
Learning Global-aware Kernel for Image Harmonization

Xintian Shen1* Jiangning Zhang2* Jun Chen1 Shipeng Bai1

Yue Han1 Yabiao Wang2 Chengjie Wang2,3 Yong Liu1†

1 APRIL Lab, Zhejiang University 2Youtu Lab, Tencent 3Shanghai Jiao Tong University
[22132133, 186368, junc, shipengbai, 22132041]@zju.edu.cn,

[caseywang, jasoncjwang]@tencent.com, yongliu@iipc.zju.edu.cn

Abstract

Image harmonization aims to solve the visual inconsis-
tency problem in composited images by adaptively adjust-
ing the foreground pixels with the background as references.
Existing methods employ local color transformation or re-
gion matching between foreground and background, which
neglects powerful proximity prior and independently distin-
guishes fore-/back-ground as a whole part for harmoniza-
tion. As a result, they still show a limited performance
across varied foreground objects and scenes. To address
this issue, we propose a novel Global-aware Kernel Net-
work (GKNet) to harmonize local regions with comprehen-
sive consideration of long-distance background references.
Specifically, GKNet includes two parts, i.e., harmony ker-
nel prediction and harmony kernel modulation branches.
The former includes a Long-distance Reference Extractor
(LRE) to obtain long-distance context and Kernel Predic-
tion Blocks (KPB) to predict multi-level harmony kernels
by fusing global information with local features. To achieve
this goal, a novel Selective Correlation Fusion (SCF) mod-
ule is proposed to better select relevant long-distance back-
ground references for local harmonization. The latter em-
ploys the predicted kernels to harmonize foreground re-
gions with local and global awareness. Abundant experi-
ments demonstrate the superiority of our method for image
harmonization over state-of-the-art methods, e.g., achiev-
ing 39.53dB PSNR that surpasses the best counterpart by
+0.78dB ↑; decreasing fMSE/MSE by 11.5%↓/6.7%↓ com-
pared with the SoTA method. Code will be available at here.

1. Introduction

Image composition aims to synthesize foreground ob-
jects from one image into another, which is a common task
in image editing. However, human eyes could clearly dis-

*Equal contribution.
†Corresponding author.

(a) Local-translation (b) Region-matching (c) Ours

Figure 1. Comparison of background reference methods in har-
monization. Blue/Red region represent foreground/background,
respectively, and white/red arrows refer to interaction/injection,
respectively. (a) Local-translation methods reference nearby pix-
els. (b) Region-matching methods transfer reference with a unified
view of fore-/back-ground region. (c) Our method interacts long-
distance reference and injects it with short-distance consideration.

tinguish synthetic images due to the visual inconsistency
between foreground and background in composited images.
In attempting to solve the photo-unrealistic problem, image
harmonization is proposed to adjust the foreground objects
based on the illumination and color tone in background en-
vironment, which plays an important role in image editing.

Traditional image harmonization approaches are mainly
based on low-level feature matching, which is only effec-
tive for specific scenes. Recently, numerous learning-based
methods have achieved remarkable progress by address-
ing image harmonization as a generation task. Existing
learning-based methods could be categorized from two an-
gles, i.e., local-translation and region-matching. 1) The
former employs a convolutional encoder-decoder to learn a
foreground pixel-to-pixel translation [41, 8]. But a shallow
CNN only captures limited surrounding background. As
shown in Figure 1a, these approaches harmonize the current
pixel with local references, which is insufficient for harmo-
nization as inner foreground pixels could not attach back-
ground reference. Besides, related long-distance references
are effective in some cases. 2) The latter region matching
methods [29, 7] distinguish foreground and background re-
gions as two styles or domains. As shown in Figure 1b,
they tackle harmonization as a matching problem with a
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Mask Input RainNet[7] iS2AM[38] Ours Real(GT)

Figure 2. Left: Two challenging samples in image harmonization. Mask in column one and Red boxes represents the foreground. Right:
Performance comparison with SOTA methods in terms of PSNR and model size. The circle size represents the floating-point number.

unified view of these two regions by statistics components
or discriminators. Though these approaches harmonize im-
ages with a broader reference range, they totally neglect the
spatial variations in two regions. Hang et al. [17] begin
to notice this problem and add attention-based references
in region matching method [29]. But they still separate two
regions independently and harmonize foreground by unified
matching without considering foreground spatial variations.

