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Figure 1: (a) 3D space (top) and an image rendered from the white camera (bottom). We are inspired by a 3D graphics
technique in which the foreground is represented as a 3D model and the background is approximated as a 2D surface, yet
resulting in a realistic appearance on the rendered image. (b) Our method produces high-quality 3D shapes, images, and
foreground alpha masks without extra supervision. (c) Realistic novel view rendering on arbitrary backgrounds, even on real
image inversion.

Abstract

3D-aware GANs aim to synthesize realistic 3D scenes
that can be rendered in arbitrary camera viewpoints, gen-
erating high-quality images with well-defined geometry.
As 3D content creation becomes more popular, the ability
to generate foreground objects separately from the back-
ground has become a crucial property. Existing methods
have been developed regarding overall image quality, but
they can not generate foreground objects only and often
show degraded 3D geometry. In this work, we propose to
represent the background as a spherical surface for mul-
tiple reasons inspired by computer graphics. Our method
naturally provides foreground-only 3D synthesis facilitat-
ing easier 3D content creation. Furthermore, it improves
the foreground geometry of 3D-aware GANs and the train-
ing stability on datasets with complex backgrounds. Project
page: https://minjung-s.github.io/ballgan/

*Part of the work was done during an internship at NAVER AI Lab.
†Corresponding author

1. Introduction

Traditional generative adversarial networks (GANs) syn-
thesize realistic images. Although they provide some con-
trol over the camera poses [36, 37, 15, 38], they lack explicit
3D understanding of the scenes. Recently, 3D-aware GANs
[27, 6, 35, 53] reformulate the generative procedure as mod-
eling the potential 3D scenes and rendering them to images.
The state-of-the-art 3D-aware GANs [5, 14, 47] rely on neu-
ral radiance fields or their variants to represent 3D scenes.
Note that they can generate 3D scenes even without 3D su-
pervision or multi-view supervision, rendering realistic im-
ages across different viewpoints. Although the quality of
images generated by 3D-aware GANs continues to improve,
their practical usage has been less explored.

Solely generating foreground objects is an important el-
ement for the practical use of generative models, espe-
cially for content creation. In this context, the diffusion-
based methods have grown popular for 3D object synthe-
sis despite their lack of realism [18, 32, 24, 39, 44]. Some

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2D GANs model their output images as a combination of
foreground and background, replacing the need for labori-
ous post-processing [1, 4, 54]. On the other hand, few 3D-
aware GANs inadequately separate the background and suf-
fer from broken 3D shapes [47] or training instability [14].
Objects generated by EG3D [5] are connected to unrealistic
walls as shown in Figure 2.

Learning to synthesize 3D foreground objects using a
single-view dataset is challenging because it lacks both
depth and separation supervision.

To solve this problem, we are inspired by a popular ap-
proach for video games or movies in the graphics com-
munity: representing salient objects with detailed 3D mod-
els and approximating peripheral scenery with simple sur-
faces (Figure 1a) to reduce the overall complexity. Despite
approximating the 3D space to 2D, the rendered image
achieves a realistic appearance. We expect the 3D-aware
generators with a similar approach to achieve both separa-
tion and physically reasonable foreground geometry.

Accordingly, we propose our novel 3D-aware GAN
framework, named BallGAN. It approximates the back-
ground as a 2D opaque surface of a sphere and employs
conventional 3D features as the foreground. It accompanies
a modified volume rendering equation for the opaque back-
ground. In addition, we introduce regularizers for clear fore-
ground geometry and separation.

We demonstrate the strength of our work as follows.
By design, BallGAN provides clear foreground-background
separation without extra supervision (Figure 1b). For con-
tent creation, it enables inserting generated 3D foregrounds
in arbitrary viewpoints without post-processing (Figure 1c).
Our background representation as a spherical surface is
generally applicable to any generator architectures or fore-
ground representations. BallGAN allows StyleNeRF [14] to
be trained on a higher resolution of CompCars[48]1 and
achieve a large FID boost, which is notable as the dataset
is challenging due to its complex backgrounds. More im-
portantly, BallGAN not only enhances multi-view consis-
tency, pose accuracy, and depth reconstruction compared to
EG3D, but it also faithfully captures fine details in 3D space
that are easy to represent in 2D images but challenging to
model in 3D.

