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Abstract

Transformer-based methods have swept the benchmarks
on 2D and 3D detection on images. Because tokenization
before the attention mechanism drops the spatial informa-
tion, positional encoding becomes critical for those meth-
ods. Recent works found that encodings based on samples
of the 3D viewing rays can significantly improve the qual-
ity of multi-camera 3D object detection. We hypothesize
that 3D point locations can provide more information than
rays. Therefore, we introduce 3D point positional encod-
ing, 3DPPE, to the 3D detection Transformer decoder. Al-
though 3D measurements are not available at the inference
time of monocular 3D object detection, 3DPPE uses pre-
dicted depth to approximate the real point positions. Our
hybrid-depth module combines direct and categorical depth
to estimate the refined depth of each pixel. Despite the ap-
proximation, 3DPPE achieves 46.0 mAP and 51.4 NDS on
the competitive nuScenes dataset, significantly outperform-
ing encodings based on ray samples. The code is available
at https://github.com/drilistbox/3DPPE.

1. Introduction
3D object detection is a vital component of autonomous

driving perception systems. Particularly, image-based 3D
object detection has received increasing attention from both
academia and industry due to its lower cost compared
to LiDAR-dependent solutions. Despite the fact that au-
tonomous driving vehicles are equipped with multiple cam-
eras, early attempts at image-based 3D object detection, as
seen in previous works [17, 19], focus on monocular detec-
tion and combine the detection results from multiple cam-
eras. This kind of solution is unable to make use of cor-
respondence in the overlapping area of adjacent cameras,
and the paradigm to individually detect objects in each view

*These authors contributed equally to this work.
†Corresponding authors.

(a). 3D Camera-Ray PE

(b). 3D Point PE

Figure 1. An illustration of (a) 3D camera-ray positional encoding
(PE) and (b) our proposed 3D point PE. The 3D camera-ray PE
represents camera-ray information by determining the positions of
a set number of discrete points along the direction from the camera
optical center to the image plane pixel. This encoding approach
is coarse-grained. On the other hand, the 3D point PE provides
more precise position information by encoding the location of a
single point with an estimated depth. In the figure, four pixels are
randomly selected to demonstrate the methods.

involves a large computational overhead. Alternatively, a
group of recent studies [8, 7, 27, 29] follow the paradigm of
Lift-Splat-Shoot (LSS) [6] to first transform multi-camera
images to unified bird-eye-view (BEV) representation in
parallel and then perform object detection on the BEV rep-
resentation. However, such ill-posed view transformation
inevitably causes error accumulation, which further affects
the accuracy of 3D object detection.

At the same time, the transformer-based (DETR-like) [1]
scheme has also been explored in this field. Typically, the
methods following this scheme [3, 25, 26, 28, 32] utilizes
a set of learnable 3D object query to iteratively interact
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with multi-view 2D features, and further perform 3D ob-
ject detection without explicit view transformation. Within
the transformer-based methods, there are two general ways
to enable the interaction of 3D queries and 2D image fea-
tures, i.e., projection-based and position-encoding-based.
The former one projects 3D queries into the 2D image
plane [28, 32] for feature sampling, which requires extra
deployment efforts. Moreover, such a sampling procedure
only extracts local features, failing to make use of global
coherence for improving 3D object detection. The other
way, as first introduced in PETR [26], integrates the 3D in-
formation into 2D image features by positional encoding.
With 3D positional encoding (PE), 2D image features can
be directly exploited by 3D queries, without extra projec-
tion efforts.

Enhancement of the 3D PE is anticipated to result in
more precise 3D object detection. Despite effectiveness,
the mechanism and design options of 3D PE in previous
methods have not been fully explored. The typical 3D PE
is the 3D camera-ray PE, as shown in Figure 1 (a). It en-
codes the ray direction starting from the camera’s optical
center to the pixel on the image plane. However, the ray
direction only provides coarse localization information for
the 2D image feature without the depth prior. Moreover, as
the object query is embedded from the randomly initialized
3D reference point, the inconsistent embedding space for
the reference point and camera-ray PE further hampers the
effectiveness of the attention mechanism in the transformer
decoder. Thus, reformulating a new 3D positional encoding
with depth prior to localize the 2D feature and unify repre-
sentation for both image feature and object query is still a
legacy issue.

