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Abstract

Self-supervised monocular depth estimation (SSMDE)
aims at predicting the dense depth maps of monocular im-
ages, by learning to minimize a photometric loss using
spatially neighboring image pairs during training. While
SSMDE offers a significant scalability advantage over su-
pervised approaches, it performs poorly on reflective sur-
faces as the photometric constancy assumption of the pho-
tometric loss is violated. We note that the appearance of
reflective surfaces is view-dependent and often there are
views of such surfaces in the training data that are not
contaminated by strong specular reflections. Thus, reflec-
tive surfaces can be accurately reconstructed by aggregat-
ing the predicted depth of these views. Motivated by this
observation, we propose 3D distillation: a novel training
framework that utilizes the projected depth of reconstructed
reflective surfaces to generate reasonably accurate depth
pseudo-labels. To identify those surfaces automatically, we
employ an uncertainty-guided depth fusion method, com-
bining the smoother and more accurate projected depth on
reflective surfaces and the detailed predicted depth else-
where. In our experiments using the ScanNet and 7-Scenes
datasets, we show that 3D distillation not only significantly
improves the prediction accuracy, especially on the prob-
lematic surfaces, but also that it generalizes well over var-
ious underlying network architectures and to new datasets.

1. Introduction
Monocular depth estimation [37, 7] is the task of pre-

dicting the dense depth map of a monocular image. It is
a fundamental and challenging problem in computer vi-
sion as it bridges the gap between 2D images and the 3D
world. Supervised monocular depth estimation requires a
large number of images from diverse scenes with ground
truth depth. However, creating depth annotations involves
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Figure 1: (a) On a reflective surface, predicting the correct
surface depth does not minimize the photometric loss [14],
due to the disparity between the projection with correct
depth A and the observed location B. (b) L→R: Image from
the ScanNet test set (scene0781 00) [4], predicted depth of
Monodepth2 [14] and MonoViT [53] which overestimates
the depth of the highlight. (c) L→R: Ground truth, pre-
dicted depth of [14, 53] with our 3D distillation.

expensive hardware and is time-consuming [12, 4, 39]. In
contrast, self-supervised monocular depth estimation (SS-
MDE) [11, 55, 13, 14] only requires posed images as train-
ing data, such as stereo pairs and video sequences, and is
therefore important for domains such as autonomous driv-
ing and virtual/augmented reality where the scalability of
the data acquisition for various environments and camera
setups matters. As a consequence, SSMDE has drawn much
attention in recent years [43, 42].

Fundamentally, training an SSMDE model is based on
the photometric loss [14]: given (i) the relative pose be-
tween two frames (source and target), (ii) the camera in-
trinsic parameters and (iii) the predicted depth map of
the target frame, one can transform the source image into
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Figure 2: (a) Images from the ScanNet train set [4] with annotated highlights. (b) Depth predictions of Monodepth2 [14].
(c) Mesh [32] of the table showing that the reflective surface can still be reconstructed correctly by aggregating the predicted
depth from different view directions. The artifacts from the overestimated depths are occluded by the correct mesh surface.

the target view direction with interpolation-based warping.
The photometric loss can then be used to guide the train-
ing of the underlying depth estimation model. The effec-
tiveness of SSMDE in outdoor applications such as au-
tonomous driving [12] has been demonstrated in many prior
works [11, 55, 13, 34, 14, 15, 16, 22, 45].

On the other hand, applying SSMDE to indoor scenes [4,
39] is challenging due to commonly observed reflective sur-
faces such as shiny floors, tables, screens, etc. As illus-
trated in Fig. 1a, predicting the correct depth of a reflec-
tive surface does not minimize the photometric loss due to
view-dependent effects violating the photometric constancy
assumption. Specifically, perceiving depth at the mirror im-
age of a light source on the reflective surface, appearing as
a virtual faraway object, minimizes the said loss. Conse-
quently, the network learns to predict overestimated depth
for the specular reflection, see Fig. 1b. However, this issue
has not been studied enough.

