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Figure 1. Our novel human motion prior PhaseMP enables us to further constrain the predictions in both nominal and challenging
scenarios, resulting in more natural and stable movements. The figure demonstrates the generated motions in several challenging scenarios,
which involve generation from incomplete observation in spatial or temporal domain (left), as well as generation from raw videos where
heavy occlusion exists (right).

Abstract

We present a novel motion prior, called PhaseMP, mod-
eling a probability distribution on pose transitions con-
ditioned by a frequency domain feature extracted from a
periodic autoencoder. The phase feature further enforces
the pose transitions to be unidirectional (i.e. no backward
movement in time), from which more stable and natural mo-
tions can be generated. Specifically, our motion prior can
be useful for accurately estimating 3D human motions in the
presence of challenging input data, including long periods
of spatial and temporal occlusion, as well as noisy sensor
measurements. Through a comprehensive evaluation, we
demonstrate the efficacy of our novel motion prior, show-
casing its superiority over existing state-of-the-art methods
by a significant margin across various applications, includ-
ing video-to-motion and motion estimation from sparse sen-
sor data, and etc.

*Corresponding Author

1. Introduction

Estimating human poses and motions from real-world
observations is a fundamental problem in computer vi-
sion with numerous potential applications, including hu-
man motion understanding, surveillance, motion capture,
and human-computer interaction. Recently, there have been
significant improvements in 3D human pose/motion esti-
mation from 2D image/video via deep learning; specifi-
cally by deploying a data-driven system trained on a paired
dataset [23, 31] to learn a mapping from 2D input images
to 3D body motions [42, 47, 25, 57, 66]. However, these
algorithms still struggle in challenging scenarios given un-
constrained real-world data. For example, highly dynamic
movements can cause motion blurs, and the blurry appear-
ance of the body and the environment can lead to failures
in 2D key-point detection, which is a preprocessing step
widely used in many 3D pose estimation algorithms. More-
over, occlusions or a restricted camera field-of-view can re-
sult in partial or complete lack of pose information. Al-
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though certain approaches have attempted to address this
challenge by incorporating temporal consistency or formu-
lating it as a denoising problem in the presence of artifi-
cial noise [9, 31, 50], they often struggle when dealing with
long-period occlusion lasting beyond one second.

In this paper, we aim to develop a 3D pose/motion esti-
mation algorithm as shown in Fig 1 that can work robustly
in challenging scenarios illustrated above. More specifi-
cally, we propose a novel motion prior, called PhaseMP,
modeling the probability distribution on pose transitions.
Our novel motion prior draws inspiration from previous
models [49, 38]; however, the key distinction lies in its com-
bination with a frequency domain feature extracted from a
periodic autoencoder [56], further enhancing the quality and
robustness of 3D pose estimation. Intuitively speaking, the
phase features play a role akin to long-term physical mo-
mentum, facilitating the generation of smooth and stable
movements by enforcing a unidirectional motion (i.e., no
backward movement in time). Consequently, phase features
contribute to imbuing the resulting motions with greater nat-
uralness, particularly in scenarios where the laws of physics
play a significant role. This characteristic extends to chal-
lenging scenarios where other input features (e.g., joint lo-
cation) are only partially observable. The underlying am-
biguity arising from insufficient contextual cues can be sig-
nificantly reduced by enforcing the model to maintain the
current momentum.

We demonstrate the effectiveness of our motion prior in
solving challenging video-to-motion estimation problems,
where a large portion of the body is partially invisible for
a long period of time due to occlusions or being out-of-
sight. Additionally, we showcase its capabilities in address-
ing other problems such as denoising 3D motion data or
estimating full 3D pose from end-effectors only. Through
comprehensive evaluation, we demonstrate that our system
outperforms state-of-the-art baselines with a large margin.

The paper’s contributions can be summarized as follows:
(1) a novel motion prior, combined with the phase feature,
applicable to a wide range of 3D human pose estimation
systems, (2) a new optimization framework incorporating
phase feature energy, which can work robustly for many
challenging scenarios where the observation is incomplete
or ambiguous in temporal and spatial domains, (3) a com-
prehensive evaluation showcasing that our system outper-
forms existing state-of-the-art methods by a large margin,
not only in ordinary scenarios but also in challenging sce-
narios.

2. Related Work
3D Human Pose Estimation As a tool in understand-
ing the human-centered world, there has been a signifi-
cant body of work focusing on estimating 3D human pose,
which is typically represented by a positional skeleton

[42, 20, 1, 47, 52, 10, 22, 24, 75], or parametric mesh
model [4, 25, 46, 26, 33, 31, 15], from various real-world
observations. These approaches can be categorized into two
groups: optimization-based and learning-based methods.