In this work, we explore an alternative 3D PE paradigm
to ameliorate the aforementioned problem. Formally, we in-
troduce 3D point positional encoding (3DPPE) to improve
transformer-based multi-camera 3D object detection. As il-
lustrated in Figure 1 (b), 3DPPE improves the camera-ray
3D PE by involving depth prior. Moreover, we find that 3D
point PE not merely avoids the defects above, but also can
provide better representative similarity (shown in Figure 6).
Specifically, in 3DPPE, we first devise a hybrid-depth mod-
ule that combines direct and categorical ones to estimate the
refined depth of each pixel. Then, we transform the pixels
to 3D points via the camera parameters and predicted depth.
The resulting 3D points are sequentially sent to a position
encoder for 3D point PE. Particularly, we exploit a shared
position encoder for the transformed 3D points and refer-
ence points to develop a unified embedding space.

We conduct extensive experiments to demonstrate
the advantages of our proposed 3DPPE on challenging
NuScene benchmarks. With the proposed 3D point po-
sitional encoding, our proposed 3DPPE can improve the
camera-ray-based encoding by 1.9% mAP and 1.0% NDS.

2. Related Work
Transformer-based object detection. Object detection
has been an active research topic in computer vision for
several decades. Traditional object detection approaches,
such as sliding window-based methods (one-stage) and
region-based (two-stage) methods, have achieved signifi-
cant progress in recent years. However, these methods
generally rely on hand-designed components, such as non-
maximum-suppression (NMS) or anchor generation. DETR
[1] is a pioneering work that introduces the transformer-
based framework to solve object detection as a set predic-
tion problem, eliminating the need for heuristic target as-
signment and extra post-processing like non-maximum sup-
pression (NMS). Deformable DETR [33] improves DETR
by introducing deformable attention and multi-level image
features to ameliorate the slow convergence problem and to
improve the poor detection performance for small objects.
Two-stage schemes [33, 24, 18] use the top-k scoring region
proposals to initialize the object queries for convergence ac-
celeration. [22, 13, 30] use anchor points or anchor boxes
to generate object queries, which provide explicit positional
priors. SMCA [5] and Conditional DETR [16] enhance
the cross-attention mechanisms by leveraging the spatial in-
formation in the decoder embedding. DN-DETR [11] and
its variant DINO [31] incorporate denoising techniques to
ameliorate the instability problem of bipartite graph match-
ing.
Multi-camera 3D object detection. Previous works on
multi-camera object detection have typically used monoc-
ular detection to process each view separately, followed
by post-processing to merge the results into a unified co-
ordinate system. However, this approach is limited in its
ability to utilize information from multiple views simulta-
neously and can lead to missed detections, particularly for
truncated objects. A promising paradigm has emerged re-
cently that converts multi-camera features from perspective
view to bird’s-eye view (BEV) and performs object detec-
tion under BEV. Two representative approaches within this
paradigm are LSS-based and transformer-based.

The LSS-based methods, such BEVDet [8] and
BEVDet4D [7], are effective approaches for converting
multi-camera features into a dense bird’s-eye view (BEV)
representation using LSS [6]. Specifically, these methods
predict the categorical depth distribution of each pixel in the
image feature map to generate the dense BEV representa-
tion, which can provide comprehensive information for 3D
object detection. Following methods, such as BEVDepth
[27] and STS [29] explicitly introduce a sub-network for
depth estimation to refine the depth prediction.

Among the transformer-based methods, BEVFormer
[32] constructs a dense BEV representation using a set of
grid-shaped BEV queries to aggregate spatial and tempo-
ral features. DETR3D [28] samples 2D image features by
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Figure 2. Illustration of different positional encoding in the surround-view system. (a) presents the simulated scenario with 6 cameras, only
one traffic sign appears in front view (the distance is set as 10m), rather than other cameras. Comparing all the PE from (b) to (e), only the
oracle 3D point PE can encode the precise 3D point location of the object. Best viewed in color.

projecting 3D reference points generated by object queries
onto all views. The PETR series [26, 25] proposes the 3D
position-encoding (PE) to transform the image features into
3D position-aware features, which can be directly interacted
with object queries in 3D space. Following PETR series,
Focal-PETR [21] utilizes instance-guided supervision and
spatial alignment module to adaptively focus object queries
on discriminative foreground regions; MV2D [23] gener-
ates a dynamic object query from 2D detector result, and
one object query aggregates the feature from its correspond-
ing 2D bounding box region.