To address this issue, we propose 3D distillation: a gen-
eral training framework to improve SSMDE on reflective
surfaces. As shown in Fig. 2a and Fig. 2b, we observe that
specular highlights are view-dependent, and that there are
some view directions in which the surface appearance is not
contaminated by them. Thus, reflective surfaces can be ac-
curately reconstructed by aggregating the predicted depth
of these views, as shown in Fig. 2c. Inspired by this ob-
servation, we utilize the projected depth of reconstructed
scenes to generate accurate depth pseudo-labels for chal-
lenging reflective surfaces. However, while the projected
depth is more accurate at reflective surfaces, it is lacking
high-frequency details due to volumetric averaging over
multiple views. To overcome this over-smoothing prob-
lem, we propose a fusion scheme in which the projected
and predicted depth are combined under the guidance of an
uncertainty map associated to the predicted depth. Our 3D
distillation is agnostic to the underlying network architec-
tures [14, 29, 53] and significantly improves the depth pre-
diction accuracy on reflective surfaces, as shown in Fig. 1c.

We highlight the contributions of this paper as follows:

1. We propose 3D distillation: a novel training frame-

work that utilizes multi-view 3D information to im-
prove depth prediction accuracy on reflective surfaces
without adding computational cost or model parame-
ters during inference.

2. We originally fuse the predicted and projected
depth for pseudo-label generation, and propose an
uncertainty-based approach that accurately identifies
specular highlights.

3. To validate the effectiveness, we select a subset of the
ScanNet dataset [4] which is rich in specular reflec-
tions and glossy surfaces and thus provide a foundation
for benchmarking future works tackling this issue.

4. Through extensive evaluations, we show that 3D dis-
tillation significantly improves the depth accuracy of
reflective surfaces on ScanNet [4] and 7-Scenes [39],
while being agnostic to the underlying networks.

2. Related Work
2.1. Self-Supervised Monocular Depth Estimation

Self-supervised monocular depth estimation (SSMDE)
aims to learn the dense depth maps of monocular im-
ages, training with the photometric loss [14] using stereo
pairs or monocular videos. Monodepth [13] learns depth
from stereo pairs. Monodepth2 [14] further uses tempo-
rally neighboring frames to minimize the photometric loss,
and introduces auto-masking and minimum reprojection
loss to solve the problem of stationary pixels and occlu-
sions. To deal with dynamic objects, semantic informa-
tion is utilized in SGDepth [22] and motion maps are in-
troduced in [26]. Feature space reconstruction losses are
used in [52, 40] to improve the depth accuracy. DeFeat-
Net [41] introduces a cross-domain dense feature repre-
sentation and a warped feature consistency to improve the
depth accuracy. In [34], a complex architecture is de-
ployed to supervise a more compact one. HR-Depth [29]
introduces high-resolution feature representation and fea-
ture fusion squeeze-and-excitation block. MonoViT [53]
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Figure 3: Pipeline of our 3D distillation training. Firstly, a pretrained self-supervised depth model is used to get the predicted
depth of the training images. Then, the mesh of the training scene is reconstructed using the predicted depth, and the projected
depth of the training images can be obtained. Finally, the predicted and projected depth are fused to generate pseudo-labels,
under the guidance of the uncertainty of the predicted depth (low high). 3D distillation can generate accurate pseudo-
labels by utilizing the multi-view 3D information aggregated from the predicted depth of multiple video frames.

uses MPViT [24] as the encoder of the depth model and
achieves state-of-the-art SSMDE accuracy [42]. Planar as-
sumptions are used in [51, 25] to improve the depth estima-
tion accuracy for indoor scenes, which is achieved by utiliz-
ing external superpixel segmentation [9] or vanishing point
detection [28] methods. MonoIndoor [19] is designed to
handle indoor dynamic depth ranges and be more robust to
rotational motions. DistDepth [46] uses an external depth
model [36] as a teacher, which is trained in a supervised
manner, to guide the training of SSMDE models.

In this paper, we improve the SSMDE accuracy on re-
flective surfaces in indoor scenes in a self-supervised man-
ner, which has not been studied in these existing works. The
proposed 3D distillation utilizes the multi-view 3D informa-
tion aggregated from the predicted depth of multiple video
frames, instead of utilizing external segmentation or depth
models [51, 25, 46]. To demonstrate the generalizability,
we experiment on three SSMDE architectures [14, 29, 53].

