
Deep Multitask Learning with Progressive Parameter Sharing

Haosen Shi†

The Chinese University of Hong Kong
hsshi23@cse.cuhk.edu.hk

Shen Ren
Continental Automotive Singapore

shen@shenren.org

Tianwei Zhang
Nanyang Technological University

tianwei.zhang@ntu.edu.sg

Sinno Jialin Pan
The Chinese University of Hong Kong

sinnopan@cuhk.edu.hk

Abstract

We propose a novel progressive parameter-sharing strat-
egy (MPPS) in this paper for effectively training multitask
learning models on diverse computer vision tasks simulta-
neously. Specifically, we propose to parameterize distribu-
tions for different tasks to control the sharings, based on the
concept of Exclusive Capacity that we introduce. A schedul-
ing mechanism following the concept of curriculum learn-
ing is also designed to progressively change the sharing
strategy to increase the level of sharing during the learning
process. We further propose a novel loss function to reg-
ularize the optimization of network parameters as well as
the sharing probabilities of each neuron for each task. Our
approach can be combined with many state-of-the-art mul-
titask learning solutions to achieve better joint task perfor-
mance. Comprehensive experiments show that it has com-
petitive performance on three challenging datasets (Multi-
CIFAR100, NYUv2, and Cityscapes) using various convolu-
tion neural network architectures.

1. Introduction
Performing multiple tasks at the same time is a fun-

damental ability for many intelligent agents. While the
remarkable success of deep neural networks (DNNs) has
been achieved in various computer vision applications such
as image classification [10], semantic segmentation [38],
depth estimation [31], surface normal estimation [69] and
image generation [15, 21], learning and performing similar
but distinctive tasks simultaneously are still a challenge for
them. To address this issue, researchers proposed the Multi-
Task Learning (MTL) paradigm, which usually trains one
model to act as multiple distinct models. Each task in this
scheme can benefit from reusing knowledge learned from

†This work was done when the author worked as a research assistant at
Nanyang Technological University, Singapore.

Exclusive Capacity Evaluation (from high to low)

first epoch last epochtraining epoch training epoch

own by task 1 own by task 2 own by task 3 own by all tasks

Figure 1. An illustrative diagram of proposed dynamic optimiza-
tion in MPPS for MTL.

others to improve its performance and reduce the model’s
learning time. Generally, the DNNs architecture for MTL
is composed of shared parameters and task-specific param-
eters, which can strike a balance between shared and exclu-
sive knowledge among different tasks [4].

There are two problems that need to be addressed in de-
signing effective MTL algorithms. The first one is the con-
struction of the parameter-sharing scheme. The most com-
mon approach is hard-parameter sharing, which builds a
shared feature extractor to map input data from all tasks into
dense features in a common hidden representation space
and then uses these features to generate different outputs via
task-specific functions. Past works have demonstrated the
effectiveness of this strategy in considerably reducing the
model size and enhancing its overall performance across di-
verse settings [51]. However, it still suffers from two issues.
1) some task combinations may result in a notable perfor-
mance reduction, which is known as the negative transfer
[50, 61]; 2) an optimal design of the MTL models based
on hard-parameter sharing still requires a high level of hu-
man expertise and rich domain-specific knowledge. To mit-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

19924

igate these issues, various solutions have been introduced
to complement the shared architecture [40, 37, 49]. Given
the increasing complexity of DNNs (in terms of model size,
design choices, and available search spaces), how to find
the optimal scheme for MTL resource sharing and resource
allocation is still an open problem.

The second problem in MTL is how to control the opti-
mization process to achieve the best joint task performance.
Recent works focus on balancing the task training speed via
re-weighting the loss coefficients [7, 25, 36, 67], avoiding
the conflict between gradients [78, 35, 8], and finding better
local minima on the optimal Pareto front [65, 54]. These al-
gorithms often clearly utilize the intuitive understanding of
the training process to dynamically balance various tasks.
However, some previous works [30, 73] showed that partic-
ular fixed, precisely searched loss weights can achieve the
same or even better performance. This motivates us to re-
think the relationship between the hard parameter-sharing
design and the training dynamics optimization methods ag-
nostic to DNNs architectures.

In this paper, we propose Multitask Learning with
Progressive Parameter Sharing (MPPS), a novel progressive
parameter-sharing strategy that incorporates the design of
a parameter-sharing scheme with the optimization of train-
ing dynamics, aiming to achieve adaptive knowledge shar-
ing among different tasks at different training stages. Fine-
grained network architecture control is essential in this con-
text to ensure an adequate neural network capacity for each
task and support the complex mapping for all tasks with
various relationships. To achieve that, we propose a dy-
namic resource allocation strategy at the neuron level by
parameterizing the task-specific sharing probability of each
neuron of the neural network, conditioning different tasks
to be learned simultaneously. This design allows distinct
distributions to be learned across different tasks across all
neurons, potentially significantly enhancing the flexibility
of deep MTL model parameter sharing to accommodate a
wide range of task combinations.

However, the optimization is challenging due to the in-
creased search space. Inspired by [1], we design a loss
function to regularize the learning following an exclusive
capacity scheduler, which progressively changes the shar-
ing strategy from the highest exclusive capacity to a fully
shared one during the entire training process. Figure 1 il-
lustrates an example of our dynamic optimization. This de-
sign is inspired by the development of biological brains and
dynamic functional brain connectivity. The structural mod-
ular segregation increases from 0 to 6 ages and the integra-
tion increases after then [71]. For the functional brain net-
work, the integration increases along with higher cognitive
workloads [45, 2, 56]. The biological analog and the MTL
in practice also suggest that optimizing multiple single-task
models may be easier than a multi-task model with shared

parameters. This motivates us to design an exclusive capac-
ity scheduler with the curriculum learning concept.

We perform extensive experiments over popular multi-
task benchmarks to validate the superiority of MPPS. Eval-
uations show that our approach can bring substantial task
performance improvement. We also perform detailed abla-
tion studies to disclose the effectiveness and efficiency of
our dynamic capacity controlling and curriculum scheduler.

We summarize our contributions as follows:

• We propose a novel MTL dynamic resource allocation
strategy at the neuron level by parameterizing the task-
specific sharing probability conditioning on tasks.

• We propose the “Exclusive Capacity” concept and de-
sign an Exclusive Capacity scheduler from the curricu-
lum learning intuition.

• Our approach shows competitive results on image clas-
sification and dense prediction tasks.