In this paper, we follow PETR to perform 3D object
detection with the transformer-based paradigm. However,
in contrast to the previous approaches [21, 23] that lever-
age 2D prior to improving 3D object detection, we devote
our main efforts on investigate the 3D positional encoding,
which has been rarely studied in the literature.

3. Preliminary of Positional Encoding

3.1. Ray-based Positional Encoding

The PETR series methods, i.e., PETR [26] and
PETRv2 [25], introduce a technique for multi-camera 3D
object detection by encoding 3D coordinate information
into multi-camera image features. This approach allows for
the production of 3D position-aware features, which can im-
prove the accuracy of object detection in 3D space. Specif-
ically, PETR and PETRv2 obtain the 3D coordinate infor-
mation from a set of points along the camera ray, namely
camera-ray PE. Given the depth range RD = [Dmin, Dmax],
camera-ray PE first divides the depth into ND bins via
linear-increasing discretization (LID) [26]. The center of
each bin is exploited to represent the corresponding bin,
and thus the 3D position information of a pixel is repre-
sented as ND points along the camera-ray direction. After
that, by utilizing the extrinsic and intrinsic parameters of
the camera, points corresponding to different camera views
are transformed into a unified coordinate system. For each
pixel, the camera-ray points are concatenated together and
fed into an embedding layer for positional encoding. We
perform further analysis on the ray-based positional encod-
ing in PETR and PETRv2 in the supplementary material.

3.2. 3D Point Positional Encoding

For optimal accuracy in positional encoding, it is impor-
tant to have access to the true 3D position of a point on
a 2D plane, as demonstrated in Figure 2-(e). In contrast,
camera-ray PE encodes the direction from the camera’s op-
tical center to the pixel on the image plane, while LiDAR-
ray PE depicts the orientation from the LiDAR center to the
3D point. While both ray PEs encode direction, they cannot
accurately determine the 3D location without precise depth
information.

To confirm that accurate 3D point positioning can en-
hance detection performance, we project 2D features into
3D space using the ground truth depth of a 2D image.
Specifically, we project 3D point clouds onto surround-
view images to generate a sparse depth map, and then use
depth completion [10] to obtain the ground truth (GT) dense
depth. We compare the performance of different positional
encoding settings in Figure 2 and list the results in Table 1.
All experiments are compared following the same training
scheme. Compared to 3D camera-ray PE, 2D PE scores
worst due to its complete inability to multi-camera distinc-
tion. 3D LiDAR-ray PE can achieve on-par or inferior per-
formance depending on the fixed depth d. As for the 3D
point PE with ground truth depth named Oracle 3D Point, a
significant improvement is achieved with 6.7% NDS, 10.9%
mAP, and 18.7% mATE respectively, which verify that the
3D PE encoded from precise 3D point location is the key
to improve multi-camera 3D object detection.

Table 1. Performance comparison of different PE settings. Com-
paring all PEs listed in row 1, only the oracle 3D pint PE can
encode precise 3D point location of objects.

PE NDS↑ mAP↑ mATE↓

Camera-ray 0.337 0.274 0.852
2D 0.193 0.055 1.209
LiDAR-ray 0.338 0.275 0.849
Oracle 3D Point 0.404 0.383 0.665

As a camera-only system cannot gather ground truth
depth information, we introduce a lightweight depth esti-
mation module to substitute for the inaccessible GT depth.
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Figure 3. The overall architecture of our proposed pipeline for method. Best viewed in color and zoom. The plot on the up shows intuitive
illustration of surround-view images, sparse point projection, local zoom of front view and detection result. In local zoom of front view,
the two dense point blocks located in left bottom corner indicate the two car object in the front view. The plot on the bottom shows the
detail component of our method.

