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Abstract

Vision-language models such as CLIP have boosted the
performance of open-vocabulary object detection, where
the detector is trained on base categories but required to
detect novel categories. Existing methods leverage CLIP’s
strong zero-shot recognition ability to align object-level em-
beddings with textual embeddings of categories. However,
we observe that using CLIP for object-level alignment re-
sults in overfitting to base categories, i.e., novel categories
most similar to base categories have particularly poor per-
formance as they are recognized as similar base categories.
In this paper, we first identify that the loss of critical fine-
grained local image semantics hinders existing methods
from attaining strong base-to-novel generalization. Then,
we propose Early Dense Alignment (EDA) to bridge the gap
between generalizable local semantics and object-level pre-
diction. In EDA, we use object-level supervision to learn
the dense-level rather than object-level alignment to main-
tain the local fine-grained semantics. Extensive experi-
ments demonstrate our superior performance to competing
approaches under the same strict setting and without using
external training resources, i.e., improving the +8.4% novel
box AP50 on COCO and +3.9% rare mask AP on LVIS.

1. Introduction

Open-vocabulary object detection aims to localize and
recognize objects of both base categories and novel cate-
gories when only the training labels on base categories are
available. Beyond focusing on object detection on a closed
set of categories [20, 3, 39, 30, 43], open-vocabulary detec-
tion requires generalizing well from base to all novel cate-
gories without annotations for each novel category.

One straightforward idea is to generate pseudo-proposals
relevant to novel categories and train detectors with base
and novel categories (see Figure 1b), adopted by [54, 28,
14, 38, 2]. They usually first extract concepts relevant to
novel categories and then generate proposals of novel con-
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Figure 1: Different approaches to building an open-vocabulary
detector: (a) their performance comparison. †: with self-training.
(b) generate pseudo “novel” proposals from extra training re-
sources and VLMs, or (c) generalize from VLMs

cepts from extra training resources. Among them, some
works [54, 14, 38] follow the weak open-vocabulary set-
ting [48], where the class names of novel categories di-
rectly corresponding to novel concepts are available in the
training phase. Alternatively, some works [50, 28] extract
novel concepts from captions or image-text pairs. Although
these approaches have improved the performance of detect-
ing novel categories, the need for additional training re-
sources that heavily overlap with or are relevant to novel
categories would limit them to practical applications.

Recently, contrastive pre-training of vision-language
models (VLMs) like CLIP [34] and ALIGN [22] have
shown strong open-vocabulary image recognition ability.
Some open-vocabulary detection works [16, 13, 50, 26, 47]
explore utilizing VLMs to learn transferable object repre-
sentations. Figure 2b shows a high-level abstraction of
these open-vocabulary detection frameworks. Although
they plug well-designed methods to close the gap between
visual representation learning for objects and images, they
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Figure 2: The comparison between Object-level Alignment and our Early Dense Alignment (Eda) on (b)-(c) architectures, (b1)-(c1) local
image semantics and clustering results, and (a) box AP of novel categories similar to base categories. We list six novel categories most
similar to base categories by calculating the average similarity between the randomly sampled thousands of novel objects’ visual features
and base categories’ text embeddings. Our Eda: (1) successfully recognizes the fine-grained novel CD-player that is predicted to base
speaker by object-level alignment; (2) better groups local image semantics into object regions compared with CLIP; (3) achieves a much
higher novel box AP for predicting novel objects similar to base objects, showing that Eda can distinguish fine-grained details of similar
novel and base categories. In contrast, object-level alignment overfits base categories.

only achieve comparable or slightly better performance than
CLIP-RPN1 on novel categories (right part of Figure 1a).
We also follow the line of works that aim to general-
ize VLMs for object detection without generating pseudo-
proposals relevant to novel categories (see Figure 1c). And
we explore how better to utilize VLMs for base-to-novel
generalization in open-vocabulary object detection.