2. Related Work
2.1. Multi-Task Learning

Multi-task architectures have gained significant interest
due to their ability to facilitate effective information ex-
change between tasks and potentially avoid task conflicts
[82, 66]. These architectures can be broadly categorized
into two types: hard-parameter sharing [40, 37, 74, 19, 28]
and soft-parameter sharing [42, 52, 14], based on the usage
of shared parameters. Recent studies try to learn a good
parameter partition scheme from various perspectives and
technologies. We detail these strategies in Section 2.3. Our
work aims to address the challenge of training shared pa-
rameters and make the developed training strategy appli-
cable to various architectures, particularly those employing
hard-parameter sharing. Conversely, methods that utilize
fewer shared parameters exhibit less relevance to our work.
Multi-task optimization methods have been developed to
minimize conflicts between tasks and leverage the task sim-
ilarities via different techniques, such as task loss balanc-
ing or gradient correction. Previous studies have explored
model-agnostic task weighting methods utilizing various
properties, including task loss magnitudes [37], gradient
norms [7], task uncertainty [25], meta-learning [36] and
instance-level parameters [67]. However, these approaches
are limited in their effectiveness and flexibility, because
they linear re-weight the entire parameter update at the
task level and fail to mitigate conflicts. In contrast, gra-
dient modification methods aim to avoid gradient conflicts
through techniques such as projecting the gradient onto the
normal space [78], rotating gradient direction [23], gradi-
ent sign dropping [8], and others [70, 35, 44]. However,
these gradient-based methods have a short-sighted view of

19925

the optimization process. In contrast, our approach takes
advantage of a long-sighted view by taking full advantage
of progressive changes in architectures.

2.2. Curriculum Learning

The concept of curriculum learning (CL), originally in-
troduced by [1], draws inspiration from the human learning
process. Subsequently, numerous studies have successfully
applied CL to board applications by selecting training data
in an increasing level of complexity [11, 80, 81, 72, 83, 22,
79]. In addition to the widely used CL methods that ad-
just the scheduling of training data, several approaches em-
ploy CL through augmenting the model capacity [24, 18],
reducing the penalty intensity of the regular term [43], and
controlling high-level representation learning [59].

In the context of MTL, previous research has predomi-
nantly utilized this fundamental idea to design the task or-
dering and the data sampling processes [47, 32, 68, 53].
Different from them, our approach adopts a unique perspec-
tive that focuses on the scheduling of parameter partitions
for different tasks to be learned simultaneously.

2.3. Parameter Partitioning

Enhancing the task performance of MTL models by
learning to assign parameters is an attractive approach. Var-
ious works introduce new approaches to find the best task
parameter partitions, based on the task similarity [17], task
conflict [55], the trade-off between accuracy and efficiency
[62], iterative pruning [41] and others [3, 13]. These works
focus on resolving where to share parameters, while our
method aims to resolve how to train parameters. The closest
work to MPPS is [46], which changes the parameter parti-
tion and randomly varies the parameter participating to fa-
cilitate the training. However, the solution in [46] uses same
dropout probability without progressive changes, which can
pose challenges to its optimization process. More impor-
tantly, we follow a progressive scheduler, which facilitates
the exchange of knowledge among tasks learned simulta-
neously. MPPS is also inspired by various dropout meth-
ods [60, 27, 12], which provide a theoretical framework
and allow our method to work with many different distri-
butions, and Neural Architecture Search (NAS) methods
[62, 13]. MPPS differs from NAS in two aspects. 1) Goal:
MPPSmainly focuses on training shared parameters and can
be added to the NAS-based architecture, while most NAS
works aim to search for the best static architectures. 2) Mo-
tivation: MPPS aims to compactly deploy multitask models
on edge devices, maintaining inference latency and memory
consumption similar to hard-parameter sharing, while NAS
does not consider these requirements.

3. Methodology
3.1. Problem Statement

We aim to train an MTL model that can simultaneously
perform T tasks. We use the notation [T] to denote an enu-
merable set {1, 2, . . . , T}. The input of the MTL model is
an I-dimensional sample x ∈ X ⊂ RI , and the output is
y = (y1, y2, . . . , yT), which are the labels of T different
tasks. Note that the dimensions of outputs from different
tasks can be different. The training dataset include N data
points D = {(x, y1, y2, . . . , yT)i|i ∈ [N]} = {(x,y)i|i ∈
[N]}.

The MTL model consists of a shared network
fθs with parameters θs, and T task-specific networks
gθ1 , gθ2 , . . . , gθT with parameters {θi}. The entire param-

eters for this MTL model are θ = θs ∪

(⋃
i∈[T]

θi

)
. We

denote by L1, L2, . . . , LT the loss functions of each task.
The MTL problem can then be formulated as an optimiza-
tion problem, which tries to find the parameters θ that can
empirically minimize the following loss function:

L(θ) =
∑

x,y∈D

∑
t∈[T]

Lt(gθt ◦ fθs(x), yt). (1)

3.2. Overview

We introduce MPPS, a novel progressive parameter shar-
ing strategy for MTL. The method is described based on the
hard-parameter sharing MTL architecture. Instead of train-
ing all the parameters θ throughout an entire training pro-
cess, we apply the concept of curriculum learning in MPPS
to gradually train the neurons in different tasks according
to different distributions, so that the optimization objectives
of the MTL model are dynamically changed from easy to
hard. In this way, the method may enhance the learning
efficiency and task performance of MTL models by lever-
aging the knowledge learned from the easier optimization
objectives to learn the harder ones.

The implementation of MPPS, however, still faces two
challenges. The first is how to select and adjust the neuron
activation for training in each step, and the second is how
to implement a suitable initialization and scheduling of the
curriculum among the tasks. We introduce several novel
strategies to address the above challenges.

3.3. Exclusive Capacity

We first introduce the concept of Exclusive Capacity,
which is defined as the ratio of the number of neurons used
by only one single task over the number of all neurons used
by multiple tasks in an MTL model. An allocation scheme
with more exclusive neurons has a higher exclusive capac-
ity, while the fully-shared scheme (hard-parameter sharing)
has the lowest exclusive capacity.

19926

Input
Data

Shared
Backbone

Initialized
Mask

Distribution

Initialized
Mask

Distribution

Initialized
Mask

Distribution

Sample
MasksApply on

Last Three
Layers

Labels

Task
Heads

Mask
Distribution

Sampling

Sampling

Sampling

Figure 2. Workflow of MPPS

To facilitate the optimization process, it is necessary to
formulate Exclusive Capacity as a continuous value over the
training process (denoted by EC). To achieve this, we model
EC via an expectation of resource allocation distribution.
Based on a given MTL architecture, the resource allocation
can be formulated as a mask m which represents the se-
lected neurons for each task and is considered as a random
variable sampled from a specific distribution. The new net-
work after applying the mask is fm⊙θ, where⊙ denotes the
element-wise product operation.

We formulate the mask distribution as a Multivariate
Bernoulli distribution with learnable parameters Φ = {ϕ ∈
[0, 1]T }. Specifically, each neuron has a parameter vec-
tor ϕ to build a T -dimensional Multivariate Bernoulli dis-
tribution B(ϕ). For each neuron, we assume task t with
the highest value ϕ[t] is the owner of this neuron, while
the rest T − 1 tasks are its guests. The owner can always
use this neuron for training, whereas the guests can only
use it according to the sampled m from their mask distri-
butions. Then EC of a single neuron can be defined as
1 − 1

T−1 (
∑

i ϕ[i] − maxi ϕ[i]). The EC of the mask dis-
tribution is calculated as the average of all neurons’ EC.