A more precise depth estimation results in improved 3D ob-
ject detection performance. This study illustrates the poten-
tial of encoding 2D image features in 3D space with the help
of estimated depth information.

4. Method
In this section, we present how to utilize the proposed

unified depth-guided 3D point PE to transform the 2D fea-
tures from multi-view images into the 3D space to perform
multi-camera 3D object detection. We start by giving the
architecture overview (Section 4.1), then depict 3D point
generator (Section 4.2) and 3D point encoder (Section 4.3),
ultimately elaborate 3D point-aware feature (Section 4.4)
and decoder modification (Section 4.5) respectively.

4.1. Framework Overview

In this work, we present 3D point positional encoding
(3DPPE) for transformer-based multi-camera 3D object de-
tection. As shown in Figure 3, We first send N surround-
view images I = {Ii ∈ R3×HIi

×WIi , i = 1, 2, . . . , N}
to backone (e.g. ResNet [9], Swintransformer [14]) for im-
age features F = {Fi ∈ RC×HFi

×WFi , i = 1, 2, . . . , N},
where HIi and WIi is the i-th image shape, HFi

and WFi

is the i-th feature shape, C is the channel number of i-th
feature. Then the image feature F undergo the depth head
in 3D point generator for dense depth maps D = {Di ∈
R1×HFi

×WFi , i = 1, 2, . . . , N}, and D is further trans-
ferred to the 3D points P 3D = {P 3D

i ∈ R3×HFi
×WFi , i =
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Figure 4. Framework for depth head. The depth estimation Dpred

is the fusion result of regressed depth DR and probabilistic depth
DP , α is the fusion weight, P is the probabilistic over depth bins.

1, 2, . . . , N} via camera parameter. The shared 3D point
PE generator imports the 3D points P 3D above to produce
the 3D point PE following PE = {PEi ∈ RC×HFi

×WFi , i =
1, 2, . . . , N} for 2D image feature. The 3D point PE gen-
erator also takes in the learnable 3D anchor points for 3D
object queries Q = {Qi ∈ RC×1, i = 1, 2, . . . ,K}, where
PE and Q are unified 3D presentation with fine-grained
point-aware position in 3D space. Finally, the 3D queries
can directly interact with the image features supplemented
by the 3D point PE in decoder to perform 3D object detec-
tion.

4.2. 3D Point Generator

We introduce a depth estimation module to provide
dense depth map, and then transfer it to 3D point via camera
back-projection.
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Figure 5. Comparison between (a) camera-ray PE, (b) feature guided camera-ray PE, and (c) our proposed 3D point PE.

Hybrid-Depth Module. Inspired by BEVdepth [27] and
PGD [20], we design a hybrid-depth module that fuses the
directly regressed depth DR ∈ RHF×WF and categorical
depth DP ∈ RHF×WF with a learnable weight α, where
DR refers to addressing the depth estimation by absolute
value regression, while DP divides the depth range into mul-
tiple segments and predicts the probability of each segment.
The architecture of our proposed hybrid-depth module is il-
lustrated in Figure 4. For a given depth range [dmin, dmax]
with identical interval d∆, we could get ND = dmax−dmin

d∆

discrete depth bins: D = {d1, d2, . . . , dND
}. Instead of

directly regressing the relative depth, the probabilistic P
over these depth bins could be generated for each pixel,
P ∈ RND×HF×WF . Thus, the pixel depth can be formu-
lated as:

DP =

ND∑
i=1

Pu,v,i × di. (1)

The ultimate depth estimation Dpred comes from the fu-
sion result of DR and DP above:

Dpred = αDR + (1− α)DP, (2)

where α is the learnable fusion weight for proportion bal-
ance. To achieve reliable depth prediction, predicted depth
are supervised by projected depth Dgt from point cloud,
and smooth L1 loss [19, 20] and distribution focal loss [12]
are utilized:

Ldepth =λsmLsmooth−L1(D
pred, Dgt)

+ λdflLdfl(D
pred, Dgt,D),

(3)

where λsm and λdfl is the hyper-parameters. The Ldfl aims
to enlarge the probabilities of nearest two bins di and di+1

around the ground truth Dgt (di < Dgt < di+1) for effi-
cient learning:

Ldfl(D
pred, Dgt,D) =− di+1 −Dgt

d∆
log(Pi)

− Dgt − di
d∆

log(Pi+1).