2. Related work

Representations for 3D-aware GANs Generators in 3D-
aware GANs involve representing 3D scenes somehow and
rendering them to 2D images so that the generator is aware
of the 3D scene given only a collection of unstructured 2D
images. HoloGAN [27] represents a scene with a 3D grid
of voxels containing feature vectors, i.e., 4D tensor. How-
ever, as the 3D grid of voxels is limited by computational

1StyleNeRF diverges on CompCars while growing from 1282 to 2562.

(a) GIRAFFE-HD (b) StyleNeRF (c) EG3D (d) Ours

Figure 2: Comparison of the 3D geometry extracted by
marching cubes. (a) GIRAFFE-HD exhibits broken 3D
shapes, (b) StyleNeRF has jaggy surfaces, and (c) EG3D
has hair sticking to the wall. Unlike other models, (d) our
model produces high-quality foreground geometry that is
separated from the background.

complexity, its maximum resolution is 1282.
Recent 3D-aware GANs integrate neural radiance fields

(NeRFs) [26]. NeRF represents a 3D scene using a
coordinate-based function that produces RGB color and
density at that coordinates. This 3D scene can be projected
onto a 2D image from arbitrary camera poses via volume
rendering integral. GRAF [35] introduces a patch-based
discriminator, which dramatically reduces memory usage
in high-resolution 3D-aware image synthesis. Its succes-
sors improve image quality and 3D awareness by 1) en-
hancing the function for NeRF [6, 14], 2) volume render-
ing feature field followed by neural rendering with upsam-
pling blocks [14, 29, 45, 5, 47], or 3) designing voxel-
based [43, 12, 16, 28, 45]or hybrid [5] representations. Go-
ing further, our method introduces a separate NeRF for
modeling spherical background, which encloses the fore-
ground of EG3D [5] or StyleNeRF [14].

Scene decomposition Some methods decompose the 3D
scenes into multiple components. GIRAFFE and its variant
[29, 47] separate scenes into objects and the background,
enabling them to control objects independently with the
background fixed. However, their background representa-
tion lives in the same ray points with the foregrounds,
and the 3D geometry does not benefit from the separa-
tion. StyleNeRF [14] and EpiGRAF [40] separate the back-
ground outside a sphere following NeRF++ [50] where the
background region goes through the same volume render-
ing with multiple ray points at variable depth. On the con-
trary, we remove the depth ambiguity of the background by
modeling it with an opaque representation on a 2D spherical
surface enclosing the foreground.

Reducing dimensions has been a viable option for reduc-
ing space and time complexity. TensoRF [7] uses a sum of
vector-matrix outer products to represent a 3D feature field.
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Figure 3: Overview of the BallGAN generator and definition of ray points. We bound the 3D space with an opaque
background on a spherical surface. (i) EG3D does not separate the background. (ii) GIRAFFE-HD samples the background
points within the same range of the foreground. (iii) StyleNeRF samples multiple background points outside the boundary.
(iv) We sample a single background point on the sphere. It drastically reduces the depth ambiguity in the background.

EG3D [5] represents a 3D feature field with three 2D planes
to adopt StyleGAN architecture. K-Planes [11] represents a
d-dimensional scene using

(
b
2

)
planes. While these meth-

ods decompose 3D feature fields into low-dimensional fea-
ture representations to reduce the memory usage of NeRFs,
BallGAN squeezes the background space into a surface to
provide an easier task for 3D-aware GANs.

3. BallGAN
In this section, we provide an overview of our framework

and describe its key components and intuitions.
Overview We suppose that generating unbounded 3D
scenes is too complex to learn relying on a limited guide
for producing realistic 2D images. To resolve this challenge,
BallGAN bounds the scene in a ball and approximates the
background as an opaque spherical surface. We expect it
to alleviate the burden of producing correct shapes of the
backgrounds because the shape is fixed on a ball.

As shown in Figure 3, our generator consists of two
backbone networks for foreground and background (§3.1).
Representations from these networks are rendered by our
modified volume rendering equation to synthesize images
(§3.2) and trained with GAN objectives and auxiliary regu-
larizations (§3.3).

3.1. Bounding the 3D space

While traditional 2D GANs learn to produce arrays of
RGB pixels in fixed dimensions, 3D-aware GANs aim to
produce realistic images by synthesizing 3D scenes and ren-
dering them into 2D images. In contrast to training NeRFs
with multi-view observations of a single scene, the only ob-
jective for the 3D-aware GANs is producing realistic 2D im-
ages. In other words, the datasets and the objective functions

do not provide any clues for the 3D geometry. To reformu-
late 3D-aware generation as an easier constrained problem,
we approximate the backgrounds on an opaque spherical
surface.