The optimization-based methods typically rely on a
known transformation function f (e.g., 3D-to-2D projec-
tion), and the 3D poses, as the optimization target x, are ob-
tained by optimizing an objective function that encourages
the transformation f(x) to be close to the observations, rep-
resented in the form of 2D joint positions [13, 2] or body
mask images [35]. In SMPLify [4], the optimization can
be accelerated by constraining the body state using a lin-
ear model SMPL [40], the realism of the optimized poses is
further improved by incorporating a learned pose prior [46].

However, accurately modeling real-world transforma-
tions [32, 65] can be challenging, and test-time optimiza-
tion is also computationally expensive. To address these
limitations, learning-based methods have emerged as a pop-
ular alternative, leveraging data to simplify the pose esti-
mation process. These methods typically require a paired
dataset [23, 64, 31] of 3D poses and corresponding obser-
vations, and learn an end-to-end mapping from the obser-
vations to the 3D poses using different specifications, such
as known-camera-projection [42, 47], weak-perspective as-
sumption [25, 48, 58, 59], or kinematic structure [52, 36].
However, these approaches often struggle in accurately pre-
dicting some key parameters in the wild environment, and
may require significant amounts of supervision [34], which
can be constrained by the dataset and network architecture.

In our project, we employ an optimization-based ap-
proach to achieve more robust pose estimation in challeng-
ing scenarios, such as long-term occlusion, where existing
methods still struggle to perform effectively.

3D Human Motion Estimation In addition to estimat-
ing pose independently on a frame-by-frame basis, existing
methods leverage temporal information to improve estima-
tion accuracy. One popular approach is to encode the pose
sequence using neural differential operators. For instance,
[47] shows that a dilated temporal convolutional network
with a sizeable receptive field significantly outperforms sin-
gle frame methods. More advanced context-aware sequen-
tial encoders, such as graph convolutions [30, 75, 6, 78, 22]
and transformers [39, 17, 76, 37, 41], which are com-
monly used in neutral language processing for encoding
the long sequence data with parallel multi-head attention
mechanism, have also been developed for this task. Ad-
ditionally, the fusion of spatial and temporal information
[71, 51, 77, 6] can be used to avoid conflicts in the sequen-
tial model and improve estimation performance. Moreover,
adversarial training [31] between real human motions and
predicted motion is another option to enhance the realism
of pose sequences.
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Figure 2. The overview of our system. The left figure illustrates the phase feature extraction process, which takes a window of joint
velocities with the duration of T as input, then produces frequency domain periodic parameters [Ft, At, Bt, St] as output, from which the
phase feature Pt is computed by updating these parameters cyclically. The right figure is our phase-conditioned human motion prior, called
PhaseMP, based on the structure of conditional VAE. It consists of a Prior network, an Encoder network, and a Decoder network. All the
networks are used during the training stage, while only the Prior and the Decoder are used during the inference stage.

Another line of work tackles sequential pose estima-
tion with learned powerful generative priors, which incor-
porate probabilistic models that can capture the nature of
human movements; such works are based on mixtures-of-
Gaussians [21], pose embeddings [45, 12, 63], neural dis-
tance field [61], variational autoencoder [14, 38, 19, 67],
and the diffusion model [11, 68]. Given observations,
the motion estimation is performed by searching for the
most plausible alignment on the motion manifold. Hu-
MoR [49] achieves impressive motion generation by mod-
eling the pose transitions instead of modeling the poses di-
rectly. Their system can support various types of inputs
such as RGB-D videos and 2D/3D joint position sequences.
Our system also models the pose transitions but with a par-
ticular emphasis on incorporating a frequency domain fea-
ture for enhancing the robustness of pose estimation in chal-
lenging scenarios.

Measuring physical realism or consistency can also lead
to a significant improvement in the accuracy of the pre-
dicted pose. For example, a consistent skeleton [60, 52, 8]
or physics-inspired metrics [44, 16, 53, 69] such as foot slid-
ing, foot-floor penetration, human-environment interaction
[72, 74, 73] can improve temporal coherence and reduce

the searching space in generating motions.

Motion Frequency Feature The conversion of motion
signals from the time domain to the frequency domain
[18] has been utilized for motion editing [5, 27], styliza-
tion [62, 70], and compression [3]. Compared to the orig-
inal data domain, the features in frequency domain often
remains consistent over a longer period of time, or be-
tween different motion clips, making it useful for synthe-

sizing high quality transition motion [56]. We leverage fre-
quency domain features extracted from a large-scale mo-
tion database to accurately estimate human movements in
videos, including those frames in which the body is partially
or fully occluded.