2.2. Self-Supervised Multi-View Stereo

Self-supervised multi-view stereo predicts depth from
multi-view images, without using ground truth depth la-
bels during training. Generating pseudo-labels is preva-
lent in this topic. U-MVS [47] uses uncertainty [10] to
filter out unreliable pseudo-labels. In [48], the projected
depth from reconstructed meshes is used as pseudo-labels
and low-resolution training is introduced to improve the ac-

curacy. In contrast, our 3D distillation originally fuses the
predicted depth and projected depth under the guidance of
uncertainty [23] to generate reliable pseudo-labels. RC-
MVSNet [3] uses NeRF [31] as a teacher to improve the
accuracy, and training models on an object-level dataset [1].
However, designing a general NeRF model [31] for scene-
level datasets [4] is challenging [17]. In contrast, our 3D
distillation can work on scene-level datasets [4] and does
not rely on external models like NeRF [31].

2.3. Uncertainty Estimation

Uncertainty estimation [10, 23, 20] aims to quantify the
uncertainty of predictions. Regression uncertainty [20] and
MC-dropout [10] are used to select reliable pseudo-labels in
semi-supervised object detection [27] and self-supervised
multi-view stereo [47], respectively. In SSMDE, different
strategies are explored in [35] to model uncertainty. In this
paper, we work on SSMDE and use an ensemble-based un-
certainty [23] to guide the fusion of depth training labels
from different sources.

3. Method
In this section, we first discuss the self-supervised pre-

training, then detail our 3D distillation training which ag-
gregates multi-view 3D information to improve the depth
accuracy on reflective surfaces. An overview of our 3D dis-
tillation training pipeline is shown in Fig. 3.
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Figure 4: First row (L→R): Image from the ScanNet train set (scene0066 00) [4]; predicted depth of Monodepth2 [14], HR-
Depth [29], and MonoViT [53], respectively; uncertainty map [23] of the predicted depth. Second row (L→R): Ground truth
depth; projected depth of [14, 29, 53], respectively; binary mask of the uncertainty map. The predicted depth can keep more
high-frequency details and the projected depth is more accurate on reflective surfaces. In our 3D distillation, the predicted
depth and projected depth are fused under the guidance of uncertainty, which combines the best of the two worlds.

3.1. Self-Supervised Pretraining

In this stage, a self-supervised depth model is obtained
by training with the photometric loss [13, 14]. Let SI =
{It}Nt=1 be a sequence of video frames for training. Fol-
lowing common notation, we denote with Tt→s the relative
pose for a source image Is, with respect to a target image
It, and with K the world-to-pixel coordinate camera pro-
jection matrix. The goal is to predict a dense depth map Dt

of a target image It which minimizes the photometric loss
Lrecons as follows:

Lrecons = ℓ(It,warp(Is, Tt→s,K,Dt)), (1)

where warp(I, T,K,D) = I⟨KTDK−1x⟩x∈coords(I) de-
notes an image warping transformation with bilinear inter-
polation sampling. Following [13, 14], we use:

ℓ(Ia, Ib) =
α

2
(1−SSIM(Ia, Ib))+(1−α)∥Ia−Ib∥1, (2)

a combination of pixel-wise L1 and SSIM [44] losses,
where α = 0.85.

In practice, we follow [14] to extend the photometric loss
from Eq. (1) to account for multiple source frames using
the minimum reprojection loss and add a smoothness regu-
larization. During training, the ground truth camera poses
are used to calculate the relative pose Tt→s, and thus the
predicted depth is metric. Any existing SSMDE network
architecture [14, 29, 53] fits into this framework of self-
supervised training.

3.2. 3D Distillation Training

In this stage, the self-supervised model is first used to
generate the predicted depth of training images. Then, the

meshes of training scenes are reconstructed using the pre-
dicted depth, and the projected depth of training images
can be obtained. Finally, the predicted and projected depth
are fused to generate pseudo-labels, and a 3D distillation
model is trained using the pseudo-labels. Note that the self-
supervised model is frozen in this stage.

3.2.1 Predicted Depth Generation

For the training video sequence SI = {It}Nt=1, the self-
supervised depth model is used to obtain the predicted
depth, i.e., SD = {Dt}Nt=1. The predicted depth is accurate
on high-frequency details, such as the boundary of an ob-
ject. However, the predicted depth can perform poorly on
reflective surfaces, as the photometric constancy assump-
tion of the photometric loss in Eq. (1) is violated.