Background model We model the background as a neural
feature field defined on a sphere with a fixed radius. Given
a ray r = o + td (t is the distance from the camera center
o), we find the 3D background point on the sphere with
radius Rbg by simply computing the ray’s intersection on
the sphere surface:

xbg = o+
−2[d · o] +

√
(2[d · o])2 − 4∥d∥2(∥o∥2 −R2

bg)

2∥d∥2
d

(1)
Since the background points are on a sphere surface of

fixed radius Rbg, we further reparameterize the 3D coordi-
nates x as 2D spherical coordinates s = (θ, ϕ) to further
reduce the complexity.

Then we represent the feature field Fbg using a
StyleGAN2-like architecture :

Fbg(s, zbg) = gn
w ◦ ...g1

w ◦ ζ(s), (2)

where w = f(zbg) is the style vector produced by a map-
ping network f given a noise vector zbg, and ζ is the posi-
tional encoding [42] of s, and gw denotes 1 × 1 convolu-
tions whose weights are modulated by w. Note that there is
no mapping for density from the background feature field
because our background is an opaque surface.

Our background representation drastically reduces the
number of points to be fed to the model, i.e., only one inter-
section of our sphere background and the ray r. Therefore,
we do not use hierarchical sampling for the background.
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Figure 3b visualizes the difference in space for each
method with ray points. GIRAFFE-HD does not sepa-
rate the background coordinate space from the foreground,
StyleNeRF keeps multiple point candidates for the un-
bounded continuous depth. On the other hand, our method
separates the foreground and background and bounds the
background to lie on the surface. This effectively constrains
the solution space and improves training stability and output
quality.
Design choice for background One may wonder why
we chose the sphere among many alternatives. First, the
background should enclose the scene entirely to cover all
viewing directions. Thus, an open plane is not available in
wide-angle scenes. Second, the background should be iden-
tical when observed from all directions to make it easier for
the generator to perform consistently well. Therefore, the
spherical surface is the only reasonable choice. Appendix
A provides empirical comparison.
Foreground model We adopt StyleNeRF [14] or
EG3D [5] for foreground modeling, where a random fore-
ground code zfg is fed to StyleGAN2 [22] network to pro-
duce implicit or hybrid representation, respectively. For-
mally:

(Φfg, σ) = Ffg(x, zfg). (3)

Note that our simple and effective background model-
ing is applicable to arbitrary 3D scene representations other
than StyleNeRF and EG3D.

3.2. Volume rendering

Volume rendering aggregates the neural feature field
along the rays through individual pixels to produce fea-
ture maps for a given camera pose. The conventional vol-
ume rendering computes the contribution of all points {xi}
sampled on a ray using the same equation T (xi)(1 −
exp(−σ(xi)δ(xi))), where T denotes transmittance, σ de-
notes density.

We modify the volume rendering equation to reflect our
background design, a single point with full density:

ϕ(r) =

Nfg∑
i=1

Ti(1− exp(−σiδi))Φ
fg
i + T bgΦbg, (4)

where ϕ(r) is an aggregated pixel feature along the ray r,
Ti = exp(

∑i−1
j=1 −σjδj)) denotes accumulated transmit-

tance at i-th point xi, Φi and σi are the feature and the
density at xi, and δi = ti+1 − ti denotes the distance be-
tween adjacent points. Since the background point is con-
sidered opaque and proceeded by all foreground points, we
define its contribution using only the transmittance T bg =

exp(
∑Nfg

j=1 −σjδj)). It is equivalent to placing an opaque
background behind the scene in computer graphics tech-
niques.

To synthesize high-resolution images, we employ a 2D-
CNN-based super-resolution module to upsample and refine
the feature maps to an RGB image as commonly done in
recent methods [29, 47, 14, 5].

3.3. Training objectives

We use the non-saturating GAN loss Ladv [13] and R1
regularization LR1 [25]. Additionally, we use two regular-
izations.

