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Abstract

Unsupervised methods for reconstructing structures face
significant challenges in capturing the geometric details
with consistent structures among diverse shapes of the same
category. To address this issue, we present a novel unsuper-
vised structural reconstruction method, named DPF-Net,
based on a new Deformable Primitive Field (DPF) repre-
sentation, which allows for high-quality shape reconstruc-
tion using parameterized geometric primitives. We design
a two-stage shape reconstruction pipeline which consists of
a primitive generation module and a primitive deformation
module to approximate the target shape of each part pro-
gressively. The primitive generation module estimates the
explicit orientation, position, and size parameters of pa-
rameterized geometric primitives, while the primitive de-
formation module predicts a dense deformation field based
on a parameterized primitive field to recover shape details.
The strong shape prior encoded in parameterized geometric
primitives enables our DPF-Net to extract high-level struc-
tures and recover fine-grained shape details consistently.
The experimental results on three categories of objects in
diverse shapes demonstrate the effectiveness and general-
ization ability of our DPF-Net on structural reconstruction
and shape segmentation.

1. Introduction
Objects of the same category typically share common

parts, for example, the seat, backrest, and legs of chairs.
These parts form the concise and compact structure of the
objects. Extracting this part-level structure from 3D objects
is essential in many applications that require part-level pre-
diction, such as shape editing, dynamics simulation, and
physical reasoning, including path planning and grasping.

Many supervised approaches [13, 33, 16, 15, 30] have
been proposed to learn a latent structural representation for
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3D shapes. However, these methods require part-level an-
notations of 3D objects, which are very time-consuming to
obtain. Unsupervised structural reconstruction methods at-
tempt to learn structural representations of objects by fitting
the target shape with a set of geometric primitives, such as
cuboids [26, 25, 31], planes [4], and convexes [8]. Although
some methods have shown the ability to predict structure-
consistent results from unlabeled objects, they tend to gen-
erate over-partitioned structures in regions of rich geomet-
ric details. Implicit functions [14, 6, 18] have shown their
strong power for modeling geometric details and been ap-
plied for structural shape reconstruction [5, 17]. However,
under the unsupervised learning scheme, these methods ex-
tract high-level inter-category common structures from re-
construction error only. Without any structural supervision
and shape priors, they face significant challenges in approx-
imating detailed shapes in diverse structures.

Taking advantage of the expression power of the implicit
functions for geometric details and the generalization abil-
ity of geometric primitives to extract high-level structures,
we propose a novel deformable primitive field representa-
tion that integrates the implicit deformation field and pa-
rameterized primitives. Considering the shape resemblance
between man-made object parts to geometric primitives, we
propose a new explicit structure representation based on
simple geometric primitives. In contrast to existing meth-
ods that assemble basic geometric primitives to fit the target
shape, we consider primitives as structural proxies which
can be further deformed for shape refinement. To support
deformation to fit the geometric details of each part, we
design a field-based representation for primitives, named
parameterized primitive field (PPF), which can be learned
end-to-end. To improve the expression ability of the primi-
tive fields for detailed geometry, we further concatenate an
implicit deformation field to bridge the gap between the ab-
stract structural representation and fine-grained shape de-
tails of diverse 3D shapes.

Specifically, we propose DPF-Net, a novel unsuper-
vised structural reconstruction method to approximate tar-
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get shapes by assembling a set of deformable primitive
fields. We design a two-stage shape reconstruction pipeline
that consists of a Primitive Generation Module (PGM) and
a Primitive Deformation Module (PDM) for each part. The
PGM estimates the explicit orientation, position, and size
parameters of parameterized geometric primitives for each
part from the encoded shape feature. These parameter-
ized primitives generated by PGMs can be considered as
an intermediate structural representation of the target shape.
Then the PDM predicts dense deformation fields based on
the parameterized primitive shape field of each part to re-
cover geometric details. Each part is assigned a predicted
confidence of whether it appears in a specific target shape.
An occupancy field is finally constructed by assembling
all the deformed primitive fields of parts with their confi-
dences. The whole reconstruction network is trained end-
to-end in an unsupervised manner from the shape recon-
struction error. The strong shape prior of our parameter-
ized primitives allows our DPF-Net to focus on extracting
high-level structure at the first module and recovering fine-
grained shape details in the second module. Combining the
explicitly parameterized primitives and implicit deforma-
tion fields, we achieve high-quality structural reconstruction
for various shapes with consistent structures.