Alternatively, we can also formulate the mask distribu-
tion via a Multivariate Gaussian distribution [27], where we
define a translation function rG(v) =

√
1−v
v and param-

eterize the distribution as N (1, r2(ϕ)). The calculation of
EC for a single neuron and the mask distribution is the same
as the Multivariate Bernoulli distribution. In the following,
we use P(r(ϕ)) to represent both the Bernoulli distribution
with rB(v) = v and the Gaussian distribution with rG.

3.4. Optimization Objective

After formulating the parameterized mask distribution
and EC, we can now specify the objective for schedul-
ing and updating the mask distribution on the shared net-
work to optimize the MTL performance. We first address

a sub-problem (or a course in curriculum learning litera-
ture), which is the optimization of the neural network pa-
rameters and a parameterized mask distribution q to en-
hance the model’s performance while maintaining a prede-
termined EC for the mask distribution. In order to solve
this constrained optimization problem, we introduce a tar-
get distribution p which has the predetermined EC, and the
loss function can be formulated as follows with two terms:

L(θ) =
∑

x,y∈D

∑
t∈[T]

Em∼q(·|t)[Lt(g
t
θt ◦ fθs⊙m(x), yt)]

+KL(q(·|t), p(·|t)), (2)

where KL is the Kullback-Leibler (KL) divergence. We
optimize this soft unconstrained objective to approximately
solve the original constrained optimization problem.

From a variational inference view, we can view the
original MTL objective as a log-likelihood function:
log
∏N

i p(yi|xi). We can describe the objective with the
mask distribution condition on task t as

log
∏
i

p(yi|xi) =
∑
i

log
∑
t

p(yt,i|xi, t)p(t)

≥ 1

T

∑
i

∑
t

log p(yt,i|t, xi)

=
1

T

∑
t

∑
i

log

∫
z

p(yt,i|z, t, xi)p(z|t)dz

≥ 1

T

∑
t

∑
i

∫
z

q(z|t) log p(yt,i|z, t, xi)p(z|t)
q(z|t)

dz

=
1

T

∑
t

∑
i

Ez∼q(·|t)[log p(yt,i|z, t, xi)]

−KL(q(·|t), p(·|t)).

Maximizing the above log-likelihood function is the same
as minimizing (2) where p(yt,i|z, t, xi) can be reformulated

19927

by the loss function in both classification and regression
problems.

For practical implementation, we use a parameterized
distribution q̃Φ(·, t) to estimate the mask distribution q(·|t),
and a parameterized distribution p̃Π(·, t) to denote the target
distribution p(·, t). Then the loss can be rewritten as

L(θ,Φ,Π) =
∑

x,y∈D

∑
t∈[T]

Em∼q̃Φ(·,t)[Lt(g
t
θt ◦ fθs⊙m(x), yt)

+ log q̃Φ(m, t)− log p̃Π(m, t)]. (3)

We can use stochastic gradient descent to optimize the
above loss function by both updating the network param-
eters θ and mask distribution parameters Φ. It is easy to
update θ and calculate its gradient, but updating Φ is more
difficult. When using the Gaussian distribution for qΦ, we
adopt the reparameterization trick [27] to effectively esti-
mate the gradient: for m ∼ q̃Φ(·, t), we rewrite the samples
as m = 1 + r(Φ[t])ϵr, where ϵr ∼ N (0, I).

For the Bernoulli distribution, we adopt the REIN-
FORCE [63], which uses the Monte Carlo method to es-
timate gradients: for sample (x,y) we use

∇ΦL =
∑
t∈[T]

Em∼q̃Φ(·,t)[Lt(θ ⊙m,x, yt)∇Φ log q̃Φ(m, t)]

to estimate the first term of (3) and use an explicit analytical
form to estimate the KL term. Note that there are many
improved REINFORCE estimators [75, 64, 16], which can
possibly improve the learning performance. We leave the
investigations of these methods to future works.

3.5. Curriculum Learning

With the above loss as the objective (3), MPPS adopts the
concept of curriculum learning to adjust EC and learn the
parameters progressively. We have discussed how to update
the parameters and mask distribution in each course. How-
ever, a couple of key problems remain unsolved: 1) how
to initialize the parameters to fit the easiest course require-
ment; 2) how to build the EC scheduler; 3) how to update
the target distribution for the next course.
Exclusive initialization. We first present the approach to
initializing the entire curriculum learning process. In the
beginning, there is no prior knowledge about all the tasks at
all. We can initialize the target distribution pΠ to evenly as-
sign all neurons to each task layer by layer. Also, the mask
distribution qΦ is set equal to pΠ. More specifically, we di-
vide the neurons in each layer of the shared backbone net-
work into T parts and allocate each part to a task to be the
owner. We achieve this by setting the parameter of the task
owner in ϕ as 1 − ϵ, while the rest parameters as ϵ, where
ϵ is a small positive value for numerical stability. Such as-
signment can guarantee both distributions qΦ and pΠ have
the highest EC during initialization.

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

EC

Quad
Separ
FullShare
step5
step10
step20
linear
linear_frozen

Figure 3. EC schedulers.

EC scheduler. In Figure 3, we present a compilation of
various schedulers that can be categorized into three dis-
tinct groups. The first group entails schedulers that do not
modify the EC. The second group divides the training pro-
cess evenly into N courses, with each course being of iden-
tical length. The EC is reduced at the end of each course,
and if N is equivalent to the total training epochs, this is
called a Linear scheduler; otherwise, it is called a StepN
scheduler. Finally, the third category employs a quadratic
function to schedule the EC. In order to stabilize the entire
training process, we increase the length of the first course
and the last course respectively for better initialization and
final convergence. This added length, named frozen epochs,
will be discussed by experiments in Section 4.3.2. Our
default scheduling approach is the Linear scheduler with
frozen epochs. Our evaluations in Section 4.3.3 show that
this Linear scheduler can achieve satisfactory performance.
Updating target distribution. To update the target distri-
bution parameters Π, we reuse the loss term in (3) and build
a constrained optimization problem as follows:

min
Π

∑
t

KL(q̃Φ(·, t), p̃Π(·, t))

s.t.
∑
t

Π[t]−max
t

Π[t] = 1− Ci

(4)

where the updated Φ is used here.
We propose a heuristic approach to updating the target

distribution. We directly normalize and rescale the remain-
ing capacity of the updated Φ to build the target distribution
pΠ in the next course, as the updated Φ can greatly show
the task similarity. The basic idea behind this is that if tasks
A and B are more similar, the updated mask distribution
qΦ will allocate more capacity to B on the neurons whose
owner is A, especially under such a limited total capacity
situation, and vice visa. So using a distribution proportional
to the updated q̃Φ(·, t) as the target distribution for the next
course is a good choice. A more detailed analysis can be

19928

found in Section 4.3.4
Combining all the above techniques, Algorithm 1 shows

the detailed MTL training process of MPPS.