Background transmittance loss To ensure clear separa-
tion between foreground and background, we introduce new
regularization on T bg . The ray through the foreground re-
gion in the image should have a high foreground density
that makes T bg close to 0, and thus the background fea-
ture should not affect the aggregated pixel. In contrast, fore-
ground density should be small enough to make T bg close
to 1 when the ray corresponds to the background, so the ag-
gregated pixel feature should be the same as the background
feature. Therefore, we induce the transmittance of the back-
ground to be binarized:

Lbg =
∑

min(T bg, 1− T bg). (5)

Foreground density loss To encourage clear shape,
we use foreground regularization to prevent foreground
density from diffusing. Similar to Mip-NeRF 360[3], our
foreground loss penalizes the entropy of the aggregation
weights on the ray to locate foreground points in the area
where the actual geometry is located:

Lfg =
∑
r

∑
i,j

wr
iw

r
j |tri − trj |+

1

3

∑
i

wr
i
2δri

 , (6)

where i and j are the indices of the weight, r is the index
of the ray, δi = ti+1 − ti is the distance between adja-
cent points and w is the aggregation weights after sigmoid
function. This regularization is the integral of the weighted
distance between all pairs of points on each ray.

The total loss function is then

Ltotal = Ladv + λR1
LR1

+ λfgLfg + λbgLbg, (7)

where λR1
, λfg and λbg are hyperparameters.

4. Experiments
In this section, we evaluate the effectiveness of Ball-

GAN compared to the baselines regarding the faithfulness
of foreground-background separation in §4.1, effectiveness
on complex backgrounds in §4.2, the faithfulness of under-
lying 3D geometry in §4.3, and image quality in §4.4. Im-
plementation details are in Appendix D.
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Figure 4: Separate renderings of the foreground and
background. For easy comparison, we also show cropped
foreground images.

Datasets We validate our method on two front-facing
datasets, FFHQ [21] and AFHQv2-Cats [8, 20], and one
360◦ dataset, CompCars [48]. FFHQ has 70K images of real
human faces, and AFHQv2-Cats contains 5,558 images of
cat faces. We resize the resolutions of these datasets to 5122.
CompCars contains 136K images of cars with various res-
olutions and aspect ratios. In CompCars, we use a center
cropping for each image and resize it to 2562.

Competitors For our main comparisons we use EG3D [5],
StyleNeRF [14] and GIRAFFE-HD [47]. We include Epi-
GRAFF [40]1, MVCGAN [52], VolumeGAN [46] and
StyleSDF [30] for quantitative comparisons.

1By incorporating NeRF++’s inverse sphere parameterization, Epi-
GRAF can separate foreground and background, same as StyleNeRF. How-
ever, the reported performance in the paper is based on a setting without
the utilization of background representation. The official repository indi-
cates a performance drop of approximately 10% to 15% when background
representation is employed. Therefore, we employ the official version of
EpiGRAF that doesn’t use the background representation as a competitor.
Refer to the Appendix G for a detailed ablation study using EpiGRAF,
which adopts NeRF++ as the background representation.

(a) Real Image (b) Foreground
reconstruction

(c) Novel view synthesis
with different background

Figure 5: Compositing foreground in different view-
points on arbitrary backgrounds. (a) is a target im-
age, and (b) is a reconstructed foreground of ours using
PTI) [33]. (c) is a result of novel views on arbitrary back-
grounds. By changing the camera pose and FOV, we show
that our model can generate attributes of unobserved regions
well.

4.1. Foreground separation

To achieve reasonable 3D perception and applicability,
accurately separating foreground and background is an im-
portant evaluation factor. As the background on a spheri-
cal surface is one of the key components of our method,
we evaluate the separability and geometry of foregrounds
against GIRAFFE-HD and StyleNeRF. EG3D is excluded
because it does not provide separation.
Comparison Figure 4 shows rendered images of fore-
ground and background, respectively. GIRAFFE-HD uses
an alpha mask for detailed foreground separation, but it re-
lies on 2D feature maps instead of understanding the 3D
scene. Therefore, the foreground partly includes the back-
ground. StyleNeRF shows some ability to separate the fore-
ground on FFHQ, but fails to do so for all cases of AFHQ-
cats, which contain a significant amount of fine-grained
details. By contrast, our results demonstrate fine-grained
foreground separation, including intricate details like cat
whiskers. Please refer to Appendix E for quantitative eval-
uation (User study).
Content creation Figure 5 demonstrates the content cre-
ation capabilities achievable with BallGAN. Given a real
image, its inversion on BallGAN provides 3D foreground
that can be rendered in novel views and combined with dif-
ferent backgrounds. The alpha channel for the background
is computed from the background transmittance in the vol-
ume rendering step, i.e., the last term in (4). Even the facial
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Figure 6: CLIP guided editing results. Given text prompt
is blue.

regions that are not seen in the original images are realistic
in the rendered images, such as parts of hair or chin. Note
that Figure 5 has a wider field-of-view than the standard to
produce more diverse results.