3. System Overview

Out system predicts the full 3D human motion sequence
from incomplete data, such as 2D body landmark sequences
extracted from videos, 3D end-effector sequences, or noisy
3D joint position sequences. Our system is composed of
the periodic autoencoder to extract the phase feature, the
phase-conditioned motion prior, and the run-time optimiza-
tion module. Given a large motion database, the periodic
autoencoder is first trained (see Sec 4.1). Using the ex-
tracted phase features as additional inputs, a motion prior
based is trained (see Sec 4.2, 4.3). At inference time, given
an input observation sequence, the 3D human motion is
computed via optimization with energy functions that en-
sure both accuracy and realism (see Sec 5).

4. Phase-conditioned Motion Prior

We first describe how we compute the phase features
using a periodic autoencoder trained with a large mo-
tion database. Then, we explain the structure of phase-
conditioned motion prior and the loss functions to train it.

4.1. Deep Phase Feature

The periodic autoencoder (PAE) [56], which we use to
compute the phase features, is depicted on the left side of
Figure 2. It is an autoencoder equipped with convolution
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and FFT (fast Fourier transform) layers in its intermedi-
ate structure, allowing it to compute embeddings in the fre-
quency domain given joint velocities as inputs. Intuitively
speaking, it learns alignments of periodic signals existing
in motions, the learned embedding can play a role of phys-
ical momentum as a result. More specifically, at frame t,
PAE uses a window of 3D joint velocities Xt ∈ R3×J×N

as input, where J , N represent the number of joints and the
size of window, respectively. Given Xt for the frame t, the
encoding process includes a sequence of 1D convolutions
followed by a differentiable FFT layer:

At,Bt,Ft = FFT(Conv(Xt)), (1)

where At, Bt, and Ft are amplitudes, offsets, and frequen-
cies, and phase shift St of periodic embeddings are obtained
by a separate fully-connected network:

(sx, sy) =FC(Conv(Xt)),St = atan2(sy, sx), (2)

where atan2 is a 2-argument arc-tangent. Then At,Bt,Ft,
St are used to compose phase features in the decoding pro-
cess, which is conducted by first reconstructing the feature
maps Ft in the temporal domain:

Ft = At · sin(2π · (Ft · T − St)) +Bt (3)

where T is a known time window. This is followed by a
1D deconvolution X ′

t = DeConv(Ft) for reconstructing
the original signals. The entire PAE is trained using the
reconstruction loss:

LPAE = MSE(Xt, X
′
t) (4)

Once PAE is trained, the deep phase feature Pt are com-
puted as follows using the frequency domain parameters:

Pt = [pt,Ft,At]. (5)

where pt = (At ·sin(2π ·St),At ·cos(2π ·St)) is called the
phase manifold vectors that periodically change over time,
and the last two variables are frequency and amplitude.

4.2. Motion Prior Modeling

The right side of Figure 2 illustrates our novel phase-
conditioned motion prior. The structure is inspired by Mo-
tionVAE [38] and HuMoR [49]; both models, including
ours, are based on conditional VAEs [29] where the dis-
tribution of plausible pose transition is learned. The key
differences are that our model is conditioned by the deep
phase feature Pt extracted from pre-trained periodic autoen-
coder [56] in addition to the pose feature, and sinusoidal ac-
tivation layers [54] are also incorporated to fully utilize the
periodic nature of our phase feature.

For the pose feature, we use the same representation used
in HuMoR [49], which includes position, orientation, and

corresponding velocities for all the joints. Our motion prior
receives the previous phase feature Pt−1, the previous pose
feature xt−1, and the next pose feature xt as input, then
predicts the change of pose ∆x and phase ∆P features as
the output, from which the features are updated as follows:

x̂t =xt−1

⊕
∆x

P̂t =Pt−1 +∆P,
(6)

where
⊕

is a differentiable integration operator to compute
the current pose given the previous pose and its change ∆x,
where positional and rotational components are updated via
addition and multiplication, respectively.

In this process, ∆P and ∆x are computed from a de-
coder D conditioned on a latent variable (i.e. embedding) z
that describes the possible pose transition. We use a learn-
able prior R and an encoder E (i.e., posterior) similarly to
HuMoR [49]. They are defined as follows:

z′t−1 =ϵ(R(xt−1, Pt−1))

zt−1 =ϵ(E(xt−1, xt, Pt−1))

∆x,∆P, ct =D(xt−1, zt−1, Pt−1),

(7)

where ϵ denotes a re-parameterization operation [28], z′t−1

and zt−1 represents the latent variables sampled from the
Gaussian distribution, generated from the prior and the en-
coder, respectively, and ct is the contact label to further en-
hance motion quality.