Algorithm 1 MPPS training
Require: initialized parameters: θ, ϕ,Π

for i = 1, 2, . . . , nepochs do
for xi, {y}i ∈ D do

for t ∈ [T] do
Sampling m ∼ qϕ(t)
Calculate loss Lt according to Eq.(3)

end for
Updating θ, ϕ according to the optimizer

end for
Get Ci from EC Scheduler
C ← 1− (

∑
t Φ[t]−maxt Φ[t])

Π← 1− Ci

C (1− Φ)
end for

4. Experiments
We perform comprehensive experiments and ablation

studies to demonstrate the superiority of MPPS.

4.1. Configurations and Implementations.

Datasets. We use three widely-used public datasets:
NYUv2 [57]. This is a challenging dataset including

1,449 indoor images recorded over 464 different scenes
from Microsoft Kinect cameras. It provides three tasks, in-
cluding a 13-classes semantic segmentation (SemSeg) task,
a depth estimation (Depth) task, and a surface normal (Nor-
mal) estimation task. We use the pre-processed data pro-
vided by [37].

Cityscapes [9]. This dataset contains 5,000 annotated
street-view images with pixel-level annotations from a car
point of view. We select three tasks, including 10-class
semantic segmentation (SemSeg), disparity (inverse depth,
Disp) estimation, and 10-class part segmentation (PartSeg).
Similarly, we use the pre-processed data provided by [37].

Multi-CIFAR100 [29]. This is a widely used image clas-
sification dataset that contains 60,000 32× 32 color images
in 100 different classes. This dataset is split into 20 sub-
tasks to build a multi-task learning dataset following [36].
While this dataset is not a multi-objective multi-task learn-
ing problem that we use to derive the optimization objec-
tive (3), it should be noted that MPPS does not necessarily
require a jointly labeled dataset. To facilitate comprehen-
sion, we provide concise explanations in the supplementary
material.
Implementation. Based on the observation [48, 76] that
higher layers of a neural network tend to learn task-specific
features, we hypothesize that the challenge of optimizing

shared parameters is primarily concentrated on these higher
layers of the shared backbone. Therefore, we opt to im-
plement our approach solely for the last few layers, rather
than the entire network backbone, in order to minimize the
overall search space. A more detailed discussion about how
many layers should be selected is given in Section 4.3.1. In
our experiments, we build MPPS on 2D Convolutional lay-
ers of ResNet [20] models, as well as 2D Convolutional and
Pooling layers of VGG [58] models.

In the training phase, We initially sample a mask from
the distribution PΦ for each task. Then we perform mul-
tiple forward propagations for each sampled shared back-
bone and task-specific head to produce the ultimate out-
puts. Following this, we calculate the loss using Eq.(3) and
subsequently update the weights with the standard back-
propagation. The evaluation stage of MPPS requires special
considerations due to the presence of stochastic networks.
Instead of using mask sampling for evaluation, we use the
full shared backbone. This may potentially create an incon-
sistency between the training and evaluation phases, which
could potentially compromise the final performance. How-
ever, we adopt this evaluation scheme for two reasons: 1)
MPPS aims to optimize the parameter values rather than
determining the shared parameter allocation; 2) using the
complete shared backbone does not require additional in-
ference time compared to the original model.

Without additional instructions regarding the hyperpa-
rameters introduced by our method, we use ϵ = 0.01 for
numerical stability, adopt the last 6 layers to build distri-
butions, and enable the target distribution updating method
for all situations. We use a Linear scheduler with 25
frozen epochs and two parameterized distributions for our
main evaluations on NYUv2 and Cityscapes. For Multi-
CIFAR100, we adopt a Linear scheduler with 15 frozen
epochs and a parameterized Bernoulli distribution.

Model architectures. We use the Deeplabv3+ architec-
ture [6] for NYUv2 and Cityscapes datasets. More specif-
ically, we use a ResNet-50 network with dilated convolu-
tions [77] as the shared backbone, and the Atrous Spatial
Pyramid Pooling (ASPP) [5] module as the task-specific
head for each task. We follow the optimization configura-
tions from LibMTL [34], which uses an Adam optimizer
[26] with the learning rate of 10−5 to train 200 epochs.
The learning rate decreases by half in every 100 epochs.
For Multi-CIFAR100, we use VGG16 as the shared back-
bone. A linear layer is used as the task-specific head. A
stochastic gradient descent optimizer with momentum and
a Cosine learning rate decay scheduler [39] are adopted to
train Multi-CIFAR100 for 200 epochs. All experiments are
trained from scratch on a single Nvidia DGX A100 GPU for
all the methods included in this paper for a fair comparison.

Metrics. We evaluate the optimization method using the

19929

relative performance improvement metric as follows:

∆(θ) =
1

T

∑
t∈[T]

Ct
Pt − Pt,base

Pt,base
, (5)

where Pt is the metric of task t under the given parameters
θ, Pt,base is the metric of task t following the same architec-
ture but trained on the single-task learning paradigm*. Ct

indicates whether a lower value (Ct = −1) or higher vaue
(Ct = 1) is better.

4.2. Main Results

We run experiments to compare MPPS with the hard-
parameter sharing multitask baseline on NYUv2 and
Cityscapes. The results are shown in Table 1 and Ta-
ble 2, respectively. We denote the performance of the
single-task learning as Single, hard-parameter sharing base-
line as Multi, MPPS with a parameterized Multivariate
Bernoulli/Gaussian distribution as MPPS +B / MPPS +G.
For each task, we record two metrics: the loss value used
in training (cross entropy (CE) for SemSeg and PartSeg,
L1 loss (L1) for Depth, Normal, and Disp) and a human-
friendly evaluation metric (mean intersection over union
(mIoU) for SemSeg and PartSeg, absolute error (AE) for
Depth and Disp, and mean angle distance (MAD) for Nor-
mal). We also give an overall metric ∆. The arrows ↓, ↑ are
added to the tables to denote we prefer a higher value (↑) or
lower value (↓) for this metric. On both two datasets, we re-
port the best performance on validation sets over the last 20
epochs for multitask setting and the last epoch performance
for the single-task baseline.

We observe that both MPPS with Bernoulli and Gaussian
distributions show improved results (higher ∆). In Table 1,
MPPS performs better on Normal which gives worse perfor-
mance than the single-task situation caused by the optimiza-
tion of other tasks. This shows that standard multi-task op-
timization is susceptible to negative transfer, whereas MPPS
can help. We conclude that MPPS improves the MTL per-
formance on two dense prediction task datasets.

Method SemSeg Depth Normal ∆↑
Metric CE↓ mIoU↑ L1↓ AE↓ L1↓ MAD↓
Single - 0.3768 - 0.5323 - 25.0227 +0.0%
Multi 1.291 0.407 0.469 0.469 0.651 26.384 +4.8%

MPPS +B 1.277 0.405 0.470 0.470 0.629 25.533 +5.7%
MPPS +G 1.188 0.417 0.466 0.466 0.640 25.965 +6.5%

Table 1. Comparison results on the NYUv2 dataset.

