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Abstract

Natural image compression has been greatly improved
in the deep learning era. However, the compression per-
formance will be heavily degraded if the pretrained en-
coder is directly applied on screen content image compres-
sion. Meanwhile, we observe that parameter-efficient trans-
fer learning (PETL) methods have shown great adaptation
ability in high-level vision tasks. Therefore, we propose a
Dec-Adapter, a pioneering entropy-efficient transfer learn-
ing module for the decoder to bridge natural image and
screen content compression. The adapter’s parameters are
learned during encoding and transmitted to the decoder for
image-adaptive decoding. Our Dec-Adapter is lightweight,
domain-transferable, and architecture-agnostic with gener-
alized performance in bridging the two domains. Experi-
ments demonstrate that our method outperforms all exist-
ing methods by a large margin in terms of BD-rate per-
formance on screen content image compression. Specifi-
cally, our method achieves over 2 dB gain compared with
the baseline when transferred to screen content image com-
pression.

1. Introduction

With the growing demand for high-resolution images
and videos online, efficient and more versatile image com-
pression methods are essential for storage and transmission.
In recent years, learning-based image compression (LIC)
approaches [2, 3, 29, 8, 47] have been emerging and quickly
surpassed traditional codecs, such as JPEG [36], BPG [4]
and VVC [11]. These methods learn optimal non-linear
transforms and probabilities for entropy coding by training
end-to-end networks.

However, the model that minimizes the expected rate and
distortion (RD) cost on a specified dataset may not be ideal
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Figure 1. Comparison of our Dec-Adapter against other transfer
learning methods on screen content dataset SIQAD [39] in terms
of BD-rate. All the methods are based on the same LIC compres-
sion model, i.e., Cheng2020 [8] (namely the baseline).

for every test case due to the difference between the prop-
erties of a specific image and the statistic properties of a
dataset. It is especially challenging when the test image
comes from a different domain. For example, applying a
model trained on natural images to screen content images
will lead to worse performance. An intuitive approach to
solve this problem is fine-tuning the model on a screen con-
tent dataset. However, this approach has two drawbacks: it
will reduce the model’s generalization to its original data
domain and consume considerable resources for fine-tuning
a large model. Therefore, it is essential to explore alterna-
tive solutions to address these problems.

There are some works exploring content-adaptive image
compression. One approach is adjusting the parameters of
the encoder neural network [35], but this has shown lim-
ited improvement, as shown in Figure 1. Another approach
is to adapt the the parameters of the decoder [23, 34, 46],
which needs to transmit the adapted parameters to the de-
coder side. Therefore, a large adapter will cause a heavy
bitrate overhead. The third approach is to modify the la-
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tent tensor produced by the encoder[24, 13]. Although this
process introduces zero parameter, its adaptation ability is
limited. The main reason is that it assumes the hyper la-
tent representation follows a Gaussian distribution, which
is required for the bit-back [41] coding process.

Meanwhile, we observe that the Parameter-Efficient
Transfer Learning (PETL) is utilized in vision and language
tasks [17, 25, 40, 7]. It makes a pre-trained model on a
large-scale dataset adapt to a new task by fine-tuning a small
number of parameters, which is more efficient than fine-
tuning the whole network. Different from it, image com-
pression is a self-encoding and decoding structure. There-
fore, a more effective fine-tuning method is fine-tuning for
each image other than a new dataset. From this perspec-
tive, fine-tuning based cross domain image compression
task is actually a one-shot task. The training and testing
processes only utilize one image, which can avoid the do-
main shift between training and testing. In addition, differ-
ent from PETL, the adapter for image compression should
be entropy-efficient since the bitrate overhead depends on
the entropy of the adapter.

Based on the above observations, we propose an entropy-
efficient adapter to bridge screen content and natural image
compression. At the encoding side, we adopt a latent refin-
ing strategy to enhance the model’s adaptability. At the de-
coding side, instead of updating all parameters, we propose
to insert a lightweight adapter into the decoder. The entropy
of the adapter is optimized during the encoding process and
the adapter parameters will be transmitted to the decoder
for image adaptive decoding. The main contributions of this
work is summarized as follows.

• To the best of our knowledge, we are the first to sys-
tematically investigate feasible solutions for entropy-
efficient transfer learning (EETL) for screen content
image compression.