To further illustrate existing problems, we provide two
common harmonization cases in Figure 2. In the first case,
a small foreground object appears in the background with
obvious color changes. The region-matching method Rain-
Net [7] provides a poor color correction result while the lo-
cal method iS2AM [38] could tackle this case well, which
indicates that the unified view of background will blend
the overall complex color conditions. In the second case,
related long-distance references exist in the background,
while the local method could only attach insufficient adja-
cent information. Region-matching method RainNet could
obtain whole background blue tone by matching, but it
still excessively harmonizes the house due to the unified
view. These two cases indicate that local reference is insuf-
ficient, but region-matching methods could not model long-
distance reference well and will cause unbalanced harmo-
nization problems by rough matching.

To solve this problem, we rethink essential proximity
priors in image harmonization, i.e., when we paste an ob-
ject into background, the color or light is related to loca-
tion and will be influenced by its neighboring first. More-
over, the effective long-distance information in background
changes with pasted locations, which requires us to learn
adaptive references for each part. Inspired by this obser-
vation, we propose a novel Global-aware Kernel Network
(GKNet) to integrate local harmony modulation and long-
distance background references, including harmony kernel
prediction and harmony kernel modulation. For harmony
kernel prediction, we propose a novel global-aware kernel
prediction method including Long-distance Reference Ex-
tractor (LRE) to obtain long-distance references and Ker-

nel Prediction Blocks (KPB) to predict multi-level adaptive
kernels with selected long-distance references by Selective
Correlation Fusion (SCF). For kernel modulation, we pro-
pose to model local harmony operation by predicted global-
aware kernels and multi-level features. Focusing on features
in kernel region, kernel modulation is significant in alleviat-
ing unbalanced region-matching errors in complex scenes.

To summarize, we make following contributions:

• With the observation of proximity prior and long-distance
references in image harmonization task, we design
GKNet to model global-local interaction by learning
global-aware harmony kernel, including harmony kernel
prediction and harmony kernel modulation.

• For harmony kernel prediction, we propose a kernel pre-
diction branch combined with LRE to model global in-
formation and multiple KPB to learn adaptive harmony
kernels. For better global references, we design SCF to
select relevant long-distance references for local harmo-
nization. For harmony kernel modulation, we propose the
method to harmonize local regions in multi-level decoder
layers with predicted kernels.

• Extensive experiments demonstrate the superior perfor-
mance of our methods in both quantitative and qualitative
results, noting that our method achieves state-of-the-art
results on iHarmony4 datasets.

2. Related work
2.1. Image Harmonization

Traditional image harmonization works have focused on
finding a better method for low-level appearances match-
ing between foreground and background regions in im-
ages, which includes color statistics [36, 35, 45], gradi-
ent information [20, 34, 40], and multi-scale statistical fea-
tures [39, 25]. However, traditional methods could only
be effective in specific scenes. With the advanced gener-
ative ability of deep learning, Tsai et al. [41] firstly pro-
pose a learning-based encoder-decoder network assisted by
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Figure 3. The overview of our proposed GKNet, which consists of harmony kernel prediction branch and harmony kernel modulation
branch. As shown in gray box, the harmony kernel prediction branch is combined with a Long-term Reference Extractor (LRE) and multi-
level Kernel Prediction Blocks (KPB). As shown in yellow box, we propose Selective Correlation Fusion (SCF) module in KPB for better
long-distance references. Given a composited image Ic with corresponding foreground mask M, we extract deep features Fl

E from encoder
ϕE . Then, harmony kernel prediction branch utilizes the deepest feature map and {Fl