3.2.2 Projected Depth Generation

To get better training supervision for reflective surfaces, we
aggregate the multi-view 3D information from the predicted
depth of multiple video frames. Specifically, with the pre-
dicted depth SD and ground truth camera poses of the train-
ing images, we use TSDF-fusion [32] to reconstruct the
3D mesh of the scene; then we project the 3D mesh ac-
cording to the camera poses of the images and obtain the
corresponding projected depth, i.e., SP = {Pt}Nt=1. The
projected depth is more accurate than the predicted depth
on reflective surfaces, because reflective surfaces are view-
dependent and often there are views of such surfaces in the
training data that are not contaminated by strong specular
reflections. Fig. 4 illustrates that the predicted and projected
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[48] RC-MVSNet [3] Ours

Pseudo-Label proj. depth Depth from NeRF [31] pred. depth+proj. depth
Technique LR Training Depth-guided Sampling Uncer-guided Fusion
Training Data Object [1] Object [1] Scene [4]

Table 1: Different strategies to aggregate multi-view 3D in-
formation to generate pseudo-labels. ‘Technique’ means the
proposed technique to improve the quality of pseudo-labels.
‘LR Training’ denotes low-resolution training. ‘Uncer’ de-
notes uncertainty. ‘Object’ and ‘Scene’ denote object-level
datasets and scene-level datasets, respectively.

depth are complementary.
In this step, mesh reconstruction is necessary because:

(i) mesh creation improves the completeness of the pro-
jected depth SP ; (ii) meshes can model occlusions.

3.2.3 Uncertainty-guided Depth Fusion

We fuse the predicted depth Dt and projected depth Pt un-
der the guidance of the uncertainty of the predicted depth.
With three self-supervised models with different network
architectures [14, 29, 53], we can use an ensemble-based
uncertainty [23] to obtain the uncertainty maps SU =
{Ut}Nt=1. Specifically, the standard deviation of the three
depth predictions for a pixel is the uncertainty of this pixel.
As shown in Fig. 4 (top row), the ability of these networks
to capture high-frequency information is different, so the
depth predictions at specular highlights are varying as well,
which increases the uncertainty there. We do not use MC-
dropout [10] here, as MC-dropout [10] may not work well
in SSMDE with known scale, as discussed in [35]. We set a
threshold αuncer = 0.4 and fuse the predicted and projected
depth to get the pseudo-labels SL = {Lt}Nt=1, formulated
as:

Lt(x) =

{
Pt(x), if Ut(x) ≥ αuncer

Dt(x), otherwise
(3)

where x is a pixel on an image frame It.
We compare different strategies to aggregate multi-view

3D information to generate pseudo-labels in Tab. 1. In [48],
the projected depth from reconstructed meshes is used and
low-resolution training/high-resolution testing is introduced
to improve the accuracy. However, cross-resolution test-
ing is challenging for monocular depth estimation [8, 18].
In [3], NeRF [31] is used as a teacher to improve the accu-
racy. However, designing a general NeRF model [31] for
scene-level datasets [4] is not trivial [17]. Our 3D distilla-
tion originally fuses the predicted depth and projected depth
to generate pseudo-labels, which works well for scene-level
monocular depth estimation.

3.2.4 Model Training

We use the pseudo-labels SL to train the 3D distillation
model. Following [50, 38], the training loss is:

Ldepth = | logFt − logLt|, (4)

where Ft is the prediction of image It and Lt is the pseudo-
label of image It. To demonstrate the benefit of aggregating
multi-view 3D information, the 3D distillation model uses
the same network architecture as the self-supervised model,
and is trained from scratch on the pseudo-labels instead of
fine-tuning the self-supervised model. Our 3D distillation
framework only modifies the training stage, without intro-
ducing additional computational cost or model parameters
during inference.