We further run experiments to compare MPPS + Multi-
variate Bernoulli distribution with the hard-parameter shar-
ing baseline on Multi-CIFAR100 to show the superiority
of MPPS in the non-jointly labeled dataset. We report the
performance with the lowest, median, and average accu-
racy across all 20 domains in Table 3. The results show

*For Multi-CIFAR100, we use the multi-task learning as the baseline
to avoid training 20 single-task learning models

Method SemSeg PartSeg Disp ∆↑
Metric CE↓ mIoU↑ CE↓ mIoU↑ L1↓ AE↓
Single - 0.5620 - 0.5274 - 0.84 +0.0%
Multi 0.260 0.553 0.079 0.519 0.797 0.797 +0.7%

MPPS +B 0.244 0.571 0.074 0.522 0.800 0.800 +1.7%
MPPS +G 0.244 0.568 0.073 0.524 0.810 0.810 +1.4%

Table 2. Comparison results on the Cityscapes dataset.

the generality of MPPS on both jointly labeled and non-
jointly labeled datasets. We conclude that MPPS improves
the performance on non-jointly labeled image classifica-
tion datasets.

Method Average Acc↑ Lowest Acc↑ Median Acc↑ ∆↑
Multi 59.23% 37.22% 60.52% +0.0%
MPPS 67.62% 41.38% 71.06% +14.4%

Table 3. Performance of 20 tasks on the Multi-CIFAR100 dataset.
Results are averaged over four different random seeds.

4.3. Ablation Study

4.3.1 Network Layers

As mentioned above, considering the difficulty of optimiza-
tion and based on the selected priors, we only select the last
few layers of the shared backbone network to build the EC
distribution. Table 4 shows the learning performance with
a different number of layers. We can see that when the dis-
tribution is modeled on too many layers, despite using the
EC scheduler, it is still difficult to optimize in such a large
search space and can lead to performance degradation given
the same number of optimization steps. The best-performed
results are trained using 6 layers, so we set the number of
layers as 6 by default in all other experiments.

Layers SemSeg Depth Normal ∆↑
Metric CE↓ mIoU↑ CE↓ mIoU↑ L1↓ AE↓

6 1.277 0.405 0.470 0.470 0.629 25.533 +5.7%
12 1.133 0.399 0.481 0.481 0.630 25.552 +4.5%
18 1.172 0.398 0.484 0.484 0.628 25.544 +4.2%
All 1.240 0.311 0.552 0.552 0.696 28.322 -11.4%

Table 4. Applying MPPS to different numbers of selected layers on
the NYUv2 dataset.

4.3.2 Frozen Epochs

In order to demonstrate the advantages of frozen epochs, we
conduct an ablation study by varying the number of frozen
epochs (0, 5, 15, 25, 50, 100) on the Linear scheduler. As
shown in Figure 4, freezing (15, 25) epochs is beneficial
for stable training. More frozen epochs (50, 100) result
in worse performance compared to training without freez-
ing. We hypothesize that fewer epochs of scheduling lead
to a more abrupt scheduler, resulting in insufficient train-
ing. Therefore, a trade-off must be made between ensuring
a more gradually changing scheduler and maintaining train-
ing stability at the beginning and the end of the training pro-
cess.

19930

Method SemSeg Depth Normal ∆↑
Metric CE↓ mIoU↑ CE↓ mIoU↑ L1↓ AE↓
Single - 0.377 - 0.532 - 25.023 0.0%
DWA 1.301 0.401 0.477 0.477 0.655 26.609 +3.5%

Random 1.174 0.416 0.457 0.457 0.635 25.725 +7.2%
Uncert 1.334 0.407 0.470 0.470 0.653 26.463 +4.7%
Auto-λ 1.314 0.414 0.462 0.462 0.634 25.681 +6.8%

HPS 1.291 0.407 0.469 0.469 0.651 26.384 +4.8%
Graddrop 1.335 0.400 0.469 0.469 0.652 26.416 +4.1%
PCGrad 1.309 0.406 0.471 0.471 0.641 25.955 +5.2%
Cagrad 1.291 0.406 0.457 0.457 0.629 25.492 +6.7%
MTAN 1.335 0.430 0.449 0.449 0.612 24.751 +10.3%

Method SemSeg Depth Normal ∆↑
Metric CE↓ mIoU↑ CE↓ mIoU↑ L1↓ AE↓
Single∗ - 0.377 - 0.532 - 25.023 0.0%
DWA∗ 1.254 0.407 0.466 0.466 0.636 25.779 +5.9%

Random∗ 1.152 0.408 0.471 0.471 0.635 25.792 +5.5%
Uncert∗ 1.299 0.398 0.471 0.471 0.642 26.050 +4.3%
Auto-λ∗ 1.339 0.411 0.459 0.459 0.634 25.657 +6.8%

HPS∗ 1.277 0.405 0.470 0.470 0.629 25.533 +5.7%
Graddrop∗ 1.296 0.402 0.469 0.469 0.643 26.149 +4.7%
PCGrad∗ 1.240 0.403 0.474 0.474 0.640 25.931 +4.8%
Cagrad∗ 1.256 0.409 0.453 0.453 0.613 24.882 +7.9%
MTAN∗ 1.261 0.431 0.450 0.450 0.601 24.307 +10.9%

Table 5. Integrating MPPS with several state-of-the-art MTL methods. The left table shows the performance without adding MPPS and the
right table shows the results after applying MPPS. The methods combined with our proposed MPPS are indicated by an added ∗. The better
results in these two situations are highlighted in bold.

0 20 40 60 80 100
Frozen Epochs

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

Im
pr

ov
em

en
t(%

)

Figure 4. MPPS with different
frozen epochs on NYUv2.

Step5 Step10 Step20 Linear Quad Separ FullShare
Schedulers

0

1

2

3

4

5

6

Im
pr

ov
em

en
t(%

)

Figure 5. MPPS with different
schedulers on NYUv2

4.3.3 Curriculum Scheduler

As mentioned in Section 3.5 and shown in Figure 3, we
examine various EC schedulers, including fixed target dis-
tributions in different EC (Separ with the highest EC and
FullShare with the lowest EC) to highlight the impor-
tance of the progressive process, as well as step functions
(Step5, Step10, Step20, and Linear) and quadratic schedul-
ing (Quad). Figure 5 shows the comparison results on the
NYUv2 dataset. Almost every scheduler we test performs
better than the baseline (blue dot line) except Separ because
the neural network is encouraged to separate the masks al-
most during the entire training process, which results in less
benefit from the knowledge of the related tasks.