E} to predict multi-level dynamic harmony kernels {Kl}

increasingly. The predicted global-aware kernels are employed for harmony kernel modulation in decoder ϕD.

a semantic branch. In observation that semantic informa-
tion is effective in image harmonization, Soffiuk et al. [38]
also add additional pre-train semantic model to baseline
DIH [41] and S2AM [8]. Inspired by domain transfer, Cong
et al. [7] adopt a verification discriminator to distinguish
foreground and background domains. Similarly, Ling et
al. [29] also treat the composited image as two independent
parts and apply style transfer idea to match mean-variance
statistics. To focus on harmonize foreground region, some
methods add attention mechanisms. Cun et al. [8] add a
spatial-separated attention module. Guo et al. [15] for the
first time introduce Transformer architecture to image har-
monization. Hang et al. [17] add background attention cal-
culation to the style transfer block [29], and they also in-
corporated the idea of contrast learning. Besides, Guoet
al. [16] decompose image into reflectance and illumina-
tion by autoencoder for separate harmonization based on
Retinex theory. Some high-resolution methods [24, 44]
frame image harmonization as an image-level problem to
learn white-box arguments. However, the above methods
neglect spatial proximity prior and could not model long-
distance references well. Instead in this paper, we design

a better local modulation method combined with selected
long-distance references to alleviate this problem.

2.2. Dynamic Filtering in Image Editing

The input-dependent dynamic filtering first proposed by
Jia [21] et al. aims to learn position-specific filters on
pixel inputs and apply the generated kernels to another
input, which has been widely used in numerous vision
tasks [33, 23, 46, 9]. This method also shows effectiveness
in image editing tasks, such as denoising [1, 32, 42], shadow
removing [13], deraining [14], image inpainting [26], and
blur synthesis [2]. However, most above methods apply dy-
namic filtering at image-level filter prediction and utiliza-
tion. We propose to learn a multi-level global-aware kernel
with long-term context references for harmonization.

2.3. Feature Fusion

Feature fusion is to combine features from different lay-
ers or branches, which is an omnipresent part of modern
neural networks and has been studied extensively. Most
previous works [18, 37, 28] for feature fusion focus on
the pathways structure design, applying two linear classic
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methods of summation or concatenation. Recently, bene-
fit from the successful use of Transformer in computer vi-
sion [4, 11, 31, 50, 49, 48, 3, 4, 12, 43, 22, 30, 15], some
works [19, 27, 52, 10, 47, 51, 5] apply attention mecha-
nism to present nonlinear approaches for feature fusion. As
global information is significant in image harmonization,
we design a dynamic weighted fusion method to effectively
fuse long-distance reference into kernel prediction.

3. Method
Given a composited image Ic with its corresponding bi-

nary mask M indicating the region to be harmonized, our
goal is to learn a network G that outputs harmonized image
Ih, which could be formulated as Ih = G(Ic,M). To make
this composited image Ic look natural, we train our model
G to adjust the foreground region I f in a supervised manner
with paired real image I. In this paper, we also define the
background region as Ib, and then the composition process
could be formulated as Ic = I f · M + (1 − M) · Ib, where ·
denotes element-wise multiplication.

3.1. Overview of Our Network

As shown in Figure 3, we design a novel network archi-
tecture for image harmonization tasks to allow our network
to pay attention to short-distance and long-distance infor-
mation simultaneously. Following the standard designs in
image harmonization works [8, 38, 29] we use simple U-
Net [37] with attention blocks [8] as the basic structure. We
also take composited RGB image Ic ∈ R

3×H×W concatenated
with foreground region mask M ∈ R1×H×W as input.