• We propose an efficient decoder-side adapter for image
adaptive compression. We give a comprehensive anal-
ysis on the design of the adapter structure, the decoder
structure, and the insertion position.

• Experiments demonstrate that our Dec-Adapter
achieves the best BD rate on both the natural image
(in-domain) compression and screen content image
(out-domain) compression. Compared with the
baseline, our approach achieves an improvement of
over 2 dB when transferred to the images with a large
domain gap.

2. Related Work
2.1. Learned Image Compression

Learned image compression (LIC) optimizes modules in
an end-to-end manner for image compression [31]. Most

studies aim to reduce distortion by designing more efficient
architectures and predictive models, such as encoders and
decoders [8, 47, 42] and entropy models [3, 2, 30, 15].
Some studies focus on human perception rather than dis-
tortion for image compression [27]. Others explore variable
rate compression [9]. Although learned image compression
has surpassed conventional codecs on natural images, its
performance on screen content image compression has not
been well explored. This is because most studies only train
and evaluate on natural images (such as [12], Kodak [22]).
Therefore, our work investigates adapting the natural image
codec to screen contents by introducing a decoder adapter.

2.2. Content-Adaptive Compression

Our work is most related to content-adaptive compres-
sion. In learned image compression, content-adaptive com-
pression is achieved by refining the latent representation ob-
tained by the encoder [21, 26, 41, 13, 33, 1, 38, 45, 14]
for each image. The latent bitstream can be obtained by
compressing the refined latent representation. The pa-
rameter update and compression in the decoder side are
mainly used for multi-image compression, video compres-
sion post-processing and neural video compression [35, 20,
23, 10, 24]. Rozendaal et al. [35] update all the param-
eters in the decoder and entropy model via rate-distortion
optimization. However, although they handle multiple im-
ages adaptively, this method requires relatively more bits
to compress a single image. Lam et al. [23] only update
the biases in convolutional layers in the post-processing
network. Zou et al. [46] insert multiplicative parameters
(used to multiply the output of convolutional layers) that
can overfit and update these parameters for intra-frame cod-
ing. However, these updated parameters are selected tem-
porarily and only optimized in terms of distortion. Tsubota
et al. [34] introduce a matrix as an adapter for decoding
and achieve state-of-the-art performance on artist domains.
Their work demonstrates the effectiveness of adapters in de-
coding. However, they do not explore effective ways to use
adapters for the decoder and only implement their adapter
as matrix multiplication. In contrast, we propose an entropy
efficient adapter, which follows a convolutional bottleneck
structure with depthwise and pointwise convolution.

2.3. Screen Content Image Compression

Despite the progress in LIC techniques, their adaptation
for SCIs is still a relatively less explored domain. Recently,
Wang et al. [37] proposed a learned image codec that in-
corporated the concept of transform skip into the end-to-
end pipeline to improve SCI compression. They verified
that retraining an end-to-end learned pipeline on SCI would
improve SCI compression performance. However, the re-
trained model cannot work well for natural image compres-
sion. Afterwards, some works [43, 44] have advocated
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Figure 2. A prominent VAE structure based LIC with hyperpri-
ors, which consists of main and hyper encoder-decoder pairs. The
main coders employ 4-stage paired blocks. We use Resblock [16]
for illustration as it is widely in image compression [8]. The hyper
coders (ha, hs) have similar blocks which we omit for simplicity.
Convolution Conv (k, s) and its transpose Tconv (k, s) utilize a ker-
nel of size k×k with a stride of s. k = 3 or 5 and s = 2. We insert
adapters into the decoder to make the pretrained network adapt to
different image compression. Note that our adapter can be inserted
into any kind of blocks and ResBlock is only an example.

for a segmentation approach that discerns natural regions
and synthetic contents, and utilize two different networks
to process the two kinds of contents. Different from them,
we utilize one network to deal with both natural and screen
contents via image based adaptation.

2.4. Parameter-Efficient Transfer Learning

Parameter-efficient transfer learning (PETL) [17, 18, 25,
7] has attracted increasing research interest due to the rapid
growth of model size. PETL was first proposed in nat-
ural language processing (NLP), where it was used for
large-scale pre-trained models. It was verified that almost
full fine-tuning performance can be achieved by fine-tuning
only a few lightweight modules in large-scale pre-trained
models. Based on the success of NLP [17], the PETL
strategy was also applied to large-scale pre-trained visual
models for various visual tasks. Among them, adapter-
based [7, 25] and prompt-based fine-tuning methods [19]
are two main paradigms for large-scale visual models. The
principle of our proposed decoder adapter is close to previ-
ous visual adapter and the main difference is that our dec-
adapter should be entropy-efficient. Therefore, our adapter
cannot be embedded into every submodule of the model,
which is different from the transfer learning in high-level
vision tasks.