(4)

Coordinate Transformation from 2D to 3D. We transfer
the 2D pixels in surround view to 3D point P 3D in the Li-
DAR coordinate system via the camera parameters. This
process can be formulated as follow:P 3D

i [0, u, v]
P 3D
i [1, u, v]

P 3D
i [2, u, v]

 = RiK
−1
i D

pred
i [u, v]

uv
1

+ Ti. (5)

where Dpred
i [u, v]* is the predicted depth of 2D pixel (u, v),

P 3D
i [0, u, v], P 3D

i [1, u, v] and P 3D
i [2, u, v] are the x-axis, y-

axis and z-axis coordinate of the correspond 3D point for
2D pixel (u, v) in i-th camera. Ki ∈ R3×3 is i-th camera
intrinsic matrix, Ri ∈ R3×3 and Ti ∈ R3×1 are the rotation
and translation matrix from the camera coordinate system
of i-th view to LiDAR coordinate system.

Setting the region of 3D perception space [xmax, xmin,
ymax, ymin, zmax, zmin], the normalization is further conducted
on each 3D point: P 3D

i [0, u, v] = (P 3D
i [0, u, v]− xmin)/(xmax − xmin)

P 3D
i [1, u, v] = (P 3D

i [1, u, v]− ymin)/(ymax − ymin)
P 3D
i [2, u, v] = (P 3D

i [2, u, v]− zmin)/(zmax − zmin).
(6)

4.3. 3D point Encoder

The 3D point P 3D is embedded in 3D point PE PE via
the 3D point encoder:

PEi[:, u, v] = MLP(Cat(Sine(P 3D
i [0, u, v]),

Sine(P 3D
i [1, u, v]),

Sine(P 3D
i [2, u, v]))),

(7)

where the sine/cosine positional encoding function
Sine [1] maps a 1-dimensional coordinate value to
a C

2 -dimensional vector, the sequential Cat operator
concatenate Sine(P 3D

i [0, u, v]), Sine(P 3D
i [1, u, v]) and

Sine(P 3D
i [2, u, v]) to generate a 3C

2 -dimensional vector,
then the MLP consisted of two linear layers and a RELU
activation reduces the vector dimension from 3C

2 to C.

*The [. . . ] in this manuscript denotes the tensor slice in pytorch.
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Table 2. Performance comparison of 3D object detection on nuScenes val set. † indicates using the pre-trained FCOS3D backbone for
model initialization. “S” denotes model with a single time stamp input. ∗ is trained with CBGS.

Methods Backbone Resolution mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVDet [8] Res-50 704× 256 0.298 0.379 0.725 0.279 0.559 0.860 0.245
BEVDepth-S [27] Res-50 704× 256 0.315 0.367 0.702 0.271 0.621 1.042 0.315
PETR∗ [26] Res-50 1408× 512 0.339 0.403 0.748 0.273 0.539 0.907 0.203

3DPPE∗ Res-50 1408× 512 0.370 0.433 0.689 0.279 0.524 0.828 0.202

FCOS3D[19] Res-101 1600× 900 0.295 0.372 0.806 0.268 0.511 1.315 0.170
PGD[20] Res-101 1600× 900 0.335 0.409 0.732 0.263 0.423 1.285 0.172
DETR3D∗†[28] Res-101 1600× 900 0.349 0.434 0.716 0.268 0.379 0.842 0.200
BEVFormer-S∗†[32] Res-101 1600× 900 0.375 0.448 0.725 0.272 0.391 0.802 0.200
Ego3RT∗†[15] Res-101 1600× 900 0.375 0.450 0.657 0.268 0.391 0.850 0.206
SpatialDETR∗†[4] Res-101 1600× 900 0.351 0.425 0.772 0.274 0.395 0.847 0.217
PETR∗†[26] Res-101 1408× 512 0.366 0.441 0.717 0.267 0.412 0.834 0.190

3DPPE∗† Res-101 1408× 512 0.391 0.458 0.674 0.282 0.395 0.830 0.191

Table 3. Performance comparison of 3D object detection performance on nuScenes test set. “S” denotes model with a single time
stamp input.