3.3. Implementation Details

We experiment using three network architectures [14, 29,
53]. For numerical stability during training, the depth mod-
els predict disparity and the output is activated by a sig-
moid function. The input/output resolution of the depth
models is 384 × 288. We implement our method with Py-
Torch [33]. The training batch size for Monodepth2 [14]
and HR-Depth [29] is 12 and for MonoViT [53] is 8. All
the models are trained for 41 epochs with the Adam opti-
mizer [21]. The initial learning rate is 10−4 and reduced by
a factor of 10 after 26 and 36 epochs. Flipping and color
augmentations are used during training, following [14]. For
the scene reconstruction, we use TSDF-fusion [32] and
mesh extraction in Open3D [54]. The voxel size is 0.05m
and the truncation distance is 1.0m. To speed up the recon-
struction, we only integrate every 10th frame during TSDF-
fusion. To obtain the projected depth of meshes, we use
Pyrender [30].

4. Experiments
In this section, we first introduce the datasets we use,

then present the main results, and finally discuss the abla-
tion experiments. We also show the effectiveness of our 3D
distillation qualitatively in Fig. 5.

4.1. Datasets

ScanNet (v2) dataset [4] is a large-scale indoor RGB-
D dataset that includes both 2D and 3D data. It contains
1613 indoor scenes with ground truth camera poses and
depth maps. We use the official train set (1201 scenes) for
our model training. During training, we only use images
and ground truth camera poses, without using ground truth
depth data. We consider every 10th frame as a target frame
to reduce redundancy and for each, we find a source frame
both backwards and forwards in time with a relative trans-
lation of 5-10 cm and a relative rotation of at most 3 de-
grees, forming 45 539 training triples. We evaluate using
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Architecture Model ScanNet Val Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [14]
Self-Supervised [14] 0.167 0.100 0.385 0.203 0.764 0.935 0.981
Self-Teaching [35] 0.160 0.090 0.365 0.193 0.780 0.941 0.983

3D Distillation (ours) 0.157 0.083 0.357 0.190 0.782 0.943 0.985

HR-Depth [29]
Self-Supervised [14] 0.166 0.100 0.381 0.200 0.771 0.937 0.982
Self-Teaching [35] 0.159 0.090 0.360 0.190 0.785 0.943 0.984

3D Distillation (ours) 0.154 0.080 0.349 0.186 0.788 0.945 0.986

MonoViT [53]
Self-Supervised [14] 0.138 0.077 0.331 0.171 0.831 0.955 0.986
Self-Teaching [35] 0.133 0.071 0.314 0.163 0.844 0.959 0.988

3D Distillation (ours) 0.128 0.060 0.296 0.157 0.846 0.962 0.990

Architecture Model ScanNet Test Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [14]
Self-Supervised [14] 0.189 0.116 0.407 0.217 0.731 0.921 0.974
Self-Teaching [35] 0.184 0.109 0.392 0.210 0.742 0.925 0.976

3D Distillation (ours) 0.181 0.105 0.388 0.208 0.746 0.927 0.976

HR-Depth [29]
Self-Supervised [14] 0.184 0.111 0.399 0.212 0.739 0.925 0.976
Self-Teaching [35] 0.178 0.102 0.381 0.204 0.752 0.931 0.979

3D Distillation (ours) 0.176 0.098 0.378 0.202 0.754 0.932 0.979

MonoViT [53]
Self-Supervised [14] 0.154 0.082 0.343 0.182 0.801 0.948 0.984
Self-Teaching [35] 0.152 0.081 0.329 0.177 0.811 0.948 0.983

3D Distillation (ours) 0.149 0.075 0.324 0.174 0.812 0.949 0.985

Table 2: Main results on the ScanNet val and test sets [4]. ‘Self-Supervised’ indicates that the model is trained with the
photometric loss [14]. ‘Self-Teaching’ indicates that the model is supervised by the predicted depth from self-supervised
models and trained with the depth loss in Eq. (4). ‘3D Distillation’ indicates that the model is supervised by the fusion of the
predicted depth and project depth and trained with the depth loss in Eq. (4). Bold indicates the best result of an architecture.

the complete official val set (312 scenes) and the complete
official test set (100 scenes). To better evaluate the accu-
racy on reflective surfaces, we create ScanNet-Reflection, a
subset in which reflective surfaces can be observed in every
image. ScanNet-Reflection val and test sets consist of 439
and 121 images from the official val and test sets, respec-
tively. To evaluate the accuracy on non-reflective surfaces,
we also create a ScanNet-NoReflection val set, which con-
sists of 1012 images without reflective surfaces from the
official val set. We evaluate the absolute depth and use the
standard depth metrics [7]. In the supplementary material,
we provide the list of the training triples, the lists of the
ScanNet-Reflection and ScanNet-NoReflection subsets, and
the definitions of the evaluation metrics.