Figure 6 demonstrates the potential of BallGAN to 3D
content creation. We can synthesize novel views of the
edited foregrounds by inverting images to the latent space
and using text-guided latent editing [31]. Note that the 3D
shapes are properly changed by the editing, e.g., hair. There-
fore, BallGAN is useful for 3D content creation thanks to its
foreground-background separation.

4.2. Effectiveness on complex backgrounds

Here, we demonstrate the effectiveness of our idea on
complex backgrounds and wide camera angles, i.e. Com-
pCars dataset. To use CompCars dataset where EG3D is
not applicable due to the absence of a camera pose estima-
tor, we apply a sphere background to StyleNeRF, namely
BallGAN-S.

Training stability Figure 7 compares image quality of
BallGAN-S and StyleNeRF using Fréchet Inception Dis-
tance (FID) [17] over iterations. While StyleNeRF di-
verges as the image resolution grows from 1282 to 25622,
BallGAN-S smoothly converges below the reported FID of
StyleNeRF. It implies that our method is generally benefi-
cial to different foreground backbones and greatly improves
training stability.

Comparisons In Figure 8, we present qualitative results of
BallGAN-S, which showcase the robustness of our design
on CompCars. Figure 8a shows that both GIRAFFE-HD
and StyleNeRF exhibit a deficiency in fidelity in their mod-
eled 3D compared to the quality of the generated images.
On the other hand, ours maintains a high level of fidelity for
both images and 3D models. In Figure 8b, we demonstrate

2This phenomenon is also reported in the official repository.
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Figure 7: FID over iterations on CompCars 2562. The
FID score of StyleNeRF increases at 2562 and becomes
constant around 12K steps. In contrast, BallGAN-S exhibits
stable training and achieves notably low FID score.

Total Foreground Background Total Foreground Background

OursStyleNeRFGIRAFFE-HD
(a) Qualitative comparison of generated images and their corre-
sponding 3D geometry.

Total Foreground Background Total Foreground Background

(b) Separate renderings with BallGAN-S

Figure 8: Results of BallGAN-S on CompCars 2562.

that our simple yet effective idea ensures successful separa-
tion of foreground and background, even for datasets with
complex backgrounds and wide camera angles. Quantitative
comparisons will be addressed in §4.4

4.3. Faithfulness of the underlying 3D geometry

It is essential for 3D-aware GANs to model the correct
3D geometry of the scenes so that their rendered images on
arbitrary camera poses are convincing views of the real 3D
scenes. Quantitative comparisons are followed by qualita-
tive comparisons.

Quantitative results We quantitatively compare the un-
derlying 3D model following the protocols in EG3D [5].
In Table 1, ID measures multi-view facial identity consis-
tency3, Depth indicates MSE of the expected depth maps
from density against estimated depth-maps4 in frontal view,
and Pose implies controllability by MSE between the esti-
mated pose of synthesized image and the input (target) pose.
Appendix F describes further details of the protocol. Ball-
GAN outperforms the baselines in all metrics evaluating 3D
geometry.

3The mean Arcface [9] cosine similarity
4Estimations for Depth and Pose are from [10]
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FFHQ 5122

ID ↑ Pose ↓ Depth ↓
MVCGAN 0.58 0.014 0.123
VolumeGAN 0.63 0.025 0.020
StyleSDF 0.50 0.010 0.016
EpiGRAF 0.71 0.013 0.143
EG3D 0.71 0.007 0.011

GIRAFFE-HD 0.69 0.064 0.058
StyleNeRF 0.64 0.018 0.013
Ours 0.75 0.005 0.008

Table 1: Quantitative evaluation on 3D geometry. We report
identity consistency (ID), pose accuracy, and depth errors
for FFHQ. Our method outperforms baselines in all metrics
of 3D-awareness.