4.3. Prior Training

The pose in the next frame is predicted by sampling a
Gaussian distribution produced by the prior model. In the
training stage, following the CVAE [55], as shown in the
right side of Figure 2, the prior model R is trained with
posterior E by aligning their distribution N (µθ, σ

2
θ) and

N (µϕ, σ
2
ϕ).

Given the D set of training data in the form of
{xt−1, Pt−1, xt, Pt}Di , our motion prior is trained by the
following loss function composed of four terms:

L = Lrec + λKLLKL + λctLct + λSMPLLSMPL. (8)

with weights λKL = 4e−4, λct = 0.01, λSMPL = 0.5.
The first term Lrec is the reconstruction loss that minimizes
the difference between the decoder output and the ground
truth:

Lrec = ∥x̂t − xt∥2 + 0.1× ∥P̂t − Pt∥2, (9)

where x̂, P̂ are the predicted pose and phase features, re-
spectively. The second term LKL enforces the distribution
learned by the learnable prior is close to the one from the
encoder by measuring their KL-divergence. The third term
Lct is the contact loss

Lct =
∑
j

BCE(ĉjt , c
j
t ) + ĉjt∥v̂

j
t ∥2 (10)
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where BCE is the binary cross-entropy; ĉjt and v̂jt repre-
sent the predicted contact label and the velocity of the j-
th joint, respectively. This term encourages the decoder to
predict correct contact labels while keeping the velocities of
the joints in contact with the ground to become zero. The
final term LSMPL is optional which enforces the generated
body meshes to be consistent with the SMPL model in the
ground truth dataset, which is the same as one described in
HuMoR [49].

4.4. Robust Inference of PhaseMP

Given an initial pose and phase features x0 and P0, an
embedding for transition z0 is sampled randomly from the
prior distribution R(x0, P0), from which the decoder gen-
erates the change of pose and phase features, and then they
are updated via Eq.6. This process can be performed repeat-
edly to generate a continuous motion (x0, x1, x2, · · · ). Al-
though we observe that our phase-conditioned motion prior
can generate better quality motions already when compared
to other methods, the generated motions can still deteriorate
especially when the input observation is highly unreliable
due to noisy or missing joints. We thus propose a novel
way to update the phase feature that considers the confi-
dence of the input observation dynamically. It is computed
as follows:

p̄t = Āt · I(αP )(R(θ) · pt−1, (pt−1 +∆p))

Āt = (1− αA)At−1 + αA(At−1 +∆A)

F̄t = (1− αF )Ft−1 + αF (Ft−1 +∆F )

θ = ∆t · 2π · F̄t

(11)

where the update is basically performed by the interpola-
tion of two sources, one from network prediction and the
other from a cyclic update by rotating the phase manifold
vector pt−1 with θ. I(·) refer to linear interpolation, R(·)
is the rotation operation, ∆t is a time-step between adjacent
frames, and α∗ ∈ [0, 1] represents how reliable each com-
ponent of the phase feature is given the current pose feature.
The confidence values αA, αP , and αF are computed by:

αA, αP , αF =


0, 0, 0 if ϕt < ϕlow

ϕt, ϕt, ϕt if ϕlow ≤ ϕt < ϕhigh

1, 0.5, 1 if ϕt ≥ ϕhigh

(12)

where ϕt ∈ [0, 1] is the confidence value of the input obser-
vation at frame t (e.g., values given by 2D pose detectors),
and ϕlow, ϕhigh are user-specified minimum and maximum
confidence thresholds where we use 0.4, 0.8, respectively.
Note we set αP = 0.5 even when the input observation
is fully reliable as demonstrated in [56]. If the confidence
value is high (α∗ = 1) then the phase feature is updated
following Eq. 11. If the confidence is low (α∗ = 0), the fre-
quency and amplitude feature At,Ft are carried over from
the previous frame as the same as At−1 Ft−1, and are used

to update the phase manifold features. Otherwise, the values
are interpolated based on corresponding confidence values.

𝑁𝑜 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛

Figure 3. A visualization of the phase manifold vector p on two
channels. The above represents the phase feature directly pre-
dicted by the network, while the bottom vector shows the interpo-
lated phase based on Eq. 11. This shows that dynamic interpola-
tion greatly helps to increase stability when the input pose features
are noisy.