3. Method
3.1. Preliminary: General Framework for Deep Im-

age Compression

Most of the LIC models share the Variational Autoen-
coder (VAE) architecture, as shown in Figure 2. The non-
linear transforms ga, gs, ha, and hs are parameterized by
neural networks. The original image is denoted by x. The
latent representations before and after quantization are rep-
resented by y = ga(x) and ŷ = Q(y), respectively. The
hyper latent before and after quantization are denoted by
z = ha(y) and ẑ = Q(z), respectively. The side informa-
tion used to estimate the scale parameter σ for the entropy
model of latent ha(y) is given by ẑ. During training, the
quantization operation is approximated by adding uniform
noise to produce differentiable variables ỹ, z̃, and x̃. The
tradeoff between rate and distortion or the loss function can
be expressed as follows:

LRD = Ex∼px [− log2 pŷ|ẑ(ŷ|ẑ)− log2pẑ(ẑ)]︸ ︷︷ ︸
rate

+ λEx∼pxD(x̂, x)︸ ︷︷ ︸
distortion

. (1)

In the following, we introduce our dec-adapter based on
the recent state-of-the-art LIC models.

3.2. Overview of Dec-Adapter

As mentioned previously, it is inevitable to encounter
the problem of performance degradation when compressing
out-of-domain images. Therefore, in this work, we propose
to learn an entropy-efficient Dec-Adapters to align the im-
age domain shift while freezing the original decoder model
at the receiver side. As shown in Figure 2, our adapter is
inserted into the ResBlocks of the decoder side. Figure 3
illustrates different adapting scheme for ResBlocks, which
will be detailed in the following.

3.3. Architecture of Dec-Adapter

We utilize a simple and lightweight adapter. The detailed
architecture of our adapter is presented in Figure 3 (b). Our
adapter follows a bottleneck structure, which is also widely
used by PETL methods in NLP tasks [17] and high-level
vision tasks [25, 40, 7]. The architecture consists of two
convolutional layers cascaded by a GELU activation func-
tion. The first convolution squeezes the channel dimension,
while the second convolution expands it back. Considering
that we need to reduce the entropy of adapter parameters,
we first reduce the parameter number. We use a depth-wise
convolution with weight Wsqueeze ∈ R

Cin
α ×α×K×K for the

first convolution and a point-wise convolution with weight
Wexpand ∈ RCout×

Cin
α ×1×1 for the second convolution.
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Figure 3. Illustration of (a) four options for applying Dec-Adapter to one ResBlock, and (b) the architecture of Dec-Adapter. Orange color
refers to trainable parameters and blue color refers to frozen ones. The adapter can be attached to either 1⃝ or 2⃝ in (a) (i), (ii) and (iii). We
omit the active function in the ResBlock for brevity.

We use a compression factor of α to represent channel di-
mension squeezing, where α is a hyperparameter discussed
in Section 4.2. The adapter computes ∆f ∈ RCout×H×W

as follows:

∆f = (Wup⊗̇σ(Wdown⊗̂fin)), (2)

where ⊗̇ and ⊗̂ denotes point-wise and depth-wise convo-
lution, respectively. Finally, the adaption module learns ∆f
and updates the input latent feature f as:

f ← f +∆f (3)

The ablation study on different design choices is presented
in Section 4.2.

