio← Count (ŷroi,idx == 1)
%4.3. Determine whether the cluster is an ROI super patch.
if ratio > tROI then X̂ ← X̂ + Xa (idx) ◁ Update X̂ ;
Xa ← Xa −Xa (idx) ◁ Delete selected idx from Xa

end
%5. Select Top-K key instances from the filtered bag X̂ .
x̂1, . . . , x̂K ← Max

(
ŷp,1, . . . , ŷp,n′

)
return x̂1, . . . , x̂K

3.3. Transformer Aware of Instance Order and Dis-
tribution in MIL

As we have described in the Sec. 3.2, the SP-LNPL aided
Top-K key instances selection has the following advantages.
1) The instances connection becomes more closely after the
Top-K key instances selection, reflecting instance positive
probability order; 2) The pseudo-labels become more ac-
curate after the SP-LNPL method, reflecting the instance
positive distribution. Therefore, in the MIL training, we
design a Transformer aware of instance Order and Distri-
bution (TOD-MIL). Specifically, it mainly consists of two
parts, i.e., strengthening instance correlation and weaken-
ing bag semantical unalignment.

3.3.1 Strengthening Instance Correlation with In-
stance Order and Distribution Aware

Convolution assisted Transformer Encoder. Sufficient
interactions between instances are the basis for instance or-
der and distribution exploration. To effectively facilitate
local and global connections during feature aggregation,
we introduce the 1D Convolution to the Transformer en-
coder (C-Trans). Given the Top-K key instance features
H0

t ∈ RK×d, the procedure can be defined as follows:

Hℓ
t = Conv(Hℓ−1

t ) +Hℓ−1
t , ℓ = 1 . . . L

Hℓ
t = MSA(LN(Hℓ

t)) +Hℓ
t , ℓ = 1 . . . L

Hℓ
t = MLP(LN(Hℓ

t)) +Hℓ
t , ℓ = 1 . . . L

(2)

where L is the number of layers, Conv denotes 1D Convo-
lution, MSA denotes Multi-head Self-attention, MLP de-
notes Multilayer Perceptron, and LN denotes Layer Norm.

Instance Order Aware MLP. The C-Trans strengthens
local-global connections to provide better feature represen-
tation, and Top-K key instances selection assisted with SP-
LNPL provides more accurate order information. This im-
plicit order connection among selected instances can ef-
fectively guide the TOD-MIL to learn the instance inter-
actions. Specifically, inspired by the position-aware mod-
ule proposed in [49], we design an Instance Order Aware
MLP (IOA-MLP). Given the output of Transformer encoder
HL

t ∈ RK×d, the procedure can be defined as follows:

Hd = MLP(HL
t

T
) +HL

t

T
,

HD = MLP(Hd
T) +Hd

T,
(3)

where Hd ∈ Rd×K , HD ∈ RK×d, (·)T denotes the trans-
pose of the matrix. It is generally assumed that operations
such as the activation function, dropout, feature upsampling
and downsampling in MLP can help explore channel corre-
lation in the high-dimensional features. Similarly, the trans-
position of channel and instance can also force IOA-MLP to
learn the instance order correlation implicitly in HL

t .
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Instance Distribution Aware Task. Unlike the instance
relative order information implied in the Top-K key in-
stances selection, the pseudo-labels can directly reflect the
distribution of positive instances in the bag. Therefore,
we design an Instance Distribution Aware Task (IDA-Task)
with the following advantages. 1) As an auxiliary task of
predicting positive instances distribution, it can guide the
bag-level feature with better global attention; 2) It can be
the regulation for MIL training to reduce overfitting, which
helps to achieve higher performance in WSI-level tasks.

Specifically, we will assign labels to each WSI ac-
cording to the positive distribution in the Top-K key in-
stances. The proportion of positive instances in the se-
lected Top-K are divided into four non-overlapping bins:
[r0, r1), [r1, r2), [r2, r3), [r3, r4). Simply, we set r0 = 0,
r1 = 0.25, r2 = 0.5, r3 = 0.75, r4 = +∞. For instance-
level distribution labels YI , we can get it as follows:

YI = i iff YI,ratio ∈ [ri, ri+1). (4)

Given the bag-level feature HB ∈ Rd, the loss function of
the instance distribution aware task and bag-level prediction
task can be defined as follows:

Linstance = LI (YI , softmax (HB)) ,

Lbag = LB (Y, softmax (HB)) ,

Ltotal = Lbag + λLinstance,

(5)

where LI is the cross entropy loss function, LB is the loss
function for a specific bag-level prediction task. λ denotes
the intensity of instance distribution aware.