GIRAFFE-HD StyleNeRF EG3D Ours

Method GIRAFFE-HD StyleNeRF EG3D Ours

# of rec. (104) 17± 2.3 53± 8.4 78± 5.5 79± 5.0

Table 2: COLMAP point cloud reconstruction is per-
formed using 128 views in [−π/2, π/2] from the generated
scene for each model. A higher number of reconstructed
points indicates better multi-view consistency.

We further push the evaluation: the number of recon-
structed points from 128 views by COLMAP [34] in five
inverted samples of FFHQ training set. Table 2 provides
the numbers and example point clouds of the methods.
Since COLMAP reconstructs the points with high photo-
metric consistency, the larger number of points indicates
higher multi-view consistency. BallGAN demonstrates su-
perior performance in terms of multi-view consistency, es-
pecially in the face and hair region where the number of
reconstructed points is substantially higher than other meth-
ods. While EG3D also achieves a similar number of recon-
structed points as BallGAN, a large portion of these points
lies on the background walls rather than the face. As the
comparison results show, our sphere background induces
the synthesis of accurate foreground geometry, thereby im-
proving multi-view consistency.

Qualitative comparison: generated scenes Figure 9 com-
pares how each method renders generated scenes on dif-
ferent perspectives, expecting the images to have multi-
view consistency and realism. The leftmost column pro-
vides meshes of the scene for reference. We notice severe
distortions in GIRAFFE-HD and StyleNeRF when the cam-
era rotates more than ±60◦ implying their spurious 3D ge-

EG
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s
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eN

eR
F

G
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A
FF

E-
H

D

-90° 0° 90°

Figure 9: Images rendered on various camera poses.
GIRAFFE-HD and StyleNeRF show distortions, especially
on extreme camera poses (red boxes). The rendered images
of EG3D are distorted by concave walls on extreme camera
poses (blue boxes). In contrast, BallGAN synthesizes real-
istic and multi-view consistent images.

ometry (red box in Figure 9). This problem is evident in
the marching cube results of GIRAFFE-HD, which sepa-
rately models foreground and background but without their
separate ranges. StyleNeRF produces rough geometry and
camouflages detailed shapes with color. Discussion on the
missing backgrounds is deferred to Appendix G.

Similarly, the rendered images of EG3D show distortions
from ±60◦ angles, e.g., the ears are truncated first and then
the cheeks at ±90◦ angles (blue box in Figure 9). The mesh
explains that the faces are engraved to a concave wall ex-
panding from the ridge of the faces. Furthermore, although
the meshes show greater detail compared to StyleNeRF,
there are areas of disagreement between the underlying ge-
ometry and its rendered images, e.g., the boundary between
hair and forehead is fuzzy in the geometry, whereas it be-
comes clear after color rendering.

On the other hand, BallGAN synthesizes realistic images
that maintain consistency across multiple views, even when
rendered in extreme side views. It implies that the separate
background on a sphere removes the depth ambiguity and
does not interfere with the foreground object. Notably, we
observe a significant enhancement in fine details, such as
hair and whiskers. For a more detailed multi-view compar-
ison with all baseline models, please refer to Appendix I.
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Figure 10: Renderings and marching cubes of the same samples. Given real image omitted as all models faithfully recon-
struct it. Although all methods render the target image close by inversion, the underlying 3D geometries of previous methods
are all different. We adjusted the threshold for each mesh at the line where the pupils do not break.

Qualitative comparison: inversion of real images Fig-
ure 10 compares renderings and meshes of the same scenes
through pivotal tuning inversion (PTI) [33] of real images
from the training set. Although the image reconstructions
of all methods are similar in target pose, the differences
become more visible in different viewpoints and in their
underlying 3D geometries. GIRAFFE-HD apparently pro-
duces geometry that least fits the rendered image and thus
renders inconsistent images in different views. StyleNeRF
captures only rough outlines and placements in the geom-
etry so that color makes the rendered scene realistic. Espe-
cially, the mesh does not reveal the beard and the boundary
between hair and forehead. While EG3D can recover real-
istic geometry that mostly fits the given image, it has lim-
itations such as faces being stuck to a wall. Moreover, it
fails to accurately represent details such as eyebrows or ac-
cessories, which are evident in the input image. In contrast,
BallGAN excels at accurately modeling the foreground in
3D space, and even faithfully represents the details shown
in the images, such as wavy hair, earrings, and eyebrows.

4.4. Image quality

We evaluate generated image quality on the FFHQ 5122,
AFHQv2-Cats 5122, CompCars 2562 datasets. Images for
FFHQ 5122, AFHQv2-Cats 5122 are generated by Ball-
GAN and images for CompCars 2562 are generated by
BallGAN-S.