4.3.4 Target Distribution Updating

We compare the results when the target distribution is up-
dated in a linear manner (without updating) or adaptively
updated following our target distribution updating method
(with updating) in Table 6. We observe the target distri-
bution updating mechanism can help MPPS transfer knowl-
edge from previous courses to get better performance. Fur-
thermore, we believe this target distribution variation pro-
cess partially reflects the task similarity in the current train-
ing stage. To give a clearer view, Figure 6 illustrates this
phenomenon by recording the target distribution updating
on NYUv2 with a 25-frozen Linear scheduler (see supple-
mentary material for a more complete figure). It shows the
proportion of Φ2/ (Φ2 + Φ3) on nodes owned by task 1 for
each layer. A higher value in these lines indicates a large
proportion of Task 2, and the current network is more pre-

ferred to share Task 1’s nodes with Task 2 than Task 3. Note
that the proportion is not equal to 0.5 at the end of the train-
ing because we use a soft constraint in (3). This reveals
the potential discrepancy between the learned architecture
of the training process and the fully shared backbone.

0 25 50 75 100 125 150 175 200
Epochs

0.490

0.495

0.500

0.505

0.510
Pr

op
or

tio
n(

%
)

layer 1
layer 2

layer 3
layer 4

layer 5
layer 6

Figure 6. The proportion of task Depth relative to task Normal on
neurons owned by task SemSeg.

Method SemSeg Depth Normal ∆↑
Metric CE↓ mIoU↑ CE↓ mIoU↑ L1↓ AE↓

w/ updating 1.277 0.405 0.470 0.470 0.629 25.533 +5.7%
w/o updating 1.250 0.401 0.475 0.475 0.635 25.731 +4.8%

Table 6. MPPS with and without target distribution updating

4.3.5 Integration with SOTA Methods

Our approach operates orthogonally from many existing
MTL methods, enhancing its potential application across di-
verse real-world scenarios. We select several well-known
MTL methods from three categories: 1) task-weighted
methods, including Uncertainty [25], Random [33], DWA
[37] and Auto-lambda [36]; 2) avoiding gradient conflict
methods, including PCGrad [78], Cagrad [35], and Grad-
drop [8]; 3) multitask architecture designing methods, in-
cluding hard-parameter sharing (HPS) and MTAN [37]. We
integrate MPPS with each of the aforementioned methods to
demonstrate the broad applicability of our approach.

19931

As demonstrated in Table 5, our MPPS, exhibits a
strong ability to complement most (6/9) state-of-the-art
techniques, resulting in superior performance. This out-
come serves as compelling evidence of the generalizability
of MPPS. There are also some methods (i.e., Random and
Uncert) that MPPS decreases slightly the performance. The
potential reason may be that MPPS has a dynamic optimiza-
tion objective instead of a static one, leading to increased
uncertainty during the training process. Both Random and
Uncert introduce a wide range of task weights to the multi-
task learning objective, resulting in increased optimization
difficulty. MPPS may require more training iterations or a
slower-changing scheduler to potentially increase the per-
formance of these methods.

4.3.6 Architecture Robustness

Finally, we demonstrate the effect of MPPS on different
scales of neural networks to test its robustness. We choose
to experiment on ResNet-18 and ResNet-34 as shared back-
bone networks. Table 7 show the comparison results, which
demonstrate that MPPS has strong robustness.

Method SemSeg Depth Normal ∆↑
Metric CE↓ mIoU↑ CE↓ mIoU↑ L1↓ AE↓

ResNet18
Single - 0.3714 - 0.5230 - 25.0128 +0.0%
Multi 1.283 0.389 0.472 0.472 0.655 26.589 +2.7%

MPPS +B 1.249 0.387 0.472 0.472 0.629 25.529 +3.9%
MPPS +G 1.172 0.395 0.477 0.477 0.632 25.686 +4.2%
ResNet34

Single - 0.387 - 0.524 - 24.48 +0.0%
Multi 1.253 0.414 0.446 0.446 0.633 25.638 +5.7%

MPPS +B 1.132 0.419 0.452 0.452 0.611 24.812 +6.9%
MPPS +G 1.130 0.421 0.453 0.453 0.623 25.287 +6.4%

Table 7. MPPS with different architectures on NYUv2.

4.4. Time Complexity Analysis

There are around T×more training time or T× of mem-
ory cost when applying MPPS compared with using the
standard hard-parameter sharing scheme on jointly labeled
datasets. During the training stage, each task has a sampled
different network architecture and needs standalone forward
and backward propagation, which causes T times of train-
ing time and memory compared with the fully dense shared
backbone, due to the lack of performance optimization for
sparse neural network computation. It is worth noting that
MPPS does not incur T× training time and memory con-
sumption simultaneously. When sequentially sampling the
mask and calculating the loss, it only adds an additional
(T−1)× forward pass and backward pass through the back-
bone and O(1) additional memory usage. When T masks
are sampled parallel, the current computing platforms(like
GPU) usually lead to a sublinear increase in time consump-
tion. We build MPPS based on the forward hook provided
by Pytorch on the whole shared backbone. Since we do es-
tablish MPPS for the last several layers, a better-optimized

implementation could potentially save a lot of training time
and GPU memory.

We perform additional experiments for efficient analy-
sis with ResNet50 backbone: the time and memory costs
of MPPS are less than 1.4× and 1.3× respectively com-
pared with hard-parameter sharing(HPS). Note that MPPS
with a different scheduler requires nearly the same training
time and memory. MPPS also has significantly less time
and memory consumption than many SOTA MTL meth-
ods discussed above. We compare one-epoch training time
for various typical methods with/without MPPS, including
gradient-based methods, meta-learning-based methods, and
task-weighted methods in Table 8. We observe the timing
cost introduced by MPPS is satisfactory.

Method w/o MPPS w MPPS(s)
HPS 28.69 39.34
PCGrad 41.03 41.42
Auto-λ 84.19 131.74
DWA 32.39 42.13

Table 8. Average training time (in seconds) on NYUv2 with
ResNet50 backbone using 1 Nvidia A100 GPU.

5. Conclusion
In this paper, we propose MPPS, a novel methodology

for training MTL models effectively. MPPS designs pa-
rameterized masks and target distributions. It also intro-
duces a carefully-designed EC scheduler to progressively
control parameter sharing among tasks during the train-
ing process, inspired by curriculum learning. Experiments
demonstrate that our MPPS can achieve competitive perfor-
mance on three challenging datasets using various neural
network architectures. We also show that MPPS can be
combined with current advanced methods to achieve even
better results, without introducing extra parameters during
inference. This makes it widely applicable to practical ap-
plications.

6. Acknowledgment
This study is supported under the RIE2020 Industry

Alignment Fund - Industry Collaboration Projects (IAF-
ICP) Funding Initiative, as well as cash and in-kind contri-
bution from the industry partner(s). Sinno J. Pan thanks the
support from HK Global STEM Professorship and the JC
STEM Lab of Machine Learning and Symbolic Reasoning.