3.4. Adapting Decoder with Dec-Adapter

Since most LIC methods contain ResBlocks at the de-
coder side, we propose applying adapters to tune a Res-
Block in the decoder in four different adapting schemes, as
shown in Figure 3 (a). We design these schemes from two
perspectives: “where” and “how”. The “where” perspec-
tive refers to which intermediate feature f in the pre-trained
ResBlock is adapted by the adapter. The “how” perspec-
tive refers to how the adapter computes the ∆f that modi-
fies the feature f . Since a common ResBlock contains two
convolution layers, we consider plugging adapters to each
convolution layer or the whole residual layer. Moreover,
we consider two connection forms of adapters: parallel and
serial. Combining these two design strategies, we obtain
four variants of adapting schemes with adapters: Parallel
Convolution, Serial Convolution, Serial Convolution w/o
identity, and Parallel Residual. The detailed structures
are illustrated in Figure 3 (a) (i)-(iv). The Dec-Adapter
is designed to be flexible and can be inserted into every
ResBlock of the decoder to transfer features from differ-
ent depths. For example, it can be inserted into the residual

Algorithm 1 Compression with Per Image Adaptation
1: procedure LATENTREFINEMENT(y, x)
2: for for step in MAX steps do
3: ỹ := y + U(− 1

2 ,
1
2 )

4: x̃ := gs(ỹ)
5: L(ỹ) :=

∑
i−log2pỸi

(ỹi) + λd(x, x̃)
6: y := y + step(L(y))
7: end for
8: return: y
9: end procedure
1: procedure DECODERADAPTION(ŷ, θ)
2: for for step in MAX steps do
3: Adapters(θ̃) := Adapters(θ) + U(− 1

2 ,
1
2 )

4: x̃ := gs(ỹ;Adapters(θ̃))
5: L(θ̃) :=

∑
i−log2pΘ̃i

(θ̃i) + λd(x, x̃)
6: Adapters(θ) := Adapters(θ) + step(L(θ))
7: end for
8: return: Adapters(θ)
9: end procedure
1: procedure ENCODE(x,Adapters(θ))
2: y := ga(x)
3: y := LatentsRefinement(y, x)
4: ŷ := quantize(y)
5: Adapters(θ) := DecoderAdaption(ŷ,Adapters(θ))
6: Adapters(θ̂) := quantize(θ)
7: b := AE(ŷ) +AE(Adapters(θ̂))
8: return: b
9: end procedure
1: procedure DECODE(b)
2: ŷ := AD(by)
3: x̂ := gs(ŷ; θ ← θ +AD(bθ))
4: end procedure

12890



blocks in different stages (s1 − s4) of gs, as shown in Fig-
ure 2. Other modules, such as attention blocks, can also be
adapted following the same guidelines. For more details,
please see our supplementary file.

3.5. Model Optimization

Our content-adaptive optimization framework is com-
posed of two stages. The first stage is Latent Refinement
while the second stage focuses on Dec-Adapter Training.

Latent Refinement. In adaptive compression, the re-
ceiver side requires access to the adapted prior and de-
coder models. When the amount of updated parameters is
large, the cost of transmitting the model updates becomes
heavy [35]. If we only adjust the encoder or latent, there are
no further bits introduced to the bitstream since the encoder
is not required for decoding and the latent is transmitted
anyway. This allows us to close or at least reduce the amor-
tization gap (the difference between py|z and the optimal
entropy py). Various works have explored this approach.
Lu et al. [24] adapted the encoder, while Campos et al. [6],
Yang et al. [41] directly adapted the latents. This straight-
forward method has been demonstrated to provide a mod-
erate improvement in RD performance without bring any
additional bit cost. Therefore, we follow Campos et al. [6]
to refine latent representation via optimization in terms of
rate-distortion at the first stage. When optimizing the la-
tent, we freeze all other parameters and set the parameters
of Dec-Adapters to zero. Specifically, given an image x, we
first encode it into the latent space to obtain y. Then, we
optimize the latent code y via:

L(y) = R(ỹ) + λD(gs(ỹ), x). (4)

Here, ỹ represents y after uniform quantization and gs is the
decoder without adapters. Once we have completed the op-
timization and obtained the refined latent representation y,
we can then quantize it to obtain ŷ and encode ŷ using en-
tropy coding. Note that this latent refinement can be carried
out using a local decoder on the sender’s side.

Decoder Adaptation. The second stage is Decoder
Adaptation. In this stage, we first decode the ŷ that was
compressed during the Latent Refinement stage. We then
optimize the parameters of the adapters. Let w represent the
quantization interval and θ̂ represent the quantized adapter
parameters. We quantize θ with approximation and opti-
mize θ in terms of rate-distortion. Following [34], we use
a mixed quantization approach where we uniformly quan-
tize θ with a straight-through estimator for the decoder and
add uniform noise U ∈ (−w/2, w/2) to θ for the entropy
model. Let θ̃ represent the adapter parameters with added
uniform noise. We then learn the adapter via:

L(θ) = R(pθ̃) + λD(gs(ŷ, θ̂), x). (5)

Table 1. The datasets used for compression evaluation.