7-Scenes dataset [39] is a challenging RGB-D dataset
captured in indoor scenes. To show the cross-dataset gen-
eralizability, we use models trained on ScanNet [4] to test
on 7-Scenes [39], following [5, 38]. We use the test set
in [5, 38], which consists of 13 sequences, and evaluate us-
ing the ground truth depth from [2]. We evaluate the relative
depth as the camera intrinsics of different datasets [4, 39]
are different, and use the standard depth metrics [7].

4.2. Main Results

ScanNet [4] results with and without our 3D distillation
are shown in Tab. 2. We can see: (i) 3D distillation mod-
els achieve the best accuracy under all seven metrics, for
three different backbones [14, 29, 53] and on both val and
test sets. For example, using Monodepth2 architecture [14],
3D distillation can decrease the Sq Rel of the self-teaching
model by 7.78% and 3.67% on the val and test sets, re-
spectively; using HR-Depth architecture [29], 3D distilla-
tion can decrease the Sq Rel of the self-teaching model by
11.11% and 3.92% on the val and test sets, respectively; the
corresponding improvements for MonoViT [53] are 15.49%
and 7.41% on the val and test sets, respectively. (ii) The
observed improvements of 3D distillation for a stronger
model are larger. Specifically, on the val set, 3D distilla-
tion can decrease the Sq Rel of the self-teaching models
by 7.78% / 11.11% / 15.49% for Monodepth2 [14], HR-
Depth [29], and MonoViT [53] architectures, respectively;
on the test set, 3D distillation can decrease the Sq Rel of the
self-teaching models by 3.67% / 3.92% / 7.41% for Mon-
odepth2 [14], HR-Depth [29], and MonoViT [53] architec-
tures, respectively. We assume stronger models can better
capture high-frequency information, thus their depth pre-
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Architecture Model ScanNet-Reflection Val Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [14]
Self-Supervised [14] 0.206 0.227 0.584 0.246 0.750 0.912 0.961
Self-Teaching [35] 0.192 0.188 0.548 0.233 0.764 0.920 0.967

3D Distillation (ours) 0.156 0.093 0.442 0.191 0.786 0.943 0.987

HR-Depth [29]
Self-Supervised [14] 0.213 0.244 0.605 0.255 0.741 0.906 0.961
Self-Teaching [35] 0.202 0.208 0.565 0.243 0.756 0.914 0.964

3D Distillation (ours) 0.153 0.090 0.430 0.188 0.789 0.948 0.989

MonoViT [53]
Self-Supervised [14] 0.179 0.206 0.557 0.227 0.819 0.930 0.963
Self-Teaching [35] 0.176 0.195 0.537 0.224 0.823 0.930 0.963

3D Distillation (ours) 0.126 0.068 0.367 0.159 0.851 0.965 0.991

Architecture Model ScanNet-Reflection Test Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [14]
Self-Supervised [14] 0.181 0.160 0.521 0.221 0.758 0.932 0.976
Self-Teaching [35] 0.179 0.146 0.502 0.218 0.750 0.938 0.980

3D Distillation (ours) 0.156 0.096 0.459 0.195 0.766 0.945 0.988

HR-Depth [29]
Self-Supervised [14] 0.182 0.168 0.530 0.225 0.749 0.937 0.979
Self-Teaching [35] 0.175 0.145 0.492 0.215 0.757 0.936 0.982

3D Distillation (ours) 0.152 0.089 0.451 0.190 0.771 0.956 0.990

MonoViT [53]
Self-Supervised [14] 0.154 0.129 0.458 0.197 0.822 0.955 0.979
Self-Teaching [35] 0.151 0.130 0.439 0.191 0.837 0.950 0.978

3D Distillation (ours) 0.127 0.069 0.379 0.162 0.846 0.961 0.992

Table 3: Main results on the ScanNet-Reflection val and test sets [4]. ScanNet-Reflection is a subset in which specular
reflections or glossy surfaces can be observed in every image.