Implementation The prior and encoder networks are
both designed as fully-connected 5-layer MLPs equipped
with ReLU activation units and group normalization. The
decoder is designed as a 4-layer SirenMLP [54] with sine
activation of 60 sine factor. We follow the initialization
scheme introduced in Siren [54]. Moreover, we introduce
skip connections from the phase feature to each layer of the
decoder network, further enhancing its influence. Follow-
ing MotionVAE [38], we also use scheduled sampling to
ensure the network learns from its own predictions. More
details will be introduced in the supplemental materials.

5. Test-time Optimization

During run-time, given partial observations, such as 2D
landmark sequence or partial 3D joint sequence, we esti-
mate the original 3D pose sequence by optimization. In
this section, we outline the details for integrating our phase-
conditional motion prior with optimization.

There are three stages to perform the optimization.
Given a sequence of observations o1:T (e.g., a sequence of
2D joint positions in a video) with length T , a ground plane
is estimated and a sequence of SMPL poses are roughly fit-
ted to the observations in Stage 1. An initial sequence of
phase features P1:T is then computed from these poses in
Stage 2 using the encoder in Eq. 7. In Stage 3, starting
from the roughly fitted poses in Stage 1 and the initialized
sequence of phase features in Stage 2, a refinement step is
performed by using our PhaseMP to optimize the pose se-
quence with energies measuring plausibility of the pose se-
quence. All the above stages are performed by different
optimization targets and energy terms.

We will describe Stage 3 here and explain the other
stages in the supplementary materials. The optimization
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problem in Stage 3 is formulated as follows:

argmin
z1:T−1,β,g

(λobsEobs + λpriorEprior

+λregEreg + λphaseEphase)
(13)

where β is the SMPL shape parameter, and g is the ground
plane parameter. The energy function comprises four terms
where the first three terms are those proposed in Hu-
MoR [49] while the last term is newly introduced in this
work, which can significantly improve the motion quality
especially for challenging scenarios. The weights can be
set differently depending on the types of tasks, our settings
for each task are included in Appendix. The details of each
energy are explained below.

Observation Energy The purpose of the observation en-
ergy is to enforce the predicted sequence to align with the
given observations:

Eobs =

T∑
t=1

||O(x̂t)− ot||2 (14)

where ot is an instance of observation at frame t and O
is a function that projects the pose sequences x̂0∼T which
are predicted by our model to the observation space. For
instance, a 3D-to-2D projection can be used for the video-
to-motion task while a masking function can be used for
reconstructing full 3D poses from 3D partial markers.

Motion Prior Energy The goal of the motion prior term
is to measure whether the given sequence of latent variables
z1:T represents a plausible motion. This can be computed
by

Eprior =−
T−1∑
t=1

logN (zt;µ
t
θ, σ

t
θ)

µt
θ, σ

t
θ = R(xt, Pt)

(15)

where µt
θ, σ

t
θ are the mean and standard deviation of the

prior distribution of pose transitions predicted by R.

Regularization Energy The regularization energy helps
the optimized motion to be smooth and consistent. It con-
sists of four terms:

Ereg =

T∑
t=1

(||Ĵt − Ĵsmpl
t ||2 + ||l̂t − l̂t−1||2

+ĉfoott ||vfoott ||2 + ||g − ginit||2)

(16)

where the first term regularizes the distance between the
predicted joint positions Ĵt and the joint positions Ĵsmpl

t

computed from the SMPL pose parameters; the second term

enforces the bone lengths lt to be consistent over time; the
third term makes the foot stationary by minimizing its ve-
locity vfoot when the contact label ĉfoott is enabled; and
the final term prevents the ground plane to deviate from its
initial guess ginit during the optimization.

Phase-based Energy As demonstrated in previous
work [49], natural-looking motions can be often generated
when the input observation is dense and reliable, for
example, when all joints are clearly visible in the video
and the motion is not extremely dynamic. However, the
quality of generated motions is significantly degraded when
insufficient cues are provided, due to occlusions or the
body being out-of-sight. Simply increasing the weights of
the motion prior energy cannot handle invisibility for a long
duration (>1s). Here, we introduce a novel phase-based
energy to mitigate this challenge.

To calculate the energy, we first compute target phase
features P̄1:T by setting the initial phase to 0 and updating
it by inference with Eq. 11. We then optimize the phase
features P1:T by minimizing its difference with the target
phase features P̄1:T :

Ephase =

T∑
t=1

||P̄t − Pt||2. (17)

For the optimization, P1:T is first initialized by the phase
features extracted from the SMPL poses in Stage 2. This en-
ergy can be considered as an additional regularization term
in the frequency domain by encouraging the generated mo-
tion to maintain similar periodicity to ones computed from
reliably observations only.