Dataset Domain Test Number Average ResolutionNatural Screen Content

Kodak ✓ 24 576 × 704
SIQAD ✓ 24 685 × 739
SCID ✓ 40 720 × 1280
CCT ✓ 24 915 × 1627

The final image compression pipeline is detailed in Al-
gorithm 1. The operations for lossless arithmetic encoding
and decoding are denoted by AE and AD, respectively.

4. Experiments

In this section, we demonstrate the superiority of Dec-
Adapter’s domain transfer capabilities over other relevant
methods. Additionally, we provide an ablation study of
Dec-Adapter’s design choices and analyze its performance.

Datasets. We use Kodak [22], SCID [32], SIQAD [39],
CCT [28] as our benchmark datasets. The first is natu-
ral image dataset, and the other three are screen content
image datasets that consist of a combination of computer-
generated graphics, text, and images. The statistics of the
benchmark datasets are presented in Table 1.

We adopted Cheng2020 [8] as our backbone. The back-
bone was trained using natural images with various λ set-
tings (0.0018, 0.0035, 0.0067, 0.0130, 0.0250). The pre-
training data are natural images. Therefore, the in-domain
performance is evaluated on the natural images and the
out-of-domain performance is evaluated on the other three
screen content datasets. The Adam optimizer is used for up
to 2,500 iterations for the latent refinement and 500 itera-
tions for the adapter training. For the latent refinement, we
set the learning rate to 1e-3 for the first 80% of iterations
and 1e-4 for the remaining 20% of iterations. The adapter
training followed the same learning rate decrease strategy.
We use the same value of hyper-parameters λ for both the
latent refinement and decoder adaption stages as we use in
the pre-training stage. We measure distortion D using mean
squared error.

4.1. Comparison with State-of-the-arts

Rate-Distortion Performance. We provide four solu-
tions for our adapter, and we use the best solution, namely
Serial Convolution at location 2⃝ for the following compar-
ison. We first compare our method with the baseline that
does not use adaptive optimization. We calculate PSNR and
BPP for each image and plot the average values on a rate-
distortion curve, as shown in Figure 4. Our method out-
performs the baseline by 2 dB when adapted to the screen
content images, which verifies the effectiveness of our adap-
tation performance for bridging natural and screen content
compression. Even on the Kodak dataset, which represents
in-domain performance, our method still improves upon the
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(a) Kodak (b) SCID

(c) SIQAD (d) CCT

Figure 4. Comparison with Cheng2020 [8], which is the baseline method that does not perform adaptive optimization.

Table 2. Comparison with existing adaptive compression methods in terms of BD rate (%) over Cheng2020 [8]. A smaller value means
more effective.

Method Description Kodak (In Domain) SIQAD (Out Domain) CCT (Out Domain) SCID (Out Domain) Average

Cheng2020 [8] Baseline 0.00 0.00 0.00 0.00 0.00

+ Yang et al. [41] Only refine latent -13.36 -25.02 -18.42 -24.38 -20.29
+ Lam et al. [23] Bias-tuning 171.15 32.34 50.61 10.00 66.03

+Rozendaal et al. [35] Full para. fine-tuning 63.07 5.59 16.92 -2.07 20.88
+ Zou et al. [46] OMP-tuning -13.93 -29.57 -20.72 -30.32 -23.63

+ Tsubota et al. [34] MD-tuning -14.47 -38.31 -21.05 -37.42 -27.81
+ Ours Conv-tuning -12.87 -47.60 -21.77 -46.27 -32.13

baseline. This confirms that our proposed adaptive scheme
is effective for both natural and screen content image com-
pression. Then, we compare our proposed method with
other adaptation methods. To ensure fairness in the compar-
ison, we integrate the methods of Yang et al. [41], Rozen-
daal et al. [35], Zou et al. [46], Lam et al. [23] and Tsub-
ota et al. [34] into the decoder of our baseline. For more
information on the experimental setup, please refer to the