Motivated by proximity prior in image harmonization,
we propose Global-aware Kernel Network (GKNet) to
learn global-aware harmony kernel for image harmoniza-
tion, which consists of two branches, harmony kernel pre-
diction and harmony kernel modulation. Firstly, as long-
distance reference is crucial for harmonization task, we
design global-aware kernel prediction branch to predict
harmony kernel with context modeling, which contains a
transformer-based Long-term Reference Extractor (LRE) to
extract global reference and Kernel Prediction Block (KPB)
to predict harmony kernels. In order to incorporate relevant
long-term references for local harmonization, a novel Selec-
tive Correlation Fusion (SCF) is proposed to select more
effective references in backgrounds. Secondly, we design
a multi-level harmony kernel modulation in decoder layers
to employ the predicted global-aware kernels. The mecha-
nism between global-aware harmony kernel prediction and
harmony kernel modulation finally achieves local-global in-
teraction for image harmonization.

3.2. Harmony Kernel Prediction

Inspired by recent works in image editing [1, 14, 32], we
propose to apply dynamic kernels to force the current pixel

harmonized with surrounding regions adaptively. This ap-
proach effectively makes up for the lack of consideration of
proximity prior in previous harmonization works. However,
basic dynamic kernels for image editing tasks such as de-
noising and deraining are applied with a fixed size at image-
level. To predict more proper adaptive kernels for image
harmonization, we analyze the following: 1) Global model-
ing is necessary for image harmonization as long-distance
references may appear in the background. Hence, we de-
sign a novel global-aware harmony kernel prediction branch
with LRE to extract global information and KPB to predict
global-aware kernels with fusion module SCF. 2) Fixed-size
kernels applied at image-level could not handle the scale
problem well. e.g. The pixels inside the large foreground
mask can hardly obtain any real background information,
while predicting large kernels will bring high computation
costs and breaks the intention of proximity prior. Besides,
image-level dynamic kernels pay more attention to detailed
structure, while in image harmonization we also need to
adapt multiple scene variations to harmonize foregrounds at
semantic level. In order to adapt to multi-scene and multi-
scale problems, we propose to predict kernels in multi-level
structures.

Long-distance Reference Extractor. In order to obtain
long-term context, we employ l-transformer layers [11] as
our global information extractor. We feed the deepest fea-
ture map F1

E from CNN encoder into transformer layers.
With the down-sampling feature map in low-resolution of
( w

r ,
h
r ), we treat each pixel as a token to generate embed-

dings. With the multi-head attention mechanism, we ob-
tain global interactive feature Fglobal ∈ R

C×HW after l-
transformer layers. After reshaping and post-convolution
layer, we obtain the long-term reference feature FLR.

Kernel Prediction Block. To adapt diverse foreground
scales and background scenarios, we apply our local op-
eration kernel modulation in multiple decoder levels. Nev-
ertheless, deep-level features contain more semantic infor-
mation, and shallow features contain more details, we need
to predict corresponding adaptive kernels for different level
harmony kernel modulation. Thus, our designed global-
aware harmony kernel prediction branch is in a multi-level
structure to increasingly predict a series of kernels.

In Figure 3, we show our proposed KPB structure from
predicting kernels to harmony kernel modulation operation.
The operation in lth KPBlock can be formulated as

Kl,Fl
KPB = KPBlock(Fl

E ,F
l−1
KPB), (1)

where KPBlock(·) is the KPBlock to predict Kl. For each
KPB, we take Fl−1

KPB ∈ R
Cl×Hl×Wl transferred from (l − 1)th

KPB (For the deepest KPB, we input FLR) and the lth en-
coder layer feature Fl

E as input (We denote F1
E as the deepest
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Figure 4. Schematic diagram of SCF. The module takes the (l-
1)th layer feature Fl−1

KPB and encoder feature Fl
E as input and outputs

the correlation-aware fusion feature F̂l
KPB.

layer in encoder), which outputs feature Fl
KPB for next KP-

Block and the global-aware kernels Kl = Conv(Fl
KPB) after

post-convolutions.

Selective Correlation Fusion. Long-distance reference
FLR obtained from LRE is then injected into the deepest
KPBlock to model global information for local harmoniza-
tion. The standard way of feature fusion, like concatenation
or addition, equally treats low-level and high-level features.
To efficiently model long-term information for local harmo-
nization, we propose SCF to select relevant global informa-
tion by interacting encoder features FE and long-distance
references based on channel-wise attention mechanism.