Architecture Model ScanNet-NoReflection Val Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [14]
Self-Supervised [14] 0.169 0.100 0.395 0.206 0.759 0.932 0.979
Self-Teaching [35] 0.161 0.090 0.375 0.196 0.777 0.939 0.981

3D Distillation (ours) 0.159 0.087 0.373 0.195 0.779 0.941 0.983

HR-Depth [29]
Self-Supervised [14] 0.169 0.102 0.388 0.202 0.766 0.933 0.980
Self-Teaching [35] 0.160 0.089 0.367 0.192 0.784 0.941 0.982

3D Distillation (ours) 0.158 0.086 0.365 0.190 0.786 0.942 0.983

MonoViT [53]
Self-Supervised [14] 0.140 0.074 0.333 0.171 0.829 0.952 0.984
Self-Teaching [35] 0.134 0.068 0.317 0.164 0.840 0.956 0.987

3D Distillation (ours) 0.133 0.065 0.311 0.162 0.838 0.956 0.987

Table 4: Main results on the ScanNet-NoReflection val set [4]. ScanNet-NoReflection is a subset without reflective surfaces.

diction is more influenced by reflective surfaces. (iii) Self-
teaching models are better than self-supervised models. We
assume the depth loss, i.e., Eq. (4), can decrease the con-
tribution of challenging and faraway depth during training,
thus improving overall accuracy. Nevertheless, our 3D dis-
tillation models are much better than self-teaching models.

ScanNet-Reflection [4] results with and without our 3D
distillation are shown in Tab. 3. Our 3D distillation can sig-
nificantly improve the depth accuracy, which supports the
effectiveness for reflective surfaces. For example, on the

Sq Rel metric of the val set, 3D distillation can improve
the self-teaching models by 50.53% / 56.73% / 65.13% for
Monodepth2 [14], HR-Depth [29], and MonoViT [53] ar-
chitectures, respectively; on the Sq Rel metric of the test
set, 3D distillation can improve the self-teaching models
by 34.25% / 38.62% / 46.92% for Monodepth2 [14], HR-
Depth [29], and MonoViT [53] architectures, respectively.

ScanNet-NoReflection [4] results are shown in Tab. 4.
We can observe that 3D distillation improvements extend
beyond reflective patches.
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Architecture Model 7-Scenes
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 [14]
Self-Supervised [14] 0.153 0.071 0.323 0.190 0.793 0.959 0.989
Self-Teaching [35] 0.152 0.069 0.321 0.188 0.796 0.961 0.989

3D Distillation (ours) 0.149 0.065 0.308 0.185 0.800 0.963 0.990

HR-Depth [29]
Self-Supervised [14] 0.157 0.078 0.334 0.193 0.790 0.957 0.988
Self-Teaching [35] 0.149 0.067 0.315 0.185 0.802 0.963 0.990

3D Distillation (ours) 0.147 0.064 0.304 0.183 0.804 0.965 0.990

MonoViT [53]
Self-Supervised [14] 0.140 0.059 0.297 0.176 0.821 0.967 0.992
Self-Teaching [35] 0.137 0.057 0.293 0.174 0.827 0.968 0.992

3D Distillation (ours) 0.134 0.053 0.284 0.170 0.831 0.972 0.993

Table 5: Main results on 7-Scenes [39]. All the models are trained using the ScanNet train set [4].

Training Label ScanNet Val Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

pred. depth 0.160 0.090 0.365 0.193 0.780 0.941 0.983
proj. depth 0.176 0.102 0.421 0.224 0.710 0.919 0.980
proj. depth with low-resolution training 0.344 0.341 0.833 0.484 0.326 0.602 0.804
pred. depth + proj. depth with diff 0.166 0.094 0.397 0.212 0.740 0.926 0.981
pred. depth + proj. depth with mv 0.158 0.085 0.365 0.195 0.773 0.940 0.984
pred. depth + proj. depth with uncer (ours) 0.157 0.083 0.357 0.190 0.782 0.943 0.985