supplementary file. We calculate the Bjøntegaard Delta bi-
trate (BD rate) [5] in relation to our baseline Cheng2020 [8].
This metric is used to evaluate the performance of video
(image) encoders and is primarily employed to compare the
performance of two encoders at the same bit rate. A lower
BD rate indicates better performance. The results are listed
in Table 2. It is clear that our proposed method outperforms
other adaptation methods, particularly when applied to out-
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of-domain contents. When compressing Kodak images (in-
domain), our method performs slightly below the state-of-
the-art method Tsubota et al. [34]. The main reason is that
our adaptation needs to encode the parameter of the adapter
and this does not bring gains for in-domain image adapta-
tion. When adapt to the screen content compression, our
Conv-based Tuning adapters clearly outperforms the MD
(Matrix Decompose)-tuning method of Tsubota et al. and
the OMP (overfittable multiplicative parameters) method of
Zou et al. [46]. It should be noted that Full parameter-based
tuning [35] and Bias-based tuning perform [23] worse than
the baseline method. This is because these methods transmit
a large number of parameters to the decoder for each indi-
vidual image. This also demonstrates that the Conv based
adapter, which captures information effectively with a small
number of parameters, is the best choice. Table 3 further
lists the results of all the tuning methods based on a stronger
baseline WACNN [47]. We insert our adapter into the last
layer of the decoder following the setting of [34]. The DW-
conv kernel K is set to 3 and the bottleneck layer dimen-
sion is 16, which is the same as for ResBlock architectures.
Compared with this baseline, our method still achieves the
best BD-rate with -13.52% (if averaged on the three SC test-
sets, the BD-rate is -19.75%).
Table 3. Comparison with adaptive compression methods with
WACNN [47] as the network backbone.

Kodak SIQAD CCT SCID Average
Baseline(WACNN) 0.00 0.00 0.00 0.00 0.00
+ Yang et al. [41] -0.74 -8.10 -5.74 -10.44 -6.26
+ Lam et al. [23] 185.8 69.52 66.00 47.68 92.25

+ Rozendaal et al. [35] 74.81 41.51 33.23 35.86 46.34
+ Zou et al. [46] -4.74 -9.38 -8.37 -7.62 -7.53

+ Tsubota et al. [34] -5.32 -15.22 -8.78 -10.56 -9.97
+ Ours 5.18 -23.17 -11.44 -24.65 -13.52

Qualitative Results. Figure 5 illustrates qualitative re-
sults from our proposed method alongside the baseline and
five adaptation methods at comparable BPP levels. All the
results are generated with Cheng2020 [8] as the baseline. It
can be observed that our method can recover sharp edges
well and the characters are also well recovered.

4.2. Ablation Study

We perform ablation study on the design choices of Dec-
Adapter. We explore different architectures and adapting
schemes to evaluate their effectiveness. Our results are re-
ported as the BD rate (%) over the baseline on the SIQAD
dataset.

Adapting variants exploration. We first compare the
performances of four adapting variants. Tables 4 and 5
present the results of four different connection methods
when connecting at 1⃝ and 2⃝, as shown in Fig. 3: Par-
Conv-1/2, Serial-Conv-1/2, Serial-Conv w/o id-1/2 and Par-
Res. We report the results in terms of PSNR (Peak Signal-
to-Noise Ratio) and BPP (Bits Per Pixel) for three differ-
ent quality levels as well as the BD rate. The three quality

Table 4. Comparison (PSNR/BPP) of four connection methods
when connecting at 1⃝.

Par-Conv- 1⃝ Serial-Conv- 1⃝ Serial-Conv w/o id- 1⃝ Par-Res

q1 27.10/0.3003 27.13/0.2998 18.06/0.2987 27.15/0.3002
q3 29.54/0.5130 29.68/0.5125 18.62/0.5113 29.64/0.5127
q5 32.70/0.9391 32.62/0.9384 19.18/0.9367 32.62/0.9385

BD-rate(%) -35.14 -36.71 92910 -36.41

Table 5. Comparison (PSNR/BPP) of four connection methods
when connecting at 2⃝.