In this paper, we start by discovering and analyzing
the respective advantages of VLMs and existing open-
vocabulary detection frameworks for object detection. First,
we observe that VLMs can predict local image semantics
for novel categories while existing frameworks are easier
to overfit base categories. As shown in the “Semantic” of
Figure 2 (CLIP), CLIP successfully recognizes the novel
local regions of the “CD player”, while the existing frame-
work classifies the novel “CD player” as the “speaker”
in base categories. The reason is that VLMs may have
seen fine-grained image-text pairs describing local seman-
tics during training. In contrast, existing frameworks di-
rectly align the object representations to the classifier of
base categories, which loses the fine-grained details that dis-
tinguish novel objects from their similar base objects. With-
out fine-grained details, the object-level representations of
novel objects and their similar base objects are similar, re-

1CLIP-RPN baseline simply utilizes CLIP to classify cropped propos-
als generated by region proposal network (RPN) trained on base categories.

sulting in them being classified into base categories. Fig-
ure 2a (marked in grey) shows that the object-level align-
ment’s prediction accuracy for novel objects similar to base
objects is much lower. Therefore, we propose to avoid di-
rect object-level alignment and fully utilize VLMs’ ability to
distinguish fine-grained details for similar novel and base
objects to preserve the recognition ability of novel cate-
gories.

Second, we observe that the existing framework can bet-
ter group local image semantics into object regions than
VLMs. The reason is that its object-level supervision for
object representations generated from local semantics im-
proves local semantic consistency to objects. As shown in
the “K-means clustering” of Figure 2-b1 and 2 (CLIP), the
existing framework groups the “‘keyboard” well (marked in
yellow), while the corresponding two separate “keyboard”
regions in CLIP’s clustering map are mixed and indistin-
guishable. Therefore, we propose to adopt object-level su-
pervision for the dense alignment of local image semantics.

Based on the above discoveries, we propose a simple
but effective solution, named early dense2 alignment (Eda),
to combine the strengths of VLMs and the existing frame-
works. To avoid overfitting to base categories caused by

2“early” means the use of features in the early stages of the backbone,
and “dense” means per-pixel alignment to text for obtaining object-level
prediction (Note that only object-level annotations are used).
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object-level alignment, Eda directly predicts object cate-
gories from local image semantics to fully distinguish the
fine-grained details of similar base objects and novel ob-
jects. To maintain the local semantics consistent for better
grouping and localization, we use object-level supervision
to learn the dense-level alignment. As shown in Figure 2c,
Eda first aligns local image semantics to the CLIP’s seman-
tic space early and then predicts object-level labels based
on the dense probabilities to categories. Our Eda enables
dense-level alignment for local image semantics, which is
much more generalizable than late object-level alignment to
novel categories. Meanwhile, it can better group local se-
mantics to object regions (see Figure 2c1). Also, Figure 2a
(mark in green) shows that our Eda significantly improves
the prediction accuracy for novel categories similar to base
categories.

Finally, we propose EdaDet, a simple open-vocabulary
detection framework by leveraging our early dense align-
ment (Eda). For object localization, we follow existing
works [38, 54, 16, 26] to learn class-agnostic object pro-
posals. To ensure an efficient end-to-end localization and
recognition framework, we adopt a query-based proposal
generation method like DETR [3] but revise it to be class-
agnostic. For open-vocabulary recognition, we apply our
generalizable Eda to predict the categories of class-agnostic
proposals. In addition, for better generalization, EdaDet
deeply decouples the object localization and recognition by
separating the open-vocabulary classification branch from
the class-agnostic proposal generation branch at a more
shallow layer of the decoder.

To evaluate the effectiveness of our EdaDet, we con-
duct experiments on LVIS [17], COCO [29], and Ob-
jects365 [42] benchmarks. In summary, our main contri-
butions are as follows,

• We propose a novel and effective early dense align-
ment (Eda) for base-to-novel generalization in object
detection without knowing the class names of novel
categories and using extra training resources.

• We propose an end-to-end EdaDet framework, which
deeply decouples the object localization and recogni-
tion by separating classification from the recognition
at a more shallow layer of the decoder.

• Despite being simple, EdaDet achieves strong quan-
titative results, outperforming state-of-the-art methods
with the strict setting on COCO and LVIS by 5.8% box
AP50 and 2.0% mask AP on novel categories respec-
tively. Moreover, EdaDet shows striking cross-dataset
transferable capability.

• EdaDet shows impressive qualitative predictions on lo-
cal image semantics and demonstrates efficient and
effective performance improvement when scaling the
model size thanks to our generalizable Eda and deeply
decoupled detection framework.