References
[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-

son Weston. Curriculum learning. In Proceedings of the 26th
annual international conference on machine learning, pages
41–48, 2009. 2, 3

19932

[2] Urs Braun, Axel Schäfer, Henrik Walter, Susanne Erk, Nina
Romanczuk-Seiferth, Leila Haddad, Janina I Schweiger,
Oliver Grimm, Andreas Heinz, Heike Tost, et al. Dynamic
reconfiguration of frontal brain networks during executive
cognition in humans. Proceedings of the National Academy
of Sciences, 112(37):11678–11683, 2015. 2

[3] David Bruggemann, Menelaos Kanakis, Stamatios Geor-
goulis, and Luc Van Gool. Automated search for resource-
efficient branched multi-task networks. arXiv preprint
arXiv:2008.10292, 2020. 3

[4] R Caruana. Multitask learning: A knowledge-based source
of inductive bias1. In Proceedings of the Tenth International
Conference on Machine Learning, pages 41–48. Citeseer,
1993. 1

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017. 6

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 6

[7] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-
drew Rabinovich. Gradnorm: Gradient normalization for
adaptive loss balancing in deep multitask networks. In In-
ternational conference on machine learning, pages 794–803.
PMLR, 2018. 2

[8] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong,
Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov.
Just pick a sign: Optimizing deep multitask models with gra-
dient sign dropout. Advances in Neural Information Process-
ing Systems, 33:2039–2050, 2020. 2, 8

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. CoRR,
abs/1604.01685, 2016. 6

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[11] Theresa Eimer, André Biedenkapp, Frank Hutter, and Marius
Lindauer. Self-paced context evaluation for contextual rein-
forcement learning. In International Conference on Machine
Learning, pages 2948–2958. PMLR, 2021. 3

[12] Xinjie Fan, Shujian Zhang, Korawat Tanwisuth, Xiaoning
Qian, and Mingyuan Zhou. Contextual dropout: An ef-
ficient sample-dependent dropout module. arXiv preprint
arXiv:2103.04181, 2021. 3

[13] Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and
Wei Liu. Mtl-nas: Task-agnostic neural architecture search
towards general-purpose multi-task learning. In Proceedings
of the IEEE/CVF Conference on computer vision and pattern
recognition, pages 11543–11552, 2020. 3

[14] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L
Yuille. Nddr-cnn: Layerwise feature fusing in multi-task

cnns by neural discriminative dimensionality reduction. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 3205–3214, 2019. 2

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 1

[16] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder,
and David Duvenaud. Backpropagation through the void:
Optimizing control variates for black-box gradient estima-
tion. arXiv preprint arXiv:1711.00123, 2017. 5

[17] Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learn-
ing to branch for multi-task learning. In International Con-
ference on Machine Learning, pages 3854–3863. PMLR,
2020. 3

[18] Yong Guo, Yaofo Chen, Yin Zheng, Peilin Zhao, Jian Chen,
Junzhou Huang, and Mingkui Tan. Breaking the curse
of space explosion: Towards efficient nas with curriculum
search. In International Conference on Machine Learning,
pages 3822–3831. PMLR, 2020. 3

[19] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017. 2

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 1

[22] Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu,
Pengcheng Shen, Shaoxin Li, Jilin Li, and Feiyue Huang.
Curricularface: adaptive curriculum learning loss for deep
face recognition. In proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
5901–5910, 2020. 3

[23] Adrián Javaloy and Isabel Valera. Rotograd: Gradi-
ent homogenization in multitask learning. arXiv preprint
arXiv:2103.02631, 2021. 2

[24] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 3

[25] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geome-
try and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482–7491,
2018. 2, 8

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[27] Durk P Kingma, Tim Salimans, and Max Welling. Varia-
tional dropout and the local reparameterization trick. Ad-
vances in neural information processing systems, 28, 2015.
3, 4, 5

[28] Iasonas Kokkinos. Ubernet: Training a universal convolu-
tional neural network for low-, mid-, and high-level vision
using diverse datasets and limited memory. In Proceedings of

19933

the IEEE conference on computer vision and pattern recog-
nition, pages 6129–6138, 2017. 2

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6

[30] Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon
Whiteson, and M Pawan Kumar. In defense of the unitary
scalarization for deep multi-task learning. arXiv preprint
arXiv:2201.04122, 2022. 2

[31] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. In 2016 Fourth
international conference on 3D vision (3DV), pages 239–
248. IEEE, 2016. 1

[32] Changsheng Li, Junchi Yan, Fan Wei, Weishan Dong, Qing-
shan Liu, and Hongyuan Zha. Self-paced multi-task learn-
ing. In Proceedings of the AAAI conference on artificial in-
telligence, volume 31, 2017. 3

[33] Baijiong Lin, YE Feiyang, Yu Zhang, and Ivor Tsang. Rea-
sonable effectiveness of random weighting: A litmus test for
multi-task learning. Transactions on Machine Learning Re-
search, 2022. 8

[34] Baijiong Lin and Yu Zhang. LibMTL: A python library for
multi-task learning. arXiv preprint arXiv:2203.14338, 2022.
6

[35] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang
Liu. Conflict-averse gradient descent for multi-task learn-
ing. Advances in Neural Information Processing Systems,
34:18878–18890, 2021. 2, 8

[36] Shikun Liu, Stephen James, Andrew J Davison, and Edward
Johns. Auto-lambda: Disentangling dynamic task relation-
ships. arXiv preprint arXiv:2202.03091, 2022. 2, 6, 8

[37] Shikun Liu, Edward Johns, and Andrew J Davison. End-
to-end multi-task learning with attention. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1871–1880, 2019. 2, 6, 8

[38] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 1

[39] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 6

[40] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong,
and Ed H Chi. Modeling task relationships in multi-task
learning with multi-gate mixture-of-experts. In Proceed-
ings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 1930–1939,
2018. 2

[41] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In Pro-
ceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 7765–7773, 2018. 3

[42] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Mar-
tial Hebert. Cross-stitch networks for multi-task learning. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3994–4003, 2016. 2

[43] Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, René Vidal,
and Vittorio Murino. Curriculum dropout. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3544–3552, 2017. 3

[44] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron,
Kenji Kawaguchi, Gal Chechik, and Ethan Fetaya. Multi-
task learning as a bargaining game. arXiv preprint
arXiv:2202.01017, 2022. 2

[45] Carlo Nicolini and Angelo Bifone. Modular structure of
brain functional networks: breaking the resolution limit by
surprise. Scientific reports, 6(1):1–13, 2016. 2

[46] Lucas Pascal, Pietro Michiardi, Xavier Bost, Benoit Huet,
and Maria A Zuluaga. Maximum roaming multi-task learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 9331–9341, 2021. 3

[47] Anastasia Pentina, Viktoriia Sharmanska, and Christoph H
Lampert. Curriculum learning of multiple tasks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5492–5500, 2015. 3

[48] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy
Bengio. Transfusion: Understanding transfer learning for
medical imaging. Advances in neural information processing
systems, 32, 2019. 6