2. Related Work
Unsupervised Shape Abstraction. Most man-made ob-
jects exhibit organized and structured parts, leading to a re-
cent interest in shape abstraction. It aims to approximate
object shapes by assembling a set of 3D primitives with
part-level correspondences across instances. Tulsiani et
al. [26] proposed the first unsupervised deep-learning-based
method that extracts abstracted shapes by predicting the pa-
rameters of a set of cuboids with part-level correspondences
across instances in an object category. Subsequently, re-
searchers try to improve the expression of shape details us-
ing the cuboid-based shape reconstruction framework. Sun
et al. [25] design an adaptive hierarchical cuboid represen-
tation and adaptively select one cuboid in different granular-
ity for each part from multi-level cuboid predictions. Yang
and Chen [31] propose an unsupervised shape abstraction
approach for 3D point clouds by jointly learning from point
cloud co-segmentation. This method achieves more consis-
tent part correspondence and closer shape approximation.
However, the inherited shape simplicity of the cuboid repre-
sentation limits its expressiveness of diverse object shapes.

Shape Reconstruction with Convex Elements More
generalized convex elements [20, 21, 8, 4] can be used to
represent part shapes beyond 3D cuboids. BSP-Net [4]
uses planes as the basic shape elements and constructs a
BSP-tree structure to generate surface models of 3D ob-
jects. However, it requires a relatively large number of ele-

ments to approximate complex shapes. To obtain the ob-
ject parts, they need post-process the partition results by
manually grouping the convex elements, which is costly
for part-parsing. Paschalidou et al. [20, 21] apply su-
perquadric primitives controlled by two parameters to rep-
resent objects, which enhanced the geometric expressive-
ness for better fitting the curved area of the shape. However,
superquadrics ignore the simplicity of primitive for concise
structure, resulting in inconsistent structure extraction. In
contrast, our deformable primitive field uses basic geome-
try shape as a structural proxy and the implicit deformation
function to represent geometry, achieving both structural
consistency and high-quality geometric reconstruction.

Structured Implicit Functions Implicit functions are
more expressive for diverse geometric shapes and object
structures than primitive-based and convex elements-based
representations and have been explored for unsupervised
learning of 3D object structures. BAE-Net [5] employs a
branched implicit function, where each branch represents a
part of the object. This function is restricted as a three-layer
MLP to ensure part decomposition ability but limits the ca-
pability for expressing complex shapes. To overcome this,
RIM-Net [17] proposes a hierarchical branched implicit
function with a per-point Gaussian to obtain finer structure
extraction. But RIM-Net struggles to express singular parts
due to no explicit structural supervision and shape priors.
Recently, Vasu et al. [28] proposed HybridSDF to com-
bine deep implicit surfaces and geometric primitives. Hy-
bridSDF adopts a disentangled representation that defines
the geometric parameters of several parts and has the rest of
the object adapt to these specifications. However, it requires
annotating parts as supervision. Instead, in our DPF-Net,
we propose parameterized primitive fields as the intermedi-
ate structural proxy and adopt implicit functions to model
shape details, generating structurally consistent reconstruc-
tion in an unsupervised learning framework.

Shape Deformation Shape deformation [23, 22, 3, 10,
29, 11, 27, 32] is a long-term research topic in 3D re-
construction, which model detailed shapes by deforming
a template to fit the target shape. Some of these meth-
ods [10, 29, 27, 32] achieve impressive high-quality recon-
struction results without taking object structures into ac-
count, thus not supporting many downstream applications.
Recently, Deng et al. [9] propose an implicit function-based
deformation field that achieves high-quality reconstruction
and dense correspondence on the entire shape, but the part-
level correspondence is not supported. On the other hand,
Neural Parts [19] achieve local-based deformation by lever-
aging a group of spheres as part templates and learning
homeomorphic mappings between a sphere and the target
object. While it mainly focuses on learning more expres-
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Figure 1. Overview of our DPF-Net for unsupervised structural reconstruction. Our DPF-Net mainly consists of two modules: (a) primitive
generation module (PGM) and (b) primitive deformation module (PDM). We first project the extracted global feature of the input into a set
of part features and generate a parameterized primitive for each part in the primitive generation module. Then for each part, the primitive
deformation module predicts point-wise deformation and constructs a deformed primitive field (DPF) to better approximate shape details.
Finally, we compose these DPFs to construct an occupancy field, from which the surface mesh can be extracted by k-isosurfacing.