3.3.2 Weakening Bag Semantical Unalignment with
Bag-level Semantically Guided Attention

Since not all patches can inherit WSI-level labels, e.g., for
a tumor WSI, the tumor patches may be less than 10%.
Such semantical unalignment between bag-level labels and
instances still inevitably exists in Top-K key instances. In-
tuitively, instances with less semantical unalignment to the
bag-level label should have lower weights. Therefore, we
design a Bag-level Semantically Guided Attention (BG-
Attn) to reduce the weight of semantical unaligned patches
and strengthen the weight of semantical aligned patches.
Given the output of Transformer encoder HD ∈ RK×d, the
procedure can be defined as follows:

αi =

∑C
c=1 exp

(
hD
i wc + bc

)
∑K

k=1

∑C
c=1 exp

(
hD
k wc + bc

) ,
HG = Concat

(
α1h

D
1 , . . . , αKhD

K

)
,

(6)

where hD
i ∈ Rd, wc ∈ Rd×1 is the c-th column vector of

W c ∈ Rd×C , bc is a bias in bc ∈ RC , HG ∈ RK×d, C is
bag-level category, K is the number of key instances.

Datasets Total
FSL WSL

0.1% / 0.5% 1% Test Train Val Test

Camelyon16
399 270 (with LPA) 216 54 129

600K 2.8K 5.6K 40K /

CRC-Surv
444 / 267 66 111

100K 0.08K 0.8K 20K /

Table 1. Dataset Description. We report the total number of WSIs
and patches used in each dataset. FSL. Instance-level fully super-
vised learning with LPA, i.e. 0.1%/0.5% and 1% labeled patches.
The performance of the LPA-trained weak classifier on the test
set is shown in the Supplement. WSL. Bag-level weakly super-
vised learning with WA. Camelyon16. Camelyon16 [5] contains
both patch and WSI-level annotations. It includes 270 WSIs in
the training set and 129 WSIs in the test set (officially splitting).
600K patches (tumor: 300K, normal: 300K) are selected for the
FSL. CRC-Surv. We adopt the TCGA-COAD [32] (444 WSIs,
only contains WSI-level annotations) and the NCT-CRC-HE [23]
(100K patches, only contains patch-level annotations).

Inspired by [42], we use a bag-level MLP to predict the
score of each instance, i.e., each instance is considered as a
bag containing only a single instance to measure the align-
ment with bag-level semantical information. Lower atten-
tion weight αi will be given to the instance that has less
semantical alignment to bag-level label.

4. Experiments
Downstream Tasks. To verify the effectiveness of our
proposed LNPL-MIL framework, as shown in Tab. 1, we
conduct experiments on two representative downstream
tasks, including the Tumor Diagnosis (Camelyon16) and
Survival Prediction (CRC-Surv). Besides, we will provide
discussions in two proportions of LPA, i.e., 0.1%/0.5% and
1% labeled patch-level annotations.

Implementation Details. We use 4-fold cross-validation
for all experiments and report the results of all models in
the form of meanstd. We bold the best and underline the
second best. Besides, for the results in survival prediction,
“†” denotes P-Value<0.05. After filtering the background
area, the WSI is split into a series of 224×224 sized patches.
Among them, the Camelyon16 dataset is processed at 40×,
on average, each WSI includes 30,068 patches. TCGA-
COAD is processed at 20×, on average, each WSI includes
13,414 patches. For the model’s architecture and training
parameters, we use a 4-layer Transformer, 1D convolution
with size 3, trained with the Ranger optimizer [52]. The
learning rate is 2e-4, and the batch size is 1. The discrete
position encoding method mentioned in [7] is adopted in
Transformer. For bag-level loss functions, we use cross-
entropy loss for Tumor Diagnosis and cross entropy-based
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0.5% Labeled 1% Labeled
tROI 100 200 400 100 200 400

w/o 0.410 0.406 0.413 0.489 0.501 0.508
SSL 0.537 0.558 0.570 0.550 0.574 0.586

0.2 0.537 0.558 0.570 0.556 0.567 0.586
0.4 0.541 0.566 0.578 0.552 0.566 0.590
0.6 0.546 0.571 0.584 0.574 0.603 0.616