2. Related Work
Transferable Representation Learning explores learn-

ing transferable representations from source tasks with
large-scale data in the pre-training stage and then adapt the
representations to a variety of target downstream tasks [1,
23]. Based on whether the data used in the pre-training is la-
beled or not, the pre-training can be divided into supervised
and unsupervised. Supervised pre-training [19, 45] is com-
monly employed in computer vision community. For exam-
ple, image classification on ImageNet [10] is often used as
the pre-training task for the downstream visual recognition
tasks [20, 3, 39, 30, 43, 40, 6, 32]. In contrast, unsuper-
vised pre-training proposes self-supervised tasks for pre-
training on unlabeled data, including the generative learn-
ing [35, 36, 18, 11] and contrastive learning [8, 4, 7, 9, 34].
The unsupervised pre-training enables learning generally
transferable knowledge from many large-scale unlabeled
website data [41, 5]. Among them, the contrastive vision-
language models (VLMs) train a dual-modality encoder
on large-scale image-text pairs to learn transferable visual
representations with text supervision. In this paper, we
aim to transfer the general knowledge to recognize open-
vocabulary objects in images and therefore select the con-
trastive VLMs that can align pairs of image and text as our
source models.

Visual Recognition from Generalizable VLMs. The
contrastive VLMs such as CLIP [34] and ALIGN [22] pre-
trained on large-scale image-text pairs have shown trans-
ferability to various visual recognition tasks, such as image
classification [52, 53], semantic segmentation [37, 27], and
object detection [16, 13, 50, 38]. With a handcraft prompt,
VLMs can extract the category’s text embeddings as the
classifier for images. For image classification, zero-shot
VLMs have already demonstrated strong zero-shot classi-
fication performance on various image classification tasks.
CoOp [53] and CoCoOp [52] further model the context
words of a prompt with learnable vectors, thereby elimi-
nating the need for handcrafted design. Unlike image clas-
sification methods that can directly use the CLIP’s image
encoder, semantic segmentation approaches such as Dense-
CLIP [37] and LSeg [27] learn a segmenter from scratch
by using the CLIP’s text encoder as a frozen classifier for
dense features. MASKCLIP+ [51] achieves better segmen-
tation results on unseen categories by generating pseudo
labeling of unseen categories and performing self-training
with pseudo labels. In open-vocabulary detection, previ-
ous works [16, 13, 50, 38] also explore distilling knowledge
from CLIP to detectors. However, they can only achieve a
comparable performance of novel categories with zero-shot
CLIP predicted on cropped class-agnostic proposals.

Therefore, we explore fully utilize CLIP’s ability to dis-
tinguish fine-grained details for similar novel and base ob-
jects to preserve the recognition ability of novel categories.
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Open-Vocabulary Object Detection. Depending on the
availability of novel categories’ vocabulary during training,
open-vocabulary detection is divided into strict [16] (un-
known) and weak [54] (known) settings. Under the weak
open-vocabulary detection setting, one basic solution is to
generate pseudo-proposals of novel categories. Previous
works [54, 38, 14] all leverage additional image-level data
to generate novel pseudo-proposals and train detectors with
both base and novel categories. For the strict setting, re-
cent works [47, 26, 13, 16] mainly focus on generalizing
CLIP to detect objects of novel categories. They all learn
class-agnostic proposals and then classify proposals by us-
ing category names’ text embedding extracted from CLIP’s
text encoder as the classification weights but differ in adopt-
ing different strategies to improve the generalization per-
formance. For example, DetPro [13] designs a learnable
prompt token instead of a hand-craft prompt to achieve a
better generalization performance. RegionCLIP [50] de-
velops a region-text pre-training strategy to obtain fine-
grained alignment between image regions and textual con-
cepts, which is more suitable for object-level prediction.
Furthermore, some methods such as ZSD-YOLO [46] and
ViLD [16] align the proposal representations to that ex-
tracted from the CLIP’s image encoder.

We follow the strict open-vocabulary detection setting.
Instead of aligning object representations to CLIP’s seman-
tic space and relying on object-level alignment like previous
works, we propose to align local image semantics to CLIP’s
space at the dense level to mitigate the overfitting issue.

3. Method
Our study is a first attempt to recognize open-vocabulary

objects by utilizing dense-level alignment of local image se-
mantics to CLIP’s semantic space. We start with a brief
introduction of CLIP (see Section 3.1) and a simple but
necessary modification to its image encoder for dense-level
prediction. Next, we introduce our overall detection frame-
work (EdaDet), an end-to-end query-based object detection
architecture, in Section 3.2. Moreover, the class-agnostic
proposal generation is described in this section. Finally,
we present the open-vocabulary object classification imple-
mented by our early dense alignment (Eda) in Section 3.3.