Implementation By default, we use L-BFGS optimiza-
tion with a step size of 1 and a maximal number of iter-
ations per optimization step of 20, which is implemented
by PyTorch. It takes approximately 6 minutes to fit a 3-
second sequence with a GTX 3090 graphics card. More
details about optimization exist in the supplemental materi-
als.

6. Evaluation
We evaluate our system on (i) motion reconstruction

task, (ii) motion completion from sparse 3D joint markers,
(iii) video-to-motion task in challenging scenes, (iv) abla-
tion study. More qualitative and quantitative experiments
are available in the supplemental materials.

6.1. Datasets and Metrics

Datasets The evaluation of our proposed method utilizes
three human motion datasets. (1) AMASS [31], the largest
dataset in terms of motion capture data, is curated from var-
ious sources and represented in the SMPL format, all the
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per-frame reconstruction sampling (5s) sampling (10s)

Model Contact ↑ MPJPE↓ PJPE-std↓ MV-PE↓ Contact ↑ ADE ↓ FDE ↓ Contact ↑ ADE ↓ FDE ↓
HuMoR [49](MLP, w/o Phase) 0.9770 0.022 0.051 0.057 0.8585 36.14 47.34 0.8216 45.43 62.47
Ours(MLP, with Phase) 0.9764 0.020 0.040 0.061 0.8646 32.36 35.73 0.8525 39.48 54.96
Ours(SirenMLP, w/o Phase) 0.9788 0.019 0.031 0.044 0.8691 31.81 35.59 0.8577 35.47 49.95
Ours(SirenMLP, with Phase) 0.9799 0.017 0.021 0.047 0.8702 34.88 36.91 0.8662 42.12 49.47

Table 1. Comparison of different methods on the per-frame prediction (Left) and random sampling with different durations (Middle, Right).
The MPJPE and DE are measured as positional errors with the unit of centimeters. For the sampling experiments, we use the same initial
pose from ground truth, and then run the sampling 50 times, and choose the one with the lowest ADE (average) to report its FDE(final
frame).

data are down-sampled to 30 fps in our experiments. We
train the phase extractor using the CMU subset and then
train the phase-conditioned variational autoencoder (VAE)
on the training subsets which are the same as [49, 61].
All evaluation is conducted using the Transitions and Hu-
manEva subsets. (2) i3DB [43] and (3) PROX [16], which
contain RGB videos of human-environment interaction and
are used for a comprehensive quantitative and qualitative
evaluation of the video-to-motion task. We first perform
pre-processing by running Openpose, human mask detec-
tion, and plane estimation to facilitate further test-time pose
estimation.

Baseline and Metrics Based on our inspiration from the
HuMoR baseline, we propose several enhancements in our
system, including a conditional feature, a new network
module, and different optimization energy terms. We eval-
uate the effectiveness of these improvements in challenging
scenarios through experiments.

To assess the accuracy of our reconstruction, we com-
pute the commonly used metrics MPJ-PE and MV-PE [42,
31, 49], to show the mean positional distance (cm) of body
joints and vertices between our prediction and the ground
truth. Additionally, we use the displacement distance (DE)
between the generated motion and ground truth, to evalu-
ate whether our learned prior can effectively reconstruct the
desired motion. To examine the physical realism of the mo-
tion estimation task [38, 49], we also measure the accuracy
of contact (Contact), mean per-joint accelerations (Accel),
foot-ground penetrations with a 15cm threshold, penetra-
tion occurrence frequency (P-Frep), mean penetration dis-
tance (P-Dis).

6.2. Evaluation of Motion Reconstruction

Because our model is based on conditional VAEs, we
first evaluate our model by measuring the accuracy on re-
construction (prediction). The accuracy is evaluated by two
criteria, where we use the AMASS dataset to train and test
our model. The first criterion is the per-frame prediction ac-
curacy, where the ground truth input of xt−1, Pt−1, and the
latent variable zt obtained from E(xt−1, xt) are given. The
second criterion evaluates the sequential output by initial-

izing the system with x0 and P0 from a test motion, and
then sampling 50 different motion sequences autoregres-
sively from the same seed for the same length as the test
motion. We select the sequence with the lowest average dis-
placement error (ADE) as the closest prediction. We report
both the ADE and last frame distance (FDE) for the selected
sequence. The results are presented in Table 1 which shows
that our full method (SirenMLP+Phase) achieves the best
performance on average and all other variants also outper-
form the SOTA baseline.