Specifically, as shown in Figure 4, we take the (l − 1)th
layer feature Fl−1

KPB ∈ R
Cl−1×Hl−1×Wl−1 and the lth encoder fea-

ture Fl
E ∈ R

Cl×Hl×Wl as input and extract attention vector
αKPB, αE ∈ R

Cl by 3 × 3 convolutions and MLP. Subse-
quently, the attention vector is divided into n groups with
length m as α̃KPB, α̃E ∈ R

n×m. Thus, the channel-wise atten-
tion relation A ∈ Rn×ncan be calculated by matrix product

A = α̃KPB ⊙ α̃
T
E . (2)

After that, we calculate the selective factor αKPB, αE ∈

RCl through N × N convolutions with splitting. Then, we
obtain the selective attention weights S l ∈ {S l

E , S
l−1
KPB} for

each features by α ∈ {αKPB, αE} and α ∈ {αKPB, αE}, which
can be formulated as

S l = σ(α + b · FC(α)), (3)

where b is a learnable parameter, σ is sigmoid function.
Based on the attention weight vector, then the shallow and
deep information are interacted as follows:

F̂l
KPB = S l

E ·Conv(Fl
E)+Upsample(S l−1

KPB·Conv(Fl−1
KPB)), (4)

where · denotes to element-wise multiplication.

3.3. Harmony Kernel Modulation

The global-aware adaptive kernel obtained from the har-
mony kernel prediction branch is then utilized in harmony
kernel modulation. In this section, we illustrate the re-
gional harmony operation method kernel modulation in de-
coder layers, which converts the previous overall treatment
of background and foreground into a local reference. As
mentioned in Section 3.2, we apply multi-level kernel mod-
ulation in decoder layer to adapt scales and scenario varia-
tion problem. Figure 3 shows our proposed kernel modula-
tion in lth decoder layers, which could be formulated as

F̂l
D = Fl

D ⊛Kl, (5)

where ⊛ denotes the harmony kernel modulation, Fl
D ∈

RC×H×W is the deep feature extracted from the lth layer in
decoder, and the F̂l

D ∈ R
C×H×W is its corresponding har-

mony kernel modulation result feature in the lth layer. The
tensor Kl ∈ RC×N2×H×W represents the kernels with size of
N for harmony kernel modulation in the lth feature layer,
which we obtain from KPB. For the kernel modulation in
each pixel, we can expand the above equation as

F̂l
D[p] =

∑
q∈Np

Kl
p[p − q]Fl

D[q], (6)

where p and q are the coordinates of pixels in the image,
Kl

p is the kernel for filtering the element p of Fl
D via its sur-

rounding elements, i.e.,Np. As we illustrate in Eq. 5, Kl

contains all element-wise kernels,i.e., Kl
p ∈ R

C×N×N for fil-
tering operations. After the kernel modulation in decoder
layers, we finally obtain the harmonization result. In this
paper, we define the U-Net decoder layer as ϕD(·), then we
can formulate our harmonization process with kernel mod-
ulation as Îh = ϕL

D(· · ·ϕ1
D(F1

D ⊛K1)) · M + (1 − M) · Ic.

3.4. Objective function

In the training phase, we only employ foreground-
normalized MSE loss as our objective function. Compared
with normal MSE loss, it reduces the impact of copying
background area:

Lrec =

∑
h,w

∥∥∥Î − I
∥∥∥2

2

max
{

Amin,
∑
h,w

Mh,w

} , (7)

where Amin is a hyperparameter to keep the loss function
stable as there might be some too small foreground objects.
In this paper, we set Amin = 100 as suggested in [38].

4. Experiments
4.1. Implementation Details

We conduct the image harmonization experiment at res-
olution 256×256 on the benchmark dataset iHarmony4 [7].

7539



Table 1. Quantitative comparisons across four sub-datasets of iHarmony4 [7]. ↑ indicates the higher the better, and ↓ indicates the lower the
better. We compute fMSE for better reflection on harmonization tasks. Best results are in bold and the suboptimal results are in underline.