3.1. Preliminary

CLIP [34] is trained on large-scale image-text pairs by
image-level contrastive learning. Specifically, CLIP has a
pair of image encoder f(·) and text encoder g(·). The image
encoder f(·) can be presented into two parts: a visual back-
bone (e.g., ResNet [21] or ViT [12]) denoted as fBackbone(·)
and the global feature aggregation layer (e.g., the last global
attention pooling layer for ResNet) denoted as fG-Pooling(·).
The global attention pooling layer fG-Pooling(·) is a single
layer of multi-head attention [44] that takes the globally

average-pooled feature as a class token [cls] and concate-
nates it with patch tokens [patches] flattened from outputs
of fBackbone(·) as inputs. Given a text T and an image I,
CLIP computes the similarity S between T and I by:

SCLIP = cos(fG-Pooling(fBackbone(I))[cls], g(T )), (1)

where cos(·, ·) represents the cosine similarity, and class to-
ken’s feature fG-Pooling(fBackbone(I))[cls] is the global feature.
Modification of CLIP for Dense Prediction. As CLIP
models for image-level prediction, it is not trivial to ex-
tract local patch prediction (i.e., the actual similarities be-
tween patches fBackbone(I) and text T ) from CLIP. Simi-
lar to MaskCLIP [51] to reformulate the value-embedding
layer of fG-Pooling(·), we retain the global pooling layer but
additionally conditioned on a diagonal mask M that pre-
vents information exchange between patches. The modified
formulation for dense prediction is expressed as,

SCLIP = cos(fG-Pooling(fBackbone(I)|M)[patches], g(T )). (2)

We adopt the modified pooling layer to produce the fine-
grained dense prediction as shown in Figure 2 (CLIP).

3.2. Open-Vocabulary Object Detector (EdaDet)

Problem Setup. We share the same strict problem setup
following previous works [16, 26, 47, 13, 31, 28]. Given an
image I ∈ RH×W×3, the detector predicts a set of bound-
ing boxes with categories. It is trained with detection anno-
tations of base categories Ctrain but needs to detect objects of
both base and novel categories Ctarget where Ctarget ̸= Ctrain.
It means that the detector requires to be capable of localiz-
ing and recognizing objects belonging to novel categories
Cnovel = Ctarget − Ctrain that are not seen in training. In the
strict problem setting, the vocabulary set of novel categories
Cnovel is unavailable in training.
The Overall EdaDet Architecture is shown in Figure 3a.
Following previous works [16, 54, 26, 38], we break down
open-vocabulary detection as two subsequent branches: (1)
to generate class-agnostic object proposals and (2) to recog-
nize open-vocabulary categories for these object proposals.

For the proposal generation, to ensure an efficient end-
to-end detector and avoid hand-designed modules like an-
chor generation, we adopt a query-based proposal genera-
tion method like DETR [3] and retrofit it to class-agnostic.
Specifically, for each object query, we predict a class-
agnostic object confidence score Sobj to evaluate whether
it is an object or background and regress its bounding box
B. We also use the bipartite matching loss for set prediction
following DETR and denote the sum of confidence score
loss and bounding box regression loss as Lbox. By the class-
agnostic retrofit, the object proposals generated by our pro-
posal generation branch have similar top-300 average recall
to the RPN network of the existing Mask R-CNN detector.
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Figure 3: Architecture comparison between (a) our deeply-
decoupled EdaDet and (b) existing open-vocabulary detection
framework. EdaDet separates the open-vocabulary classification
branch from the class-agnostic proposal generation branch at a
more shallow layer of the decoder. EdaDet first individually gener-
ates object proposals and predicts dense probabilities to categories
for local image semantics and then computes object proposals’ cat-
egories based on the dense probabilities.

However, we observe that both the Mask R-CNN de-
tector and our initial attempt predict the bounding box re-
gression on the same feature space as classifying open-
vocabulary proposal with only using two separate heads
for box regression and classification, as shown in Fig-
ure 3b. We believe that the highly correlated predictions
between the two branches hurt the class-agnostic proposal
generation and validate this observation in Table 5. Also,
OLN [24] shares a similar observation to us for learning
open-world object proposals. Therefore, we separate the
open-vocabulary classification from the proposal generation
branch at a more shallow layer of the decoder, as shown in
Figure 3a, to deeply decouple the two branches.

3.3. Early Semantic Alignment at Dense Level (Eda)

Our early dense alignment (Eda) performs open-
vocabulary classification for class-agnostic proposals by
leveraging the generalizable CLIP. As in previous meth-
ods [50, 16, 26, 54, 38, 28], we use text embeddings of
categories extracted from frozen CLIP’s text encoder g(·)
as the classifier and denote the set of text embeddings of
base categories Ctrain in training as Etrain.