Training Label ScanNet-Reflection Val Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

pred. depth 0.192 0.188 0.548 0.233 0.764 0.920 0.967
proj. depth 0.189 0.130 0.565 0.249 0.664 0.901 0.979
proj. depth with low-resolution training 0.377 0.469 1.128 0.561 0.262 0.508 0.730
pred. depth + proj. depth with diff 0.172 0.115 0.521 0.229 0.709 0.914 0.983
pred. depth + proj. depth with mv 0.163 0.109 0.469 0.204 0.772 0.935 0.984
pred. depth + proj. depth with uncer (ours) 0.156 0.093 0.442 0.191 0.786 0.943 0.987

Table 6: Ablation experiments using different training labels. The network is Monodepth2 [14] architecture. ‘pred. depth’
and ‘proj. depth’ indicate only using the predicted depth or projected depth as training supervision, respectively. ‘low-
resolution training’ denotes training the model with low-resolution [48]. ‘diff’ denotes fusing using the difference strategy.
‘mv’ denotes fusing using the multi-view consistency check [49]. ‘uncer’ denotes fusing using the uncertainty [23].

7-Scenes [39] results with and without our 3D distilla-
tion are shown in Tab. 5. 3D distillation models are still the
best, which demonstrates the cross-dataset generalizability
of 3D distillation. For example, on the Sq Rel metric, 3D
distillation can improve the self-teaching models by 5.80%
/ 4.48% / 7.02% for Monodepth2 [14], HR-Depth [29], and
MonoViT [53] architectures, respectively.

4.3. Ablation Experiments

We train models using different training labels and eval-
uate these models in Tab. 6. We use Monodepth2 archi-
tecture [14], as its training time is the shortest. We can
make the following observations: (i) ‘proj. depth’ is much
worse than ‘pred. depth’, as the projected depth is over-
smoothing. This supports that it is important to fuse the pre-

dicted depth and projected depth. (ii) Among the strategies
to fuse the predicted depth and projected depth, ‘uncer’ is
better than ‘diff’ and ‘mv’. ‘diff’ strategy means that, for a
pixel x, if Dt(x)−Pt(x) > 0.25Pt(x), this pixel will be re-
garded as being on a reflective surface. ‘mv’ strategy means
pixels which fail in multi-view consistency check [49] will
be regarded as being on reflective surfaces. Specifically, in
a training triple we check the pixels in the target frame with
the aid of two source frames, i.e., the three view consis-
tency in [49]. (iii) Low-resolution training/high-resolution
testing [48] is the worst, because cross-resolution testing for
monocular depth estimation is challenging [8, 18]. Specif-
ically, we train the model with the resolution of 128 × 96
and test the model with the resolution of 384× 288.
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Image Ground Truth Self−Supervised Self−Teaching 3D Distillation (ours)

Figure 5: Our 3D distillation can significantly improve the depth prediction accuracy on reflective surfaces. The network is
MonoViT architecture [53]. The image of the first row is from scene0704 00 of the ScanNet val set [4]. The images of the
other rows are from scene0721 00, scene0776 00, scene0781 00, and scene0796 00 of the ScanNet test set [4], respectively.

5. Conclusion

We have proposed 3D distillation: a novel training
framework for improving SSMDE on reflective surfaces.
Motivated by the view-dependent property of reflective sur-
faces, 3D distillation utilizes the multi-view 3D information
aggregated from the predicted depth of multiple frames to
generate accurate pseudo-labels for reflective surfaces. 3D
distillation significantly improves the depth estimation ac-
curacy for various architectures [14, 29, 53] and on multi-
ple datasets [4, 39], without adding computational cost or
model parameters during inference.
Limitations and Future Work In the 3D distillation
training framework, (i) perfect reflections such as mirrors
are not handled; (ii) ensemble-based uncertainty requires
multiple models during training; (iii) camera poses are
assumed known during training. In future work, all these

limitations could be tackled, e.g., by using dedicated
networks to predict reflection masks and camera poses.
Besides, since depth and normal estimation are synergistic
tasks [6], it could be a promising future direction to
combine 3D distillation training with normal estimation
and use predicted depth and surface normal to refine each
other. Moreover, applying 3D distillation recursively could
lead to more improvements. For the sake of simplicity, in
this paper, we opt for a single iteration that already proves
to be effective.
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