Methods Backbone mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

DD3D[17] VoV-99 0.418 0.477 0.572 0.249 0.368 1.014 0.124
DETR3D[28] VoV-99 0.412 0.479 0.641 0.255 0.394 0.845 0.133
Ego3RT[15] VoV-99 0.425 0.473 0.549 0.264 0.433 1.014 0.145
BEVDet[8] VoV-99 0.424 0.488 0.524 0.242 0.373 0.950 0.148
BEVFormer-S[32] VoV-99 0.435 0.495 0.589 0.254 0.402 0.842 0.131
SpatialDETR[4] VoV-99 0.424 0.486 0.613 0.253 0.402 0.857 0.131
PETR[26] VoV-99 0.441 0.504 0.593 0.249 0.383 0.808 0.132

3DPPE VoV-99 0.460 0.514 0.569 0.255 0.394 0.796 0.138

4.4. 3D Point-Aware Features

Given the resulting 3D point PE for image features
above, we add it element-wisely with the image feature F
for generating the 3D point-aware features F 3D. For a bet-
ter understanding of our proposed 3D point-aware feature,
Figure 5 illustrates the difference among ours 3D point-
aware feature and 3D position-aware feature in PETR se-
ries: (1) the channel dimensionality of point cloud in petr
series is ND × 3, where ND denotes the depth bin num-
ber along camera-ray, and the positional encoding is gen-
erated in a ray-aware paradigm. Whereas our method per-
forms the positional encoding in point-aware manner with
the channel dimensionality of point cloud reduce to 1 × 3
(e.g., the definite depth leading to better locating capability
in 3D space). (2) Our scheme is compact for explicit mo-
tivation, as the function-ambiguity multi-layer modulation
for feature-guided 3D PE in PETRv2 is not used.

4.5. Modification in Decoder

As depicted in Figure 3, the learnable 3D anchor points
go through the shared embedding generator used for 2D im-
age features above to produce the 3D point PE EQ for ran-
dom initialized object queries Q, thus the EF and EQ are
essentially encoded in the sympatric representation, which
further enhances the object queries with precise positioning

for indexing the useful 3D point-aware feature and perform-
ing the accurate 3D object.

5. Experiment
In this section, we first present the main results of our

3DPPE and compare with other state-of-the-art methods on
nuScenes dataset in Section 5.1. Then, in Section 5.2, we
conduct extensive ablative experiments to investigate the ef-
fectiveness of each component in our proposed method. Af-
ter that, in Section 5.3, we show the qualitative comparison
between our method and the previous ray-based positional
encoding. Finally, we discuss further potential improve-
ments of 3DPPE in Section 5.4. We detail the benchmark
and metrics, as well as experimental details, in the supple-
mentary material.

5.1. Comparison with State-of-the-art Methods

We compare the proposed method with other state-of-
the-art multi-camera 3D object detectors on the validation
and test sets of nuScenes dataset. All of the reported meth-
ods follow the single frame paradigm, and the P4 feature
[26] is leveraged by default. Note that test time augmenta-
tion is not used in our method.

Table 2 shows the comparison between state-of-the-
art methods in nuScenes val set. Both the results with
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ResNet-50 and ResNet-101 are evaluated. Specifically, with
ResNet-50, our 3DPPE achieves 0.370 mAP and 0.433
NDS, outperforming PETR by 3.1% and 3.0%. When us-
ing a stronger ResNet-101 backbone, the performance of
3DPPE boosts to 0.391 mAP and 0.458 NDS, performing
better than other competitors. This comparison shows the
superiority of our point PE against the camera-ray PE.

We also present the results evaluated by the test server in
Table 3. In this experiment, we follow the common practice
to exploit the DD3D pre-trained VoVNet-99 models. Both
the train and val sets are involved in the training phase. Re-
markably, 3DPPE achieves 46.0% mAP and 51.4% NDS,
exceeds PETR by absolute 1.9% mAP and 1.0% NDS.