Method
HCOCO HAdobe5k HFlickr Hday2night ALL

PSNR↑ MSE↓ fMSE↓ PSNR↑ MSE↓ fMSE↓ PSNR↑ MSE↓ fMSE↓ PSNR↑ MSE↓ fMSE↓ PSNR↑ MSE↓ fMSE↓

Composite 33.94 69.37 996.59 28.16 345.54 2051.61 28.32 264.35 1574.37 34.01 109.65 1409.98 31.63 172.47 1376.42

DIH [41] 34.69 51.85 798.99 32.28 92.65 593.03 29.55 163.38 1099.13 34.62 82.34 1129.40 33.41 76.77 773.18
S2AM [8] 35.47 41.07 542.06 33.77 63.40 404.62 30.03 143.45 785.65 35.69 50.87 835.06 34.35 59.67 594.67

DoveNet [7] 35.83 36.72 551.01 34.34 52.32 380.39 30.21 133.14 827.03 35.27 51.95 1075.71 34.76 52.33 532.62
IIH [16] 37.16 24.92 416.38 35.20 43.02 284.21 31.34 105.13 716.60 35.96 55.53 797.04 35.90 38.71 400.29

RAINNet [29] 37.08 29.52 501.17 36.22 43.35 317.35 31.64 110.59 688.40 34.83 57.40 916.48 36.12 40.29 469.60
iDIH-HRNet [38] 39.16 16.48 266.19 38.08 21.88 173.96 33.13 69.67 443.65 37.72 40.59 590.97 38.19 24.44 264.96

D-HT [15] 38.76 16.89 299.30 36.88 38.53 265.11 33.13 74.51 515.45 37.10 53.01 704.42 37.55 30.30 320.78
Harmonizer [24] 38.77 17.34 298.42 37.64 21.89 170.05 33.63 64.81 434.06 37.56 33.14 542.07 37.84 24.26 280.51

DCCF [44] 39.72 14.55 267.79 38.24 20.20 171.01 33.72 66.20 440.84 38.18 51.40 629.67 38.60 22.64 265.41
SCS-Co [17] 39.88 13.58 245.54 38.29 21.01 165.48 34.22 55.83 393.72 37.83 41.75 606.80 38.75 21.33 248.86

Ours 40.32 12.95 222.31 39.97 17.84 138.22 34.45 57.58 372.90 38.47 42.76 546.06 39.53 19.90 220.44

Table 2. Quantitative comparisons on different ratios of fore-
ground based on iHarmony4 by MSE and fMSE metrics. The best
results are in bold and the suboptimal results are in underline.

Method Venue
0%∼5% 5%∼15% 15%∼100%

MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓

DIH CVPR’17 18.92 799.17 64.23 725.86 228.86 768.89
S2AM TIP’20 15.09 623.11 48.33 540.54 117.62 592.83

DoveNet CVPR’20 14.03 591.88 44.90 504.42 152.07 505.82
RainNet CVPR’21 11.66 550.38 32.05 378.69 117.41 389.80
iS2AM WACV’21 6.73 294.76 18.03 204.69 63.02 207.82

GKNet Ours 5.36 244.06 17.46 200.34 57.31 188.75

The initial learning rate is set to 10−4, and the models are
trained for 120 epochs with a batch size of 16 on four
2080Ti GPUs. For optimizer, we adopt an Adam optimizer
with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. It takes about two
days for training. Our proposed model is implemented by
PyTorch, and more detailed network architectures could be
found in the supplementary file.