However, unlike previous methods that classify propos-
als by aligning their object-level visual features to the base
classifier, we first align dense local image semantics early
to the classifier by using object-level supervision. Then,
we classify proposals according to the dense probabilities to
categories to mitigate the overfitting to base categories Ctrain
led by object-level alignment. Our dense-level alignment
can persevere the fine-grained recognition ability to distin-
guish local semantics details for similar novel and base cate-
gories, which further helps to better generalize from similar

base objects to novel objects.
Early Dense Semantic Alignment. Given the input image
I, we first extract its image feature map Fi(I) via our visual
backbone Fi(·), where feature at each spatial position of the
feature map Fi(I) represents a local image semantic and i
represents the feature of the i-th layer. Then, we calculate
the probability map of each local image semantic belonging
to each base category as follows,

Sdetector = Softmax(cos(Fi(I), Etrain)/τ), (3)

where cos(·, ·) represents the cosine similarity, and τ is
the temperature coefficient. We also compute the CLIP’s
dense probability map SCLIP(fBackbone(I), Etrain), i.e.,
Softmax(cos(fG-Pooling(fBackbone(I)|M)[patches], Eclass)/τ).
Inspired by F-VLM [26] that fuse objects’ CLIP scores and
detection scores via geometric mean, we obtain the overall
dense score map S as follows,

S = S1−λ
detector ◦ S

λ
CLIP, (4)

where λ ∈ [0, 1] controls weights for the probability maps
Sdetector and SCLIP, and ◦ means element-wise product.

Next, we classify class-agnostic proposals generated
from our proposal generation branch based on the overall
dense score map S. Given a proposal with predicted bound-
ing box B, we pool the box B into a fixed size score map
RoIAlign(B,S) by performing RoIAlign [20] operation on
the overall scores S. Based on our observation that an ob-
ject typically does not occupy the entire box, we indepen-
dently average the top-k highest scores for each category in
the fixed size score map RoIAlign(B,S) as the proposal’s
predicted score for that category, which is formulated as:

Sproposal = M-Pooling(RoIAlign(B,S) ◦Mk), (5)

where M-Pooling(·) means the mean pooling layer.
And mask Mk(i, j, c) = 1 means that the score
RoIAlign(B,S)(i, j, c) at spatial position (i, j) is among
the top-k highest scores for the c-th category, and other-
wise Mk(i, j, c) = 0. And Sproposal represent the proposal’s
scores to each base category. Note that the mask Mk allows
non-object parts to retain their original semantics and avoid
their overfitting to the proposal’s category.

During training, we minimize the cross-entropy loss Lcls
with respect to each proposal’s classification scores Sproposal.
During inference, we replace the text embeddings of base
categories with that of target categories and predict the pro-
posal’s label as the category with the highest score.
Global Semantic Alignment. We observe that only lo-
cal alignment leads to losing the global semantic informa-
tion for the image. Therefore, we align the integrated lo-
cal image semantics to CLIP’s image encoder to improve
the dense alignment. Specifically, given the global image
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feature fG-Pooling(fBackbone(I))[cls] extracted from CLIP, we
apply L1 loss to align the local image semantics F(I):

Lg = ∥M-Pooling(F(I))− fG-Pooling(fBackbone(I))[cls]∥1.
(6)

4. Experiment
4.1. Benchmark and Implementation Detail

LVIS benchmark [17] consists of object detection and in-
stance segmentation labels for 1203 object categories. The
categories are split into three groups: frequent, common,
and rare. Following ViLD [16], we treat frequent and com-
mon categories as the base categories during training and
treat the 337 rare categories as the novel categories during
testing. And the 337 rare categories are excluded from the
training set. The mask mAP on novel categories is the key
evaluation metric for LVIS.
COCO benchmark [29] is a common benchmark for nu-
merous studies on open-vocabulary detection. The COCO
vocabulary is partitioned into 48 base categories for training
and 17 novel categories for testing. We conform to the stan-
dard protocol and report results under the generalized de-
tection settings. The key evaluation metric is the box AP50
of novel categories.
Implementation Details. Our detection framework is
based on DETR [3] following OV-DETR [47]. For fair com-
parison, we follow [54, 47] to train our detector for 10.2k
iterations with batch size 32 and image size 800 × 800 and
adopt AdamW optimizer with weight decay 1e-4 and initial
learning rate 2e-4. We set the fixed size of the score map
and k in Eq 5 as 14×14 and 12×12, respectively. The tem-
perature coefficient τ=1e3 in Eq 3, and λ = 0.25 in Eq 4. We
use standard CLIP’s ImageNet prompts to extract text em-
beddings by CLIP-R50. We fuse feature maps from conv2
x and conv3 from the backbone to perform Early Dense
Alignment, i.e. i=2,3 in Equ 3. Unless otherwise specified,
the experiments are conducted under the same setting.