[49] Clemens Rosenbaum, Tim Klinger, and Matthew
Riemer. Routing networks: Adaptive selection of non-
linear functions for multi-task learning. arXiv preprint
arXiv:1711.01239, 2017. 2

[50] Michael T Rosenstein, Zvika Marx, Leslie Pack Kaelbling,
and Thomas G Dietterich. To transfer or not to transfer.
In NIPS 2005 workshop on transfer learning, volume 898,
2005. 1

[51] Sebastian Ruder. An overview of multi-task learning in deep
neural networks. arXiv preprint arXiv:1706.05098, 2017. 1

[52] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 2

[53] Nikolaos Sarafianos, Theodore Giannakopoulos,
Christophoros Nikou, and Ioannis A Kakadiaris. Cur-
riculum learning for multi-task classification of visual
attributes. In Proceedings of the IEEE International Con-
ference on Computer Vision Workshops, pages 2608–2615,
2017. 3

[54] Ozan Sener and Vladlen Koltun. Multi-task learning as
multi-objective optimization. Advances in neural informa-
tion processing systems, 31, 2018. 2

[55] Guangyuan SHI, Qimai Li, Wenlong Zhang, Jiaxin Chen,
and Xiao-Ming Wu. Recon: Reducing conflicting gradients
from the root for multi-task learning. In The Eleventh In-
ternational Conference on Learning Representations, 2023.
3

[56] James M Shine, Patrick G Bissett, Peter T Bell, Oluwasanmi
Koyejo, Joshua H Balsters, Krzysztof J Gorgolewski,
Craig A Moodie, and Russell A Poldrack. The dynamics of
functional brain networks: integrated network states during
cognitive task performance. Neuron, 92(2):544–554, 2016.
2

19934

[57] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European conference on computer vision,
pages 746–760. Springer, 2012. 6

[58] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6

[59] Samarth Sinha, Animesh Garg, and Hugo Larochelle. Cur-
riculum by smoothing. Advances in Neural Information Pro-
cessing Systems, 33:21653–21664, 2020. 3

[60] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. 3

[61] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas,
Jitendra Malik, and Silvio Savarese. Which tasks should be
learned together in multi-task learning? In International
Conference on Machine Learning, pages 9120–9132. PMLR,
2020. 1

[62] Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate
Saenko. Adashare: Learning what to share for efficient deep
multi-task learning. Advances in Neural Information Pro-
cessing Systems, 33:8728–8740, 2020. 3

[63] Richard S Sutton, David McAllester, Satinder Singh, and
Yishay Mansour. Policy gradient methods for reinforcement
learning with function approximation. Advances in neural
information processing systems, 12, 1999. 5

[64] George Tucker, Andriy Mnih, Chris J Maddison, John Law-
son, and Jascha Sohl-Dickstein. Rebar: Low-variance, un-
biased gradient estimates for discrete latent variable mod-
els. Advances in Neural Information Processing Systems,
30, 2017. 5

[65] Kristof Van Moffaert and Ann Nowé. Multi-objective rein-
forcement learning using sets of pareto dominating policies.
The Journal of Machine Learning Research, 15(1):3483–
3512, 2014. 2

[66] Simon Vandenhende, Stamatios Georgoulis, Wouter
Van Gansbeke, Marc Proesmans, Dengxin Dai, and Luc
Van Gool. Multi-task learning for dense prediction tasks: A
survey. IEEE transactions on pattern analysis and machine
intelligence, 44(7):3614–3633, 2021. 2

[67] Pavan Kumar Anasosalu Vasu, Shreyas Saxena, and Oncel
Tuzel. Instance-level task parameters: A robust multi-task
weighting framework. arXiv preprint arXiv:2106.06129,
2021. 2

[68] Cheng Wang, Qian Zhang, Chang Huang, Wenyu Liu, and
Xinggang Wang. Mancs: A multi-task attentional network
with curriculum sampling for person re-identification. In
Proceedings of the European conference on computer vision
(ECCV), pages 365–381, 2018. 3

[69] Xiaolong Wang, David Fouhey, and Abhinav Gupta. De-
signing deep networks for surface normal estimation. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 539–547, 2015. 1

[70] Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao.
Gradient vaccine: Investigating and improving multi-task
optimization in massively multilingual models. arXiv
preprint arXiv:2010.05874, 2020. 2

[71] Mackenzie Woodburn, Cheyenne L Bricken, Zhengwang
Wu, Gang Li, Li Wang, Weili Lin, Margaret A Sheridan, and
Jessica R Cohen. The maturation and cognitive relevance of
structural brain network organization from early infancy to
childhood. NeuroImage, 238:118232, 2021. 2

[72] Junlin Wu and Yevgeniy Vorobeychik. Robust deep rein-
forcement learning through bootstrapped opportunistic cur-
riculum. In International Conference on Machine Learning,
pages 24177–24211. PMLR, 2022. 3

[73] Derrick Xin, Behrooz Ghorbani, Ankush Garg, Orhan Fi-
rat, and Justin Gilmer. Do current multi-task optimiza-
tion methods in deep learning even help? arXiv preprint
arXiv:2209.11379, 2022. 2

[74] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishna-
puram. Multi-task learning for classification with dirichlet
process priors. Journal of Machine Learning Research, 8(1),
2007. 2

[75] Mingzhang Yin and Mingyuan Zhou. Arm: Augment-
reinforce-merge gradient for discrete latent variable models.
arXiv preprint arXiv:1807.11143, 2018. 5

[76] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
How transferable are features in deep neural networks? Ad-
vances in neural information processing systems, 27, 2014.
6

[77] Fisher Yu and Vladlen Koltun. Multi-scale context
aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015. 6

[78] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information Pro-
cessing Systems, 33:5824–5836, 2020. 2, 8

[79] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jin-
dong Wang, Manabu Okumura, and Takahiro Shinozaki.
Flexmatch: Boosting semi-supervised learning with curricu-
lum pseudo labeling. Advances in Neural Information Pro-
cessing Systems, 34:18408–18419, 2021. 3

[80] Jiwen Zhang, Jianqing Fan, Jiajie Peng, et al. Curriculum
learning for vision-and-language navigation. Advances in
Neural Information Processing Systems, 34:13328–13339,
2021. 3

[81] Tianjun Zhang, Benjamin Eysenbach, Ruslan Salakhutdinov,
Sergey Levine, and Joseph E Gonzalez. C-planning: An au-
tomatic curriculum for learning goal-reaching tasks. arXiv
preprint arXiv:2110.12080, 2021. 3

[82] Yu Zhang and Qiang Yang. An overview of multi-task learn-
ing. National Science Review, 5(1):30–43, 2018. 2

[83] Zixuan Zhou, Xuefei Ning, Yi Cai, Jiashu Han, Yiping Deng,
Yuhan Dong, Huazhong Yang, and Yu Wang. Close: Cur-
riculum learning on the sharing extent towards better one-
shot nas. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part XX, pages 578–594. Springer, 2022. 3

19935