Par-Conv- 2⃝ Serial-Conv- 2⃝ Serial-Conv- w/o id- 2⃝ Par-Res

q1 27.15/0.3004 27.28/0.3002 18.15/0.2998 27.15/0.3002
q3 29.67/0.5131 29.84/0.5127 18.70/0.5129 29.64/0.5127
q5 32.68/0.9395 32.86/0.9386 19.53/0.9418 32.62/0.9385

BD-rate(%) -36.66 -38.83 241.6 -36.41

level (q1, q3 and q5) corresponds to setting λ to (0.0018,
0.0067, 0.0250). At the three quality levels for both cases,
the Serial-Conv w/o identity method performs much worse
than the other three methods in terms of PSNR. This suggest
that residual information plays an important role in trans-
fer learning for cross-domain decompression. Among the
other three methods for both 1⃝ and 2⃝, Serial-Conv has
the lowest BD-rate, indicating that it performs better than
both Par-Conv and Par-Res. Additionally, Serial-Conv per-
forms better at location 2⃝ than at location 1⃝. Therefore,
we choose location 2⃝ as the default connection point for
our adapter.

Sensitivity to DWConv kernel K and channel squeeze
factor α. We study the sensitivity of transfer performance
to the DWConv kernel K and squeeze factor α in Dec-
Adapter (Figure 6). Dec-Adapter achieves the best BD-rate
performance on the SIQAD dataset when K = 3. Increas-
ing the kernel size degrades BD-rate because the additional
parameters increase larger BPP but bring smaller PSNR
gains. Decreasing squeeze factor α, or increasing bottle-
neck layer channels, improves the BD-rate performance un-
til bottleneck layer dimension reaches 16. Setting bottle-
neck layer channels C/α with a larger value results in in-
ferior performance. Therefore, unless otherwise specified,
we choose DWConv kernel K = 3 and bottleneck layer
channels C/α = 16 as Dec-Adapter’s default choice.

Layer analysis for adapters. We investigate whether
attaching adapters only to later layers is sufficient. We eval-
uate this on the decoder of Cheng2020 [8], which has four
blocks. We attach adapters to each block (block1, block2,
block3, block4) and combinations of blocks (block1-2-3-
4), see Fig. 2. Fig. 7 shows that applying adapters only
to the last block (block4) achieves over 20% BD-rate sav-
ings (averaged on all domains). Attaching adapters to the
last layer significantly improves performance on unseen do-
mains while maintaining stable performance on seen do-
mains. Adding adapters to all four blocks can further im-
prove the performance, but the gain is limited. Therefore, to
save the computation cost, we choose to add adapters only
to the last layer.
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Figure 5. Qualitative results for different domains.

Figure 6. Sensitivity to DWConv Kernel K and compression factor
α.

Figure 7. Block (layer) analysis for adapters.

4.3. Comparison with HEVC-SCC and VVC-SCC

Further, we also compare with HEVC-SCC Intra (HM
18.0) 1, and VVC Intra (VTM 20.0) 2 with screen content
coding options enabled. Table 6 presents the comparison

1https://vcgit.hhi.fraunhofer.de/jvet/HM
2https://vcgit.hhi.fraunhofer.de/jvet/

VVCSoftware_VTM

results. Since our method considers both SC and natural
images, our method still has a large gap with the traditional
SCC standards. However, as we incorporate a more power-
ful backbone, this gap is steadily narrowing. We believe our
work can inspire more works on SCC.

Table 6. Comparison with HEVC-SCC and VVC-SCC.
Kodak SIQAD CCT SCID Average

Cheng2020 0.00 0.00 0.00 0.00 0.00

Cheng2020 + Ours -12.87 -47.60 -21.77 -46.27 -32.13

WACNN + Ours -6.70 -54.02 -22.62 -57.00 -35.09

HEVC-SCC 25.90 -67.91 -53.59 -74.98 -42.64

VVC-SCC -25.37 -73.35 -27.08 -75.04 -50.20

5. Conclusion
In conclusion, this paper proposes a new method, namely

Dec-Adapter, for bridging natural and screen content im-
age compression. It is a entropy-efficient transfer learning
module designed for the decoder. The adapter’s parameters
are learned during encoding and transmitted to the decoder
for image-adaptive decoding. We provide a comprehensive
analysis on the design of the adapter structure, the decoder
structure, and the insertion position. Our method outper-
forms existing methods in terms of BD-rate performance
on screen content image compression and achieves an im-
provement of over 2 dB to the baseline.

6. Acknowledgments
The authors deeply appreciate the constructive sugges-

tions provided by the reviewers.

References
[1] M. Abdoli, G. Clare, and F. Henry. Gop-based latent refine-

ment for learned video coding. In ICASSP 2023 - 2023 IEEE

12894



International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5, 2023. 2
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