sive shape primitives, the structural correspondence of the
extracted shape segments is ignored. In comparison, our
DPF-Net uses primitive filed to extract the structure as the
template and leverages implicit deformation field to cap-
ture the local geometric details, ensuring high-quality re-
construction and structure extraction.

3. Our Method

We follow a typical assembling process that composes
3D objects with a set of parts that share similar geomet-
ric structures and layouts across the category. We will first
introduce our deformable primitive field representation for
part assembling. Based on this novel presentation, we de-
sign a novel network, named DPF-Net, that reconstructs 3D
object shapes by predicting a set of parameterized primi-
tives as parts and then deforming the primitives to fit the
target object, as shown in Figure 1.

3.1. Representation: Deformable Primitive Field

We assemble a 3D object O with M parts {Pi}i=1,...,M

whose part correspondences across the instances in one cat-
egory are determined naturally by their orders. M is a pre-
defined maximum number of the parts in the category. To
impose strong geometric priors on each part, a parameter-
ized geometric primitive, such as a cuboid and a cylinder,
can be used to represent the part shape. However, this pa-
rameterized representation is insufficient to express diverse
shape details. To capture different levels of geometric de-

tails of each part, we apply point-wise deformation based
on the parameterized primitives. Taking a field-based rep-
resentation, we design a parameterized primitive field (PPF)
with strong geometric priors and a deformed primitive field
(DPF) to capture fine geometric details.

3.1.1 Parameterized Primitive Field

A parameterized primitive field T encodes a strong shape
prior to a part by defining the part shape based on a param-
eterized geometric primitive, such as a cuboid or a cylinder.
A parameterized geometric primitive U is defined as

U = {R, t, s, ρ} (1)

where R3×3 is a 3D rotation matrix, t ∈ R3 is translation
vector, s ∈ R3 is scaling vector, respectively controlling the
orientation, position, and size of a predefined unit geomet-
ric primitive to compose the target object. With its primitive
parameters U , we can transform an arbitrary point p in the
local coordinate system of this primitive to a point on the
object as p = Rq+ t. We define ρ as the confidence of the
parameterized primitive U when composing the object since
not each of the M parts always appears in a specific ob-
ject instance. Instead of using implicit fields, we define an
explicit parameterized primitive field for specific geometric
primitives, i.e., cuboid primitives and cylinder primitives, as
shown in Figure 2. This parameterized primitive field mea-
sures a structural distance of a 3D point p = (px, py, pz) to
the primitive center under the primitive structure.
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Parameterized Primitive Field of a Cuboid. For a cuboid
primitive with the scaling factor s = (sx, sy, sz), its param-
eterized primitive field Fcub

(s) is defined as

Fcub
(s) (p) = max

{
|px|
sx

,
|py|
sy

,
|pz|
sz

}
. (2)

Parameterized Primitive Field of Cylinder. For a cylinder
primitive with the scaling factor s, its parameterized primi-
tive field Fcyl

(s) is defined as

Fcyl
(s) (p) = max


√
p2x + p2y

sx
,
|pz|
sz

 . (3)

Note that for a cylinder primitive, sx = sy .
We further apply a normalization function fo to map the

value d of each point in F to a value o ∈ (0, 1] as

o = fo(d) = exp(−τd) ∈ (0, 1], (4)

where τ is the temperature parameter to control the decay
rate of the field value. The value o can be considered as the
probability of the occupancy of a point in the parameterized
primitive field.