4.2. Datasets and Metrics

Datasets. To evaluate our proposed method for image har-
monization, we conduct our experiments on the benchmark
dataset iHarmony4 [7], which consists of 4 sub-datasets:
HCOCO, HAdobe5K, HFlickr, and Hday2night, including
73147 pairs of synthesized composite images with their cor-
responding foreground mask and ground truth image.
Evaluation Metrics. Following the standard setups in im-
age harmonization, we use the peak signal-to-noise ratio
(PSNR) and Mean Squared Error (MSE) as evaluation met-
rics. Furthermore, it is more accurate to only calculate the
difference in the foreground region with the metric fore-
ground MSE (fMSE) introduced by [38]. The metric MSE
is calculated for the whole image, while there is no changes
for pixels in the background region in harmonization task.
Without considering the foreground ratio, the average MSE
and PSNR results of the dataset will be more responsive to
the performance of large-scale targets. In this paper, we ar-
gue that fMSE is more suitable for harmonization task.

4.3. Comparison with SOTAs

Quantitative comparison. As results shown in Table 1,
we compare our method with other state-of-the-art im-
age harmonization methods on iHarmony4 [7]. Follow-
ing [7, 38], we also evaluate the model performance on dif-
ferent ratios of foreground by splitting the test images into
three groups,i.e., 0% ∼5%, 5%∼15%, and 15%∼100%. We
provide these results in Table 2. Observing the quantitative
experiment results above, we can summarize the following
conclusions: 1) Our method achieves SOTA results of all
evaluation metrics on average iharmony4 datasets. More
specifically, our method achieves 0.78dB↑ improvement in
PSNR, 1.43↓ in MSE, and 28.42↓ in fMSE compared with
suboptimal methods. 2) Our method obtains the best fMSE
scores on all sub-datasets, meaning that the foreground re-
gions generated by our method are more natural and closer
to real images. 3) As shown in Table 2, our model performs
well on each foreground ratio, especially on 0%∼5%, which
indicates that our method has a strong ability to handle vari-
able foreground scales. It also proves that our proposed
global-aware adaptive kernel could process global-to-local
impact with excellence.
Qualitative comparison. We further provide qualitative re-
sults on iHarmony4 datasets in Figure 5. It could be ob-
served that our GKNet generates more visually coherent
images of the foreground and background than compos-
ited images, which are also closer to ground truth. 1) The
first two rows of examples show that our method can ef-
fectively handle the small object harmonization problem in
complex scenes with proximity prior consideration. 2) The
last two row examples show that our regional modulation
with multi-level structure performs well in large foreground
cases, which handles a wide range of enormous contrast.
For more detailed descriptions, please refer to the caption in
Figure 5. In contrast, our method presents more photoreal-
istic results. More visual comparison results on iHarmony4
datasets could be seen in supplementary materials.
Comparisions on Real Datasets. Experiments results on
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Mask Input RainNet [29] D-HT [15] Harmonizer [24] Ours Real(GT)

Figure 5. Qualitative comparisons with SOTA methods on iHarmony4 [7]. Mask in column one and Red box in Input represents the
foreground. Case 1: The background color shows spatial variation, while only our method captures practical color reference by predicted
kernel and local harmony modulation. Case 2: The harmony result obtained by our method is better in the detailed structure like duckweed
center due to target harmony kernels for each foreground part. Case 3 & 4: For large foregrounds, our approach could also achieve better
results, which preserves more original details and is closer to ground truth.

Mask Input RainNet [29] iDIH-HRNet [38] DoveNet [7] Ours

Figure 6. Qualitative comparisons with SOTA methods on real composite images [41]. Mask in column one and Red box in Input rep-
resents the foregrounds. Case 1: Comparing the results on the dogs, our method achieves more natural results over the sunset background.
Case 2: Our result dims the foreground person based on background dim light, which achieves a more natural effect.

real composition datasets [41] can be seen in Figure 6. For
real composition cases, evaluation metrics are impossible
to calculate as there are no ground truth images. Hence, we
only show qualitative results and human study results here.
More visual comparison results on real datasets could be
seen in supplementary materials.

Table 3. B-T scores comparison on real composite images.

Method Composite DoveNet[7] RainNet[29] iDIH-HRNet[38] Ours

B-T Score ↑ 0.416 0.686 0.972 1.532 1.944

Following [7, 6, 16, 17], we conduct our human study by
inviting 50 volunteers to compare 24750 pairwise results.
The pairwise results are obtained from 99 real composited
images, with 25 results for each pair of different methods on

average. We also use the Bradley-Terry model (B-T model)
to calculate the global ranking score. Our method achieves
the best results as shown in Table 3.