Sep.
FG/BG

FFHQ
5122

AFHQv2-Cats
5122

CompCars
2562

✕

MVCGAN 13.4† 26.57‡ -
VolumeGAN 15.74 44.55 12.9†

StyleSDF 19.56 19.44 -
EpiGRAF 9.92† 6.46 -
EG3D 4.7† 2.77† N/A

✓

GIRAFFE-HD 6.47 7.33 7.1‡

StyleNeRF 10.51‡ 21.56 8† (284±96)
Ours 5.67 4.72 4.26

Table 3: Quantatitive comparison using FID [17] on three
datasets. † denotes the reported FID, and ‡ denotes the FID
calculated by the official checkpoint. In other cases, we
train each baseline using their official codes. In the case of
StyleNeRF on CompCars, we report FID of diverged mod-
els over 3 experiments in the parenthesis. N/A denotes the
model can not be trained. Bold and underline indicate the
best and second-best performance. Our method shows the
best score in CompCars and comparable scores with EG3D.

Quantitative results Table 3 compares image quality
in FID. For FFHQ, AFHQv2-Cats, BallGAN outperforms
all the baselines except EG3D. Although EG3D achieves
the best FID, it does not support foreground-background
separation and suffers in generating 3D geometry (§4.3).
Furthermore, EG3D requires camera poses of real images,
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Figure 11: Set of images generated by BallGAN. We sam-
ple images of 5122 resolution from BallGAN on FFHQ
5122 and AFHQv2-Cats 5122, as well as 2562 resolution
images from BallGAN-S on CompCars 2562. Each image
is rendered with randomly sampled camera pose.

which are not always available, e.g., CompCars. On the
other hand, we achieve the state-of-the-art FID on Comp-
Cars with BallGAN-S and the second-best FID on FFHQ
and AFHQv2-Cats closely following EG3D. We note that
CompCars has more complex backgrounds and 360◦ cam-
era poses.

Qualitative results Figure 11 provides example images
generated by BallGAN and BallGAN-S. Our models faith-
fully generate diverse samples in multiple views. More ex-
amples can be found in Appendix J.

4.5. Ablation of the losses

We conduct ablation studies to evaluate the effect of the
regularizers. Figure 12 shows the effects of our foreground
and background regularization. Without Lfg, BallGAN on
FFHQ occasionally generates small floating objects behind
faces. Lfg mitigates scene diffusion, thus inhibiting the for-
mation of subtle shape artifacts such as floating objects be-
hind the object. Additionally, using the background regular-
ization Lbg, we get clearer foreground-background separa-
tion. Figure 12b shows that removing Lbg allows the back-
ground to participate in synthesizing the foreground. For the
result without Lbg, the beard is not entirely black, indicat-
ing partial influence from the background (red box in Fig-

0 °

W
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ou
t  

W
ith

  

45 ° 90 °

(a) Visual comparison on the effect of foreground density reg-
ularization. Removing Lfg introduces occasional floating objects
behind the neck (red box).

Total FG

W
ith

ou
t  

W
ith

  

Background occluded 
by the foreground

(b) Visual comparison on the effect of background transmit-
tance regularization. The use of Lfg results in a completely
opaque foreground, rendering the background occluded by the
foreground as entirely black.

Figure 12: Ablations for two regularizations.

ure 12b). In other words, the foreground is not fully opaque.
This is because the background transmittance loss Lbg en-
courages the foreground density to either completely block
or leave the space empty before the rays hit the background.

5. Conclusion
We propose a 3D-aware GAN framework named Ball-

GAN, which represents a scene as a 3D volume within a
spherical surface, enabling the background representation
to lie on a 2D coordinate system. This approach resolves
the challenges of training a generator to learn a 3D scene
from only 2D images. Our proposed framework success-
fully separates the foreground in a 3D-aware manner, which
enables useful applications such as rendering foregrounds
from arbitrary viewpoints on top of given backgrounds.
BallGAN also achieves superior performance in 3D aware-
ness, including multi-view consistency, pose accuracy, and
depth reconstruction. Additionally, our approach shows sig-
nificant improvement in capturing fine image details in 3D
space, compared to existing methods.
Acknowledgements This work was supported by the National
Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. 2022R1F1A1076241). The part of ex-
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