As shown by the results in both tables, the advantage of
our 3DPPE in mAP is most pronounced. As the mAP cal-
culation of nuScenes is closely related to the distance to the
ground-truth object center, this finding further demonstrates
that 3DPPE is capable of more precise positioning.

5.2. Ablation Study

We conduct ablative experiments to study the effect of
each component in our method. All of the experiments are
performed without CBGS strategy. We use C5 feature out
of ResNet-50 as the image feature. The resolution of input
images is set to 704× 256 by default.
Effectiveness of the Depth Quality. In our hybrid-depth
module, smooth L1 loss Lsmooth−L1 and distribution focal
loss Ldfl are adopted as training objectives of the regres-
sion depth and the classification depth, respectively. As
shown in Table4, without any depth supervision, the base-
line model achieves 0.343 NDS and 0.266 mAP. Lsmooth−L1

improve the model by 2.2% NDS and 2.9% mAP. By in-
volving Ldfl, the performance further boosts to 0.368 NDS
and 0.299 mAP. The improved depth quality will provide a
more accurate localization for the 3D point positional en-
coding, verifying the potential of the proposed encoding
method.

Table 4. Effect of Losses in our hybrid-depth head. The results
reported in this table are evaluated on nuScenes val set. By default,
the backbone network is ResNet-50, and the resolution of input
images is 704× 256.

Lsmooth−L1 Ldfl NDS↑ mAP↑ mATE↓

0.343 0.266 0.832
✓ 0.365 0.295 0.818
✓ ✓ 0.368 0.299 0.807

Comparison of 3D Postion-aware Feature. PETR se-
ries and our method all tend to transform 2D image fea-
ture to 3D position-aware feature, as such 3D representa-
tion can be directly integrated into query-based method for
3D object detection. We aim to demonstrate that the depth-
guided 3D point PE is most effective way to construct the

3D position-aware feature, and 5 paradigms of positional
encoding listed in the second row of Table 5 are used for
comparison. The depth-guided 3D point PE achieves su-
perior performance compared to the PE in PETR series, it
outperforming camera-ray in PETR by 3.1% NDS and 2.5%
mAP, and surpasses the feature-guided scheme in PETRv2
with 1.6% NDS and 1.6% mAP.

Table 5. Comparison of different 3D position-aware feature.
Camera-ray and feature-guided (extended version of camera-ray)
are proposed in PETR and PETRv2 respectively. The last three
rows in point-aware scheme are proposed ourselves: topk-aware
method selects 5 depth bins with highest probability; depth
feature-guided category involves the depth feature in the positional
encoding; Depth-guided 3D point approach transforms pixels on
image plane to 3D space with predicted depth for precise location.

3D Position-aware Feature NDS↑ mAP↑ mATE↓

Ray-
aware

Camera-Ray [26] 0.337 0.274 0.852
Feature-guided [25] 0.352 0.283 0.843

Point-
aware

Topk-aware 0.327 0.265 0.869
Depth Feature-guided 0.359 0.291 0.826

Depth-guided 3D Point 0.368 0.299 0.807

Effect of Shared 3D Point PE Encoder. This study seeks
to provide empirical evidence that the incorporation of uni-
fied positional encoding, within the sympatric representa-
tion, enhances the detection capacity of 3D objects by the
query. In order to assess this proposition, we conducted
an experiment, details of which are furnished in Table 6,
wherein we manipulated the 3D point PE encoder, by vary-
ing between a shared and a separate configuration. Our
findings demonstrate that the shared positional encoding
methodology outperformed the separate approach by a mar-
gin of 0.6% NDS and 0.5% mAP, demonstrating the effec-
tiveness of our proposed method.

Table 6. Effect of separated and shared embedding generator.
Shared embedding generator encourages consistency between PE
representations and object queries.

Embedding Generator NDS↑ mAP↑ mATE↓

Separated 0.362 0.294 0.813
Shared 0.368 0.299 0.807

5.3. Qualitative Comparison

We randomly select a pixel from the front view, and com-
pute the similarity of the selected position with all surround-
ing pixels. We find that the similarity of 3D point PE among
positions in the local region is higher than that of camera-
ray PE, as shown in Figure 6, yellow region of the former
is more cohesive compared to the latter. This indicates that
3D point PE is capable of more precise positioning.
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Figure 6. Qualitative comparison of 3D point PE and camera-ray
PE in terms of the local similarity (best viewed in color). The red
box of the first line indicates a selected pixel.