6.3. Estimation from 3D Observations

We conduct an experiment to evaluate the effectiveness
of test-time optimization in filling incomplete 3D joints.
To simulate real-world occlusions, we generate three types
of inputs: 1) occluded joints in time (missing frames) or
in space (joints above 0.9m in height are only visible; or
the end-effectors are only visible); 2) joint positions with
noise. We then recover the original pose sequence using our
PhaseMP. The performance is evaluated based on the av-
erage positional error for visible (Vis) and occluded (Occ)
joints.

The experimental results are presented in Table 2 and
Table 3. Our approach outperforms other methods in pre-
dicting occluded joints, as demonstrated by the average po-
sitional error of all and invisible (Occ) joints. Further-
more, our method can predict contact labels more accu-
rately than HuMoR. Regarding the denoising experiments,
our approach produces smoother results, particularly when
the degree of noise is high.However, an interesting observa-
tion is that our method does not align visible joints as accu-
rately as VPoser-t. This can be attributed to the additional
constraints imposed by the periodic manifold, which en-
courages more realistic motion rather than focusing solely
on local alignments.

Some visualization comparison is shown in Figure 5
where our method generates more natural-looking and dy-
namic motions with less foot sliding when compared to
HuMoR. The differences are best seen in the supplemental
video.
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fitting (3s) fitting (5s)

Method Input Conditions Vis Occ All Contact ↑ Accel P-Frep P-Dis Vis Occ All Contact↑ Accel P-Frep P-Dis

VPoser-t

Jheight>0.9

0.67 20.76 9.22 - 5.71 16.77% 2.28 - - - - - - -
MVAE 2.39 19.15 9.52 - 7.12 3.15% 0.30 - - - - - - -
HuMoR 1.46 17.40 8.24 0.89 5.38 3.31% 0.26 2.38 18.44 9.68 0.85 4.87 4.92% 0.30
Ours 3.94 15.63 8.31 0.89 4.58 3.04% 0.28 3.29 16.08 8.41 0.87 4.69 4.32% 0.31

HuMoR
Jend effectors

3.05 4.12 3.83 0.96 4.91 0.31% 1.03 3.15 4.20 3.91 0.96 4.97 1.19% 1.25
Ours 3.16 4.07 3.79 0.97 4.88 0.28% 1.02 3.32 4.16 3.88 0.96 4.99 0.82% 1.13

HuMoR 10 frames interval 5.56 7.76 7.49 0.91 7.72 1.57% 1.90 11.04 13.53 13.25 0.87 9.65 19.02% 5.97
Ours 3.19 4.92 4.33 0.93 6.33 1.31% 1.72 8.48 10.21 9.30 0.92 8.42 9.73% 3.73

Table 2. Comparison of different methods on different input settings: 1) Incomplete joints; 2) Root and 5 end-effectors; 3) Keyframes
with 10 frame intervals. Comparisons are performed with two different durations (3 and 5 seconds). All the results are measured by two
groups of metrics, where one group is the positional error for visible/occluded/all joints, and the other group is used to measure the physical
realism including the contact accuracy and foot-ground penetrations statistics with 15cm threshold.

Method Noisy Radius All Contact↑ P-Frep P-Dis

1D-Filter 4cm 3.91 - 2.45 % 0.14
VPoser-t 4cm 3.67 - 1.35% 0.07
MVAE 4cm 2.68 - 1.75% 0.11
HuMoR 4cm 2.27 0.97 1.18% 0.05
Ours(w/o Phase) 4cm 2.12 0.97 1.22% 0.06
Ours(with Phase) 4cm 1.96 0.98 1.14% 0.05

1D-Filter 12cm 11.89 - 4.87% 2.66
HuMoR 12cm 34.08 0.77 7.29% 5.26
Ours 12cm 9.42 0.89 4.20% 0.48

Table 3. Motion estimation from noisy inputs, where two different
noise levels are tested.