4.4. Ablation Studies

Effectiveness of network components. We further con-
duct quantitative experiments to verify the effectiveness of
components in GKNet. Note that modules in GKNet have
dependencies, we can only show gradually added ablation
studies. As the results in Table 4, our full model obtains the
highest performance on all metrics when KPB, LRE, and
SCF work together. Table 4 also illustrates the effective-
ness of each component. Moreover, to further illustrate our
global-local interaction method for harmonization, we show
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Table 4. Quantitative ablation study of our approach with different
components on iHarmony4[7]

Baseline KPB LRE SCF MSE ↓ PSNR ↑ fMSE ↓

✓ ✗ ✗ ✗ 27.27 37.83 280.56
✓ ✓ ✗ ✗ 21.42 38.68 235.72
✓ ✓ ✓ ✗ 20.50 39.30 229.63
✓ ✓ ✓ ✓ 19.90 39.53 220.44

Input GT Baseline KPB LRE Full Model

Figure 7. Qualitative ablation study of our approach. Red boxes in
input image mark foreground.

qualitative results in Figure 7. Compared with the baseline,
the model with only local KPB outputs stronger local mod-
eling results but loses global view. After introducing LRE,
global awareness of the background is enhanced.But it is
evident that color is overcorrected in the second row. After
adding SCF, we effectively correct the deviation by select-
ing relevant references in background, and the final result is
closer to real image.
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Figure 8. The cluster visual results of adaptive harmony kernels.
e.g., in flower case, structure information like petal margin is dis-
played, which proves that kernels are predicted to adapt local har-
monization specifically.

Interpretability of Global-aware Harmony Kernel. To
further illustrate the effectiveness of the adaptive harmony
kernels, we cluster the per-pixel adaptive harmony kernels
predicted from KPB by K-means. As shown in Figure 8,
the clusters show strong spatial structure, which indicates
that our predicted dynamic kernel can make the structural
adjustment to harmonize the foreground. Moreover, in some
cases, the change of kernel classes is related to the object
mask. This exhibits that our harmony kernels are predicted
dynamically to deal with visual inconsistency in different
spatial locations (e.g. fore-/-background or edges).

(a) Mask (b) Comp (c) Feature map with channel attention weight

Figure 9. Feature maps in SCF. Red number in upper right corner
of feature map represents channel-wise attention weights.

Figure 10. Cross-attention from example point (10,10). We show
four attention maps for different heads, which proves LRE can
match model related long-distance references.

Interpretability of LRE and SCF Module. We visual-
ize the attention mechanism in LRE and SCF for interpret-
ing global-local interaction. In Figure 9, we visualize fea-
ture maps in decoder layers to illustrate our channel-wise
attention module SCF. Visual feature maps with attention
weights show that harmony kernels are predicted with more
attention on related background area and less attention on
irrelevant background area or foreground. In Figure 10, we
visualize the attention maps of LRE, focusing on an exam-
ple point in foreground. As the long-distance information
in predicted harmony kernels is brought by LRE, the visu-
alized attention maps in different heads indicate two points:
1) The kernels for local operation have a global percep-
tive field with long-distance information. 2) Different heads
pay attention to different reference parts, i.e. relevant back-
ground reference, foreground content, overall tone, etc.

5. Conclusion
This paper proposes an effective network GKNet to learn

global-aware harmony kernels for image harmonization,
including harmony kernel prediction and harmony kernel
modulation branches. For harmony kernel prediction, we
propose LRE to extract long-term references and KPB to
predict global-aware kernels. To better fuse long-term con-
text, we design SCF to select relevant references. For har-
mony kernel modulation, we employ the predicted kernels
for harmonization with location awareness. Extensive ex-
periments demonstrate that our proposed algorithm out-
performs the state-of-the-art algorithms on the iHarmony4
dataset and real image composition datasets.
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