Table 2. Performance of the SP-LNPL method in Patch-level
Tumor Region Detection. Comparison of the tumor region de-
tection ability. Top Row. w/o. We compare with the LPA-trained
classifier without SP-LNPL method. SSL. We select SOTA SSL
method PAWS [3] for comparison. Bottom Row. “0.x”. It’s the
ratio threshold of positive ROI pseudo-labels ŷroi. We explore
the effects of ROI super patches threshold tROI in the SP-LNPL.
FROC. The FROC metric we report is the average sensitivity of
5 false positive rates: 1/2, 1, 2, 4, and 8 FPs per WSI. The results
are reported on the Camelyon16 test set. A higher FROC metric
represents better performance.

Cox proportional loss function for Survival Prediction fol-
lowing [11, 61]. For the SP-LNPL, we set the size of the
super patch to 50. The ratio threshold of positive instances
in each super patch tROI is 10/20, and the selection of Top-
K key instances is 400/200 with (0.1%/0.5%)/1% annota-
tion. For the setting of λ in IDA-Task, the Camelyon16
dataset is set to 0.001/0.001 with 0.5%/1% annotation, and
the TCGA-COAD dataset is set to 0.001/0.01 with 0.1%/1%
annotation. The setting of hyperparameters is discussed fur-
ther in the ablation study and Supplement.

4.1. Experiments on Tumor Diagnosis

Patch-level Tumor Region Detection. We evaluate the
performance of the SP-LNPL method over the Camelyon16
dataset, which has pixel-level annotations. Therefore, the
patch-level tumor region detection ability of selected Top-
K key instances can be compared. As shown in Tab. 2, we
have the following observations: 1) Take the performance
of FSL-trained classifier as the baseline, both the SSL and
SP-LNPL methods can significantly reduce the false pos-
itives in the selected Top-K key instances. 2) Classifiers
trained with more labeled data generally have higher FROC.
Besides, a larger tROI can also help the SP-LNPL to get a
higher FROC. The selection of tROI will be discussed fur-
ther in the ablation study.

Weakly Supervised Comparison. Tumor Diagnosis re-
sults are summarized in Tab. 3. We first train a weak classi-
fier with 0.5% or 1% labeled patches. Then we employ the
weak classifier to select Top-K key instances of high tumor
probabilities for each WSI in Camelyon16 [5]. We have
the following observations: 1) The tumor area in the Came-
lyon16 is generally small (less than 10%). The random

Tumor Diagnosis
Architecture 0% Labeled 0.5% Labeled 1% Labeled

AB-MIL [34] 0.840.024 0.877.030 0.873.006
CLAM-SB [34] 0.819.043 0.880.020 0.877.010
Deep-Attn [60] 0.536.116 0.863.014 0.841.010
Loss-Attn [42] 0.857.023 0.900.035 0.910.012

DTFD-MIL [62] 0.844.046 0.909.008 0.902.033
DTFD-MIL [62] 0.9461 / /

DS-MIL [28] 0.743.066 0.821.058 0.792.039
FR-MIL [16] 0.898.066 0.914.017 0.902.017

GCN-MIL [31] 0.896.032 0.903.009 0.943.009
Patch-GCN [11] 0.925.020 0.944.005 0.957.003

Mixed-Trans [7] / 0.746.028 0.755.027
LNPL-MIL (Ours) / 0.971.011 0.986.007

1 The paper reports the result using ImageNet pre-trained
ResNet-50 features under the magnification of 20×.

Table 3. Tumor Diagnosis. Comparison of AUC performance
in Camelyon16. Top Row. Bypass attention based MIL model
[34, 42, 60, 62]. Second Row. Non-local attention [28] and self-
attention based [16] MIL model. Third Row. GNN based MIL
model [11, 16]. Bottom Row. Transformer based MIL model
with mixed supervision strategy [7]. We compare the experimen-
tal setup from three perspectives: 0% Labeled. Only slide-level
labels (all the patches); 0.5% Labeled. Weak classifiers trained
with 0.5% labeled data (Top-K patches); 1% Labeled. Weak clas-
sifiers trained with 1% labeled data (Top-K patches).