5.4. Discussion on Further Improvements

Our proposed 3DPPE can serve as a simple yet effective
baseline, which can be easily extended to achieve better per-
formance. Here, we discuss the potential improvements by
(a) leveraging temporal coherence and (b) reusing ground-
truth depth for knowledge distillation.
Leveraging Temporal Coherence. Our proposed 3DPPE
can be easily extended to a multi-frame version by lever-
aging the temporal coherence as PETR-v2 and Stream-
PETR. We conducted experiments with VoVNet-99 back-
bone and present the results in Table 7. We use 3DPPE-
v2 to denote the extension version like PETR-v2, and use
Stream3DPPE to represent the extension version following
StreamPETR. Our temporal 3DPPE with perspective tem-
poral coherence improves PETR-v2 with 2.2% NDS and
2.2% mAP. Remarkbly, althougth the object-centric tem-
poral modeling streamPETR outperforms PETR-v2 with a
large margin (i.e., 6.9% NDS and 7.3% mAP), a significant
advantage of 1.3% NDS and 1.6% mAP is also observed
with Stream3DPPE. The result indicates the potential of our
3DPPE as an effective extension for temporal coherence.
Reusing GT Depth for Knowledge Distillation. We show
that besides directly exploiting the ground-truth depth as the
supervision of our depth estimation network, we can also
reuse it for knowledge distillation to achieve further model

Table 7. Results of leveraging temporal coherence by involving
multiple frames. Here, we exploit VoVNet-99 as the backbone
network and set the input resolution as 800 × 320, P4 feature is
selected as 2d image feature. By default, 2 frames are used if a
model is with temporal information.

Method Temporal mAP↑ NDS↑

PETR-v2 perspective 0.410 0.502
3DPPE-v2 perspective 0.432 0.524

StreamPETR object-centric 0.483 0.571
Stream3DPPE object-centric 0.499 0.584

boosting. The experimental results are shown in Table 8.
Specifically, we first train a 3DPPE model with ground-
truth depth, as discussed in Section 3.2. This model is
denoted as 3DPPE-oracle. With VoVNet-99 backbone and
800× 320 input resolution, 3DPPE-oracle achieves 0.4740
NDS and 0.4493 mAP. Inspired by [2], to obtain the dis-
tilled model 3DPPE-distill, we add an auxiliary branch sib-
ling to the original transformer decoder at the training stage.
The parameters of the auxiliary branch are shared with the
original transformer decoder, but the reference points are
initialized from the 3DPPE-oracle and will not be finetuned
during the training phase. This auxiliary branch of 3DPPE-
distill follows the same target assignment as that of 3DPPE-
oracle at each iteration and is supervised by the ground-
truth boxes together with the predicted result out of 3DPPE-
oracle. As shown in this table, 3DPPE-oracle boosts the
original 3DPPE to 0.454 NDS and 0.397 mAP, which fur-
ther validates the extension potential of our method.

Table 8. Results of reusing the ground-truth depth for knowledge
distillation. Here, we exploit VoVNet-99 as the backbone network
and set the input resolution as 800× 320, P4 feature is selected as
2d image feature.

Method NDS↑ mAP↑

3DPPE-oracle 0.474 0.449

3DPPE 0.440 0.393
3DPPE-distill 0.454 0.397

6. Conclusion
In this paper, we analyze the formulation of positional

encoding that maps 2D image feature into 3D representa-
tion. We revisit various positional encoding designs and
show that 3D point PE encoded from precise 3D point lo-
cation is vital to multi-camera 3D object detection. Capi-
talizing on the hybrid-depth module for precise positioning,
our proposed 3DPPE achieves state-of-the-art performance
among single-frame methods. Moreover, we also demon-
strate extension potential of our method on leveraging tem-
poral coherence and reusing ground-truth depth for knowl-
edge distillation. We hope the proposed depth-guided 3D
point PE can serve as a strong baseline for 3D perception.
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