4.2. Comparison with State-of-the-Art Detectors

We evaluate EdaDet on various open-vocabulary object
detection and instance segmentation benchmarks. Results
in Table 1 show that EdaDet achieves a stronger base-to-
new generalization on both COCO and LVIS benchmarks.
Despite being trained in a strict open-vocabulary setting
and without using any additional training resources, EdaDet
consistently outperforms all prior methods, even these un-
der more relaxed experimental setups.
COCO Benchmark. Table 1 and Table 4 (w self-training)
show that EdaDet consistently and significantly outper-
forms state-of-the-art methods under both weak and strict
open-vocabulary settings. Specifically, EdaDet outperforms
OV-DETR [47], which shares the same setting (strict and

without using any additional training resources) and detec-
tion framework with us by +8.4 box AP50 of novel cate-
gories. Compared to the strict best-performing VLDet [28]
that is trained with additional caption resources, we im-
prove box AP50 of novel categories by +5.8. Moreover,
following the same weak open-vocabulary setting as best-
performing OC-ovd [38], our EdaDet (without using ex-
ternal training resources) can further boost the box AP50
of all categories and the novel categories to 57.1 and 40.2
(see Table 4), which outperforms all state-of-the-art meth-
ods by +5.6 and +3.3, respectively. Different from LVIS,
we observed significant overfitting to the base classes on the
COCO dataset. Therefore, for COCO, we took the specific
approach of using an RPN trained on the base classes to
additionally extract class-agnostic proposals.

LVIS Benchmark. Table 1 demonstrates that EdaDet
achieves the new state-of-the-art mask AP50 of novel cat-
egories and is very competitive under different experimen-
tal settings. Compared to approaches under the same set-
ting with us, EdaDet offers better performance, i.e., +3.9
mask APNovel improvement compared with best-performing
DetPro [13]. Compared to the leading method VLDet [28]
which leverages a large image-text dataset CC3M to expand
vocabulary, our method directly transfers knowledge from
VLMs and improves the mask APNovel by +2.0. More-
over, in contrast with ViLD [16], our EdaDet still preserves
the performance of base categories when improving the
novel classes. Even compared with the ensemble version
of ViLD-ens, EdaDet still boosts the performance by +2.0
and +7.1 on mask APAll and mask APNovel, respectively.

Transfer Detection Benchmark. We conduct a transfer
detection experiment to assess the effectiveness of EdaDet
as a universal detector for various data sources. Consider-
ing the base categories of the LVIS dataset contain almost
all the COCO categories, and COCO shares the same im-
age sources as LVIS, we do not conduct the transfer de-
tection from LVIS to COCO like ViLD [16]. Instead, fol-
lowing [28], we conduct a more challenging transfer ex-
periment that evaluates the COCO-trained model on LVIS
and the LVIS-trained model on Objects365 [42]. Specifi-
cally, we simply replace the COCO-based classifier (80 cat-
egories) with the LVIS-based classifier (1203 categories)
without fintuning and report the box AP as the evalua-
tion metric on LVIS of all categories. The transfer from
LVIS to Objects365 follows a similar protocol. The re-
sults are shown in Table 2. For the transfer from COCO
to LVIS, we observe that the method [28] under strict open-
vocabulary setting usually outperforms those under weak
setting [38, 54] due to the better generalization ability of the
former. Our EdaDet outperforms the best-performing strict
VLDet [28] by +2.8 box AP50. For objects365, EdaDet
outperforms state-of-the-art methods [26, 13, 16] by +1.7
and +2.0 in terms of AP and AP75, respectively.
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Methods Publication
Training Resources for