sampling-based method Deep-Attn and coarse superpixels-
based method Mixed-Trans cannot achieve good results.
Top-K key instances selection is an efficient way to this
problem. Since the WSI-level labels in Camelyon16 are
only associated with the suspected tumor patches, when
LPA are available, the classification results of all weakly
supervised methods have been improved after Top-K key in-
stances selection. 2) Self-attention-based method FR-MIL
and GNN-based method Patch-GCN benefit from the strong
ability of instances correlation aggregation, and good re-
sults can be achieved. Since the SP-LNPL method can dra-
matically reduce false positives in selected Top-K and TOD-
MIL can fully explore the instance order and distribution
within the bag, the LNPL-MIL framework achieves at least
2.7% and 2.9% AUC improvement over a range of compet-
ing methods, with 0.5% and 1% Labeled, respectively.

4.2. Experiments on Survival Prediction

Survival prediction results are summarized in Tab. 4. For
the 0.1% or 1% labeled data in the NCT-CRC-HE [23], we
first train a weak classifier for nine tissue classifications.
Then we follow the tissue types selected in [1]. For each
WSI in TCGA-COAD [32], we select Top-K key instances
that belong to lymphocytes, cancer-associated stroma, or
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Survival Prediction
Architecture 0% Labeled 0.1% Labeled 1% Labeled

AB-MIL [34] 0.582.069 0.601†.057 0.592.068
Deep-Attn [60] 0.557.076 0.558.089 0.561.076
Loss-Attn [42] 0.556.074 0.553.072 0.555.067

DS-MIL [28] 0.564.068 0.552.060 0.540.076

GCN-MIL [31] 0.588.066 0.593.040 0.574†.054
Patch-GCN [11] 0.580.024 0.578†.022 0.598.042

Mixed-Trans [7] / 0.547.069 0.533.066
LNPL-MIL (Ours) / 0.627†

.043 0.621†
.074

Table 4. Survival Prediction. Comparison of C-Index perfor-
mance in CRC-Surv. The specific experimental setup is the same
as Tumor Diagnosis. It should be noted that some of the methods
are not applicable to the Survival Prediction, so we do not include
them in the comparison experiment.

colorectal adenocarcinoma epithelium. We have the follow-
ing observations: 1) In CRC, a highly heterogeneous can-
cer [10, 44, 53], most methods cannot achieve satisfactory
results at 0% Labeled (all the patches). Even worse, when
the two forms of annotation come from different centers, the
noisy pseudo-labels of the weak classifier will be amplified.
Therefore, based on the Top-K key instances selected with-
out data cleaning, many MIL methods cannot achieve better
results due to the impact of false positives. 2) We find that
Top-K key instances selected with the 1% Labeled are not
always more suitable than 0.1% Labeled in the Survival Pre-
diction. We guess that since the hazard of patients in Sur-
vival Prediction is often related to the tumor microenviron-
ment, consisting of many patches rather than a single tumor
patch, the accuracy of key instances is not the only determi-
nant of the Survival Prediction, e.g., the spatial correlation
of instances in the bag is also an important factor. 3) Subject
to the difficulties, the LNPL-MIL framework relies on more
robust Top-K key instances selection and stronger correla-
tion aware ability. It can still achieve at least 2.6% and 2.3%
C-Index improvement over a range of competing methods,
with 0.1% and 1% Labeled, respectively.