6.4. Estimation from RGB Observations

We evaluate the proposed method in the video-to-motion
task, where the goal is to estimate 3D pose sequences from
RGB videos. We use i3DB [43] and PROX [16] datasets,
and also obtain the 2D poses and confidence values from
OpenPose [7]. To mitigate the local minima issue, we fol-
low the same procedure proposed by HuMoR, which splits
the entire motion into 3-second sub-sequences. However,
instead of stitching all sub-sequences after the parallel opti-
mization, we optimize them one by one, using the last frame
in the optimized sequence st−1 as the initial pose of st. As
a result, we can easily stitch them sequentially to obtain a
full-frame reconstruction. The results are presented in Ta-
ble 4. It is observed that optimization-based methods pro-
duce more accurate results, and our proposed method fur-
ther improves the estimation compared to others. We also

i3DB PROX
Method MPJPE P-MPJPE P-Frep P-Dis P-Frep P-Dis

VIBE 116.46 15.08 7.98% 3.01 23.46% 4.71
VPoser-t 32.73 16.62 9.59% 2.68 13.38% 2.82
MVAE 40.91 19.17 7.43% 1.55 - -
HuMoR 28.15 14.51 2.12% 0.68 9.99% 1.56
Ours 27.43 14.19 2.03% 0.61 9.12% 1.38

Table 4. Comparison of different methods for the video-to-motion
task on i3DB [43] and PROX [16] datasets. The P-MPJPE is used
for calculating the positional error after root alignment.

show qualitative results in Figure 4. Our method maintains
consistency in long sequences thanks to the temporal fea-
tures captured by the phase feature, which stabilizes the es-
timation in heavily occluded frames, such as sitting on a
sofa. More results for the video-to-motion task can be found
in our supplementary materials.

6.5. Ablation Study

Here we analyze the effectiveness of each newly-added
component of our system for the motion reconstruction task.
The optimization without any new component is used as
the baseline. Then we compare the results of the recon-
structed motion w/wo SirenMLP (SI), w/wo Phase Condi-
tion (PC), w/wo Dynamic Test-Time Interpolation(DI). The
experiment is done with i3DB dataset in the same setting
described in Sec. 6.4. The results are shown in Tab. 5.

Method Components MPJPE P-MPJPE P-Frep P-Dis

VIBE - 116.46 15.08 7.98% 3.01
Baseline - 30.49 15.44 2.61% 0.79
Ours SI × PC ✓ DI × 31.75 18.33 2.51% 0.83
Ours SI ✓ PC × DI × 29.91 15.42 2.73% 0.74
Ours SI × PC ✓ DI ✓ 27.82 14.90 2.39% 0.64
Ours SI ✓ PC ✓ DI ✓ 27.43 14.19 2.03% 0.61

Table 5. Comparison of different system components involved set-
ting.

The ablation study reveals the effectiveness of different
components in our framework. Phase is a powerful signal
which helps to reproduce realistic movements. However,
using it solely will result in an unstable prediction under
heavy occlusion scenarios due to the error accumulation
through the auto-regressive phase update. Dynamic inter-
polation masks out the low confidence frames, and its com-
bination with the phase makes the prediction more robust
in challenging cases. The SirenMLP module also improves
the baseline results.
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Figure 4. Qualitative comparison for video-to-motion task. We run video-based motion reconstruction method VIBE [31], test-time op-
timization with HuMoR [49] and our method in the same settings and report the results. All the methods are trained with AMASS [31]
dataset only. Our method can produce more coherent and realistic motion even in the existence of heavy occlusion.

𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑃ℎ𝑎𝑠𝑒

𝑊𝑖𝑡ℎ 𝑃ℎ𝑎𝑠𝑒

𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑃ℎ𝑎𝑠𝑒

𝑊𝑖𝑡ℎ 𝑃ℎ𝑎𝑠𝑒

Figure 5. Motion generation from incomplete input. The first and
second rows are the fully body reconstruction from the upper body
only with/without using the phase feature. The bottom two rows
show motion-in-betweening results from sparse keyframes shown
as purple color.

7. Discussion
We have demonstrated the benefits of our phase-

conditioned motion prior model, PhaseMP, in a variety of
3D pose estimation tasks under challenging settings. It is
a general motion representation model that can be applied
to encode not only periodic actions such as locomotion but
also complex non-periodic actions such as dancing.

Our system has several limitations. Firstly, it relies on
an assumption the motions are performed on flat ground
and the cameras are static. Secondly, our system might fail
when the occlusion period is excessively long because the
ambiguity in the phase prediction increases. Thirdly, though
most movements can be reconstructed with the periodic au-
toencoder, the diversity of the output motions may be re-
stricted to those observed in the training data. Lastly, as

same with other methods, our optimization process can still
encounter failures when tested on motions that significantly
deviate from the training data.

One intriguing future direction could involve utilizing
the learned phase feature as a positional encoding for a
transformer architecture, allowing the phase feature to di-
rectly influence predictions without test-time optimization.
Another promising avenue for future research would be ex-
ploring the integration of multi-modal signals that can be
easily combined in the frequency domain, such as sound
waves from input videos.
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