Novel Proposal Generation
COCO Detection LVIS Segmentation

AP50box AP50box
base AP50box

novel APmask APmask
f APmask

c APmask
novel

Weak open-vocabulary Setting
Detic [54] ECCV2022 IN-O 45.0 47.1 27.8 26.8 31.6 26.3 17.8
PromptDet [14] ECCV2022 LAION 50.6 - 26.6 21.4 25.8 18.3 19.3
VL-PLM [49] ECCV2022 - 48.3 54.0 32.3 - - - -
PB-OVD [15] ECCV2022 CAP-L 42.1 46.1 30.8 - - - -
OC-ovd [38] NeurIPS2022 IN-O + COCO CAP 51.5 56.6 36.9 25.9 29.1 25.0 21.1
LocOv [2] GCPR2022 COCO CAP 45.7 51.3 28.6 - - - -
Strict open-vocabulary Setting
CLIP-RPN - - 27.8 28.3 26.3 17.7 16.0 18.8 18.9
OVR-CNN [48] CVPR2021 COCO CAP 39.9 46.0 22.8 - - - -
ViLD [16] ICLR2022 - 51.3 59.5 27.6 22.5 28.3 20.0 16.1
ViLD-Ens. [16] ICLR2022 - - - - 25.5 30.3 24.6 16.6
DetPro [13] CVPR2022 - - - - 25.9 28.9 25.6 19.8
RegionCLIP [50] CVPR2022 COCO CAP + CC3M 50.4 57.1 31.4 28.2 34.0 27.4 17.1
OV-DETR [47] ECCV2022 - 52.7 61.0 29.4 26.6 32.5 25.0 17.4
OWL-ViT † [38] ECCV2022 - - - - 19.3 - - 16.9
VLDet [28] ICLR2023 COCO CAP + CC3M 45.8 50.6 32.0 30.1 34.3 29.8 21.7
F-VLM [26] ICLR2023 - 39.6 - 28.0 24.2 26.9 24.0 18.6
Ours (RN50 backbone) ICCV2023 - 52.5 57.7 37.8 27.5 29.1 27.5 23.7

Table 1: Open-vocabulary object detection results on COCO and LVIS datasets. All the methods share the RN50 backbone except †

with ViT-B/32. The IN-O is the ImageNet21k [10] (IN-21K) dataset’s subset with 997 overlapping categories with LVIS [17]. LAION [41]
is a large-scale image-text dataset, CC3M represents the Conceptual Caption 3M [5], and CAP-L consists of COCO Caption [29], Visual-
Genome [25] and SBU Caption [33].

Method
COCO → LVIS LVIS → Objects365

AP AP50 AP75 AP AP50 AP75

OC-ovd† 5.6 8.5 6.0 VilD 11.8 18.2 12.6
Detic† 5.5 8.5 5.8 DetPro 12.1 18.8 12.9
VLDet - 10.0 - F-VLM 11.9 19.2 12.6
Ours 9.1 12.8 9.6 Ours 13.6 19.8 14.6

Table 2: Transfer detection of EdaDet. We evaluate COCO-
trained model on LVIS and LVIS-trained model on Objects365
without finetuning. †: evaluate with official code and checkpoint.

Method Size APmask
novel #Iters Epochs

ViLD-EN-B7 - 26.3 180k 460

OWL-ViT-Large 1216 31.2 70k 180
F-VLM-RN50x64 812 32.8 46.1k 118
VLDet-ViT-Base 345 26.3 90k 13
EdaDet-ViT-Base 345 29.9 42k 10
EdaDet-ViT-Base 345 35.6 126k 30

Table 3: Comparison of scalability and training efficiency on
LVIS. We report APmask

novel to show the trade-off between perfor-
mance and training costs under relatively fair model sizes in MB.

Scalability and Training Efficiency Benchmark. Table 3
summarizes the performance, iteration and epoch of differ-
ent methods with the strict setting using large backbone net-
works. Notice that since different methods adopt different
backbones and batch sizes, Table 3 is not for an apple-to-
apple comparison but just to illustrate the scalability and
training efficiency for different methods. With a relatively

smaller backbone (1/4 of OWL-ViT), EdaDet achieves a
35.6 (+4.4) APmask

novel with a shorter training epochs.

4.3. Ablation Study

Roadmap to build a strong open-vocabulary detector is
shown in Table 4. We start by training a conventional de-
formable DETR [55] detector on base categories, which
achieves 61.7 AP50 of base categories. (1) To equip the
base model with open-vocabulary detection ability, we re-
place its classifier with text embeddings of categories ex-
tracted from CLIP-R50. (2) Then, we deeply decouple the
proposal generation and classification branches. To train the
proposal generation branch on more objects beyond base
objects in images, we use the annotated base objects and the
generated proposals with high confidence scores and with-
out overlapping with annotated objects as the box supervi-
sion. Note that we do not generate pseudo novel proposals
from external training resources but only extend the base
objects with class-agnostic proposals with high confidence
scores. (3) Next, we ensemble text prompts to obtain a bet-
ter classifier. So far, the model can achieve 15.1 AP50 of
novel categories, while the AP50 of base categories yields
a performance drop by −4.2.