4.3. Ablation Study

Effects of Different Settings in SP-LNPL. Ablation re-
sults are summarized in Tab. 5. We have following obser-
vations: 1) Similar conclusions as in Tab. 1: the FSL as-
sisted with SP-LNPL in WSI-level tasks can be better than
FSL and SSL. We further demonstrate the effect of several
representative MIL methods assisted with SP-LNPL in the
Supplement, and the performance of MIL methods can be
better. 2) Although a higher tROI can achieve better results
on the FROC metric, it may also lead to missing key in-
stances, so we suggest choosing a lower tROI like 0.2 or

Tumor Diagnosis Survival Prediction
tROI 0.5% 1% 0.1% 1%

w/o 0.902.040 0.944.007 0.625†.040 0.606†.085
SSL 0.945.015 0.964.013 0.589.013 0.617†.082

0.2 0.971.011 0.980.009 0.627†.043 0.612.072
0.4 0.965.008 0.986.007 0.630†

.045 0.621†
.074

0.6 0.945.004 0.957.009 0.601†.025 0.554.027

Table 5. Effects of Different Settings in SP-LNPL. Top Row.
We compare the performance of selected Top-K key instances
based on FSL (w/o) and SOTA SSL method PAWS [3] in WSI-
level label prediction. Bottom Row. “0.x”. It is the ratio threshold
of positive ROI pseudo-labels. We explore the effects of positive
ROI pseudo-labels threshold tROI in the SP-LNPL method for the
Tumor Diagnosis and Survival Prediction.

Tumor Diagnosis Survival Prediction
Architecture 0.5% 1% 0.1% 1%

w/o C-Trans 0.926.015 0.967.014 0.584.032 0.600†.073

w/o IOA-MLP 0.950.011 0.958.013 0.616†.043 0.614†.069
w/ Shuffle 0.930.015 0.931.020 0.597.018 0.593.022

ℓ1 norm 0.938.024 0.938.054 0.567†.027 0.596†.050
ℓ2 norm 0.943.041 0.985.008 0.593†.019 0.562†.049

w/o IDA-Task 0.964.006 0.983.008 0.603†.027 0.614†.074

w/o BG-Attn 0.948.021 0.968.011 0.629†
.041 0.611†.064

w/ AB-MIL 0.967.009 0.982.009 0.611†.029 0.608†.034

TOD-MIL 0.971.011 0.986.007 0.627†.043 0.621†
.074

Table 6. Effects of Different Modules in TOD-MIL. Top Row.
Effects of local and global communications. Second Row. Effects
of instance order aware. w/ Shuffle. We report the meanstd of the
results for the shuffle method under five seeds. Specifically, we
randomly shuffle the Top-K key instances at each training epoch.
Third Row. Effects of instance distribution aware. ℓ1/ℓ2 norm.
We compare with conventional regularization methods. Regular-
ization constraints are added to the bag-level loss with a commonly
used weight of 0.001. Fourth Row. Effects of bag-level seman-
tically guided attention. w/ AB-MIL. We replace BG-Attn with
AB-MIL. Bottom Row. Our proposed TOD-MIL in LNPL-MIL.

0.4. In the Supplement, we discuss the effect of super patch
size on the SP-LNPL and find a medium size like 50 works
better. Besides, we also discuss the influence of the pro-
portion for labeled patches on the parameter selection. We
find weak classifiers trained with fewer annotations must be
more conservative in selecting relevant parameters.

Effects of Different Modules in TOD-MIL. Ablation re-
sults are summarized in Tab. 6. We have following observa-
tions: 1) In the top row, we find that since the C-Trans can
explore local-global correlation information, it is an essen-
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tial foundation in the TOD-MIL. 2) IOA-MLP learns posi-
tive probability order information from LPA-trained weak
classifiers and improves the MIL performance. Besides,
during the MIL training, the random shuffle operation will
damage the order of the Top-K key instances in each epoch,
forcing the model to keep fitting the wrong order informa-
tion. Results show that it will lead to poor performance. 3)
IDA-Task improves the performance of the bag-level task
by introducing instance distribution labels as supervision.
Besides, it can also have higher promotion than conven-
tional regularization such as ℓ1/ℓ2 norm. 4) Both BG-Attn
and AB-MIL are based on the attention mechanism. The
difference is that BG-Attn uses the bag-level classifier for
attention calculation. Since BG-Attn introduces bag-level
semantical supervision to the attention calculation, it can
achieve better results than AB-MIL. We also notice a neg-
ative optimization under the 0.1% annotation of the CRC.
We guess that since the nine categories classifier trained un-
der the 0.1% labeled data (80 patches) has lower accuracy,
much unrelated tissue types are introduced into Top-K key
instances. It causes the attention weight obtained by BG-
Attn to be relatively similar and cannot effectively weaken
unrelated patches.

4.4. Visualization Analysis

For the SP-LNPL, we perform visual analysis from both
global and local aspects, and the visualization results are
shown in Fig. 3 and Fig. 4, respectively. We have the follow-
ing observations: 1) In Fig. 3, compared the ground-truth
(a) with the prediction (b) and (c), the SP-LNPL method
can greatly reduce the false positives and help weak classi-
fiers select more accurate Top-K key instances. 2) In Fig. 4
(a), adopting KNN in the feature space can effectively clus-
ter similar patches into the same super patch. Importantly,
combining the pseudo-labels of the LPA-trained weak clas-
sifier with the result of ROI super patches can jointly re-
move false positives in Top-K key instances. In Fig. 4 (b),
we find that due to weak generalization of the LPA-trained
classifier, some similar or blurry corrupted patches will be
assigned positive labels with high probability, resulting in
the false positives during the Top-K key instances selection.
More visualization results are in the Supplement.

5. Conclusion
MIL is widely used in WSIs related tasks when only

WA exists. As one of the weak annotation forms in WSIs,
LPA are sometimes available in many tasks. Intuitively, as-
signing pseudo-labels to unlabeled data by LPA can pro-
mote MIL. However, the unreliable pseudo-labels will in-
evitably introduce noise. Currently, how to fully use LPA
to promote MIL is still lack of exploration. In this paper,
we design a framework called LNPL-MIL that learns from
noisy pseudo labels to promote multiple instance learning.

(a) Tumor 011. (b) Weak classifier. (c) Ours, tROI = 0.6.

Figure 3. The Visualization of Weak Classifier Predictions
(Camelyon16). (a). Dark red represents the pathologist-annotated
tumor area. (b). Dark red represents the tumor region predicted
by the weak classifier after only FSL training. (c). Dark red repre-
sents the tumor region predicted by the weak classifier after FSL
training and data cleaning by the SP-LNPL.

(a) Visualization of the patches in a super patch.

(b) Visualization of false positive patches in Top-K key instances: with a high proba-
bility of positive but out of the ROI super patch.

Figure 4. The Visualization of Super Patch and False Positive
Patches in Top-K Key Instances (Camelyon16). Red/grey in-
dicates that the weak classifier predicts the patch has a high/low
probability of being positive. (a). We visualize the super patch ob-
tained by the KNN search in the feature space. (b). We visualize
the false positives filtered by the SP-LNPL method in Top-K key
instances selection.

Specifically, for LPA-trained weak classifier, we design the
SP-LNPL method to select more accurate Top-K key in-
stances. Then, we propose the TOD-MIL that fully uti-
lize instance order and distribution and weaken semanti-
cal unalignment in the MIL. We verify the LNPL-MIL
framework on two typical WSI-related downstream tasks
and achieve the state-of-the-art performance. Importantly,
the improvement of 2.7%/2.9% in AUC and 2.6%/2.3%
in C-Index can be achieved with the patches labeled for
two scale for the Tumor Diagnosis and Survival Predic-
tion, respectively. Besides, we discuss the effectiveness of
proposed SP-LNPL and TOD-MIL in the ablation study.
Visualization analysis further verifies the effectiveness. In
the future, we will explore the potential for the combina-
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tion of SSL in the LNPL, and verify the proposed LNPL-
MIL framework in more tasks.
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Liestøl, David J Kerr, and Håvard E Danielsen. Designing
deep learning studies in cancer diagnostics. Nature Reviews
Cancer, 21(3):199–211, 2021. 2

[26] Daisuke Komura and Shumpei Ishikawa. Machine learn-
ing methods for histopathological image analysis. Computa-
tional and structural biotechnology journal, 16:34–42, 2018.
1

[27] Marvin Lerousseau, Maria Vakalopoulou, Marion Classe,
Julien Adam, Enzo Battistella, Alexandre Carré, Théo Esti-
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