Furthermore, we stepwisely develop our early dense
alignment (Eda). (4) By replacing the object-level align-
ment with our dense-level alignment (4.1.1), the AP50 of
novel categories significantly improves to 30.1, demonstrat-
ing the effectiveness of preserving the fine-grained details
to distinguish the similar novel and base objects. (5) We
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(a) LVIS (b) COCO (c) Out-of-distribution images 

Figure 4: Qualitative results of EdaDet. We visualize our detection results and semantic maps on (a) LVIS [17], (b) COCO [29] and (c)
out-of-distribution images from the open-source website.

Ablation AP50box
base AP50box

novel

Supervised from base 61.7 0.0
(1) Replace classifier with CLIP-R50 56.6 7.6
(2) Deeply decouple from (1) 57.3 14.2
(3) Add prompt ensembling from (2) 57.5 15.1
(4) Early Dense Alignment from (3)
(4.1) Dense Alignment
(4.1.1) λ = 0, w/o Mk 56.7 30.1
(4.1.2) λ = 0, w Mk=7×7 55.5 29.3
(4.1.3) λ = 0, w Mk=12×12 57.3 33.1
(4.1.4) λ = 0.25, w Mk=12×12 57.2 35.7

(4.2) Global Alignment from (4.1.4) 57.7 37.8
(4.3) Early Dense Alignment in con2 x 56.4 35.9
(4.4) Early Dense Alignment in con3 x 56.7 36.2

(5) Self-training from (4.2) 57.1 40.2

Table 4: Ablation study of EdaDet on the COCO dataset.

Methods AR ARS ARM ARL

Mask-RCNN 0.31 0.19 0.39 0.53
Def-Detr 0.33 0.21 0.41 0.51
Decomp 0.36 0.24 0.46 0.57

Table 5: Ablation study of proposal generation. We report top-
300 average recall (AR) of all categories on LVIS. The ARS, ARM

and ARL denote AR for the small, medium and large objects, re-
spectively. All methods are trained on LVIS base categories.

further add the mask Mk to allow non-object local image
semantics in the object box to not directly participate in
computing object categories (4.1.2 and 4.1.3), which helps
mitigate overfitting base categories. The AP50 of novel
categories is increased to 33.1. (6) Moreover, we inte-
grate CLIP’s probability map in our dense probability map
(4.1.4), slightly improving the AP50 of novel categories by
2.6 while maintaining the AP50 of base categories to 57.2.
(7) We plug the global alignment into Eda (4.2), and the per-
formance gain is +2.1 AP50 on novel categories. In sum-
mary, our Eda, including the dense and global alignments,
brings in +22.7 improvement in AP50 of novel categories,
which illustrates its effectiveness.

How much does deeply decoupling of two branches
help proposal generation. Compared to Deformable
DETR [55] and Mask-RCNN [20], the consistent improve-
ment on all metrics indicates the superiority of deeply de-
coupling label prediction and box regression (see Table 5).

4.4. Qualitative Visualization

We visualize EdaDet’s detection results and semantic
maps Sdetector (Eq 3) in Figure 4. For LVIS with diverse
target categories and complex scenes, our EdaDet performs
well on crowded prediction. Figure 4c shows that EdaDet
even successfully detects the film characters iron man, spi-
der man and the animation character minion, which demon-
strates EdaDet’s open-vocabulary capacity and the impor-
tance of generalizing pretrained VLMs on open-vocabulary
detection.

5. Conclusion
We propose a simple but effective open-vocabulary de-

tection method (EdaDet) that generalizes the pretrained
VLMs to achieve a strong base-to-novel detection abil-
ity. Experiments on various datasets show that EdaDet
consistently outperforms state-of-the-art methods in open-
vocabulary object detection and instance segmentation.
Ethics Statement: Since our open-vocabulary capability
is solely derived from VLMs, biases, stereotypes and con-
troversies that may exist in the image-text pairs for training
VLMs may be introduced into our models.
Acknowledgment: This work was supported by the Na-
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Shanghai Pujiang Program (No.21PJ1410900), Shanghai
Frontiers Science Center of Human-centered Artificial In-
telligence (ShangHAI), MoE Key Laboratory of Intelligent
Perception and Human-Machine Collaboration (Shang-
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