3.1.2 Deformed Primitive Field

While the explicit parameterized primitive field Fcub or
Fcyl encodes strong shape priors which can facilitate the
part-level structure extraction, it is limited in expressing ge-
ometric detail and shape diversity. To reconstruct the target
part shape with more details from the simple primitives, we
further construct an implicit deformation field to bridge the
gap between the abstract primitive representation and fine-
grained part geometry. More specifically, to fit the target
object more accurately, we apply a local offset v ∈ R3 for
each point q in the parameterized primitive space. We pre-
dict the point-wise offset field of each part from the point
positions and the extracted part feature. By applying the
point-wise deformation, a deformed primitive field Fdef

can be constructed as F(s)(q+v) under the structural priors
of each primitive type, as shown Figure 2 (b).

3.1.3 Assembling Primitive Fields

Then we assemble a 3D object by the M parts by compos-
ing the M normalized deformed primitive fields together, as
Figure 2 shows. Since we do not have the deterministic as-
signment of the M primitives to each point on the object, we
introduce a confidence ρ ∈ [0, 1] for each part, as defined in
Eq. 1. For each point qj on the target object, we transform
it to a point pji = R−1

i (qj−ti) in the local coordinate sys-
tem of each parameterized primitive with parameters Ui and

Cuboid

Cylinder

Primitive Field (b) (c)(a)

Figure 2. Illustration of primitive fields. (a) Each object part is rep-
resented by a parameterized primitive field of a cuboid primitive
(top) or a cylinder primitive (bottom) with different parameters.
(b) The parameterized primitive is further deformed via a defor-
mation field to better approximate the shape details of each part.
(c) An occupancy field is obtained for the entire object by assem-
bling the deformed primitive fields of all the parts.

compute its normalized field value after further deforming
it by the offset vji as

Fobj
i (qj) = ρi · fo

(
F(si)(pji + vji)

)
, (5)

where ρi is the confidence of the primitive Ui.
We apply max-pooling of the M deformed primitive

fields Fobj
i for each object point, thus getting the final as-

sembled occupancy field Fobj . The object surface mesh can
be generated by taking the k−isosurface of the occupancy
field using Marching Cubes [1].

3.2. Structural 3D Reconstruction

Based on our novel deformable primitive field represen-
tation, we now explain how to reconstruct 3D objects from
a point cloud or a 3D volume. We first extract a global fea-
ture from the input volume via a 3D neural network similar
to BSP-Net [4]. Then we project the global feature into M
part features {Fi ∈ Rn}i=1,...,M using M multi-layer per-
ceptrons (MLP) for each primitive. Next, we predict the
primitive parameters Ui for each geometric primitive from
the part feature Fi using weight-sharing MLP fpara.

In the primitive generation module, we estimate the pa-
rameters for each geometric primitive and produce a PPF
of each part as a coarse approximation of the target shape.
Then in the primitive deformation module, we further pre-
dict the offset vji of each 3D point qj sampled in the object
space to better fit the target shape. For each part branch,
taking each point qj and the parameterized primitive field
Fi as input, we employ a deformation network, denoted
as DeformNet Di, to predict the offset vji. Instead of di-
rectly training an MLP-based DeformNet for each part, we
employ a hypernetwork scheme that has been studied for
structure-aware 3D representation [24, 9]. A hyper-net Ψ is
first applied to predict the network weights ωi from the part
feature F. Then the deformer Di uses these weights ωi to
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generate the point-wise offset vji for a 3D point qj . More-
over, DIF-Net [9] introduces an additional correction scalar
c to correct their template fields for diverse structures. We
inherit this correction scalar in our deformation network by
adding the point-wise correction value cji ∈ [−1, 1] to our
deformed primitive field of each part Fobj

i .

Ψ : Fi → ωi, (6)

D(ωi) : (qj , oji) → (vji, cji), (7)

where qj is a point in 3D space and oji is its corresponding
value in the parameterized primitive field of the ith part.

3.3. Network Training

Our model is trained by optimizing the reconstruction er-
ror of the target shape using our deformable primitive rep-
resentation, without any part-level annotations. The overall
loss function L is composed of four loss items:

L = λ1Lrecon + λ2Ldeform + λ3Lcomp + λ4Lalign, (8)

where the weights {λi} balance the four loss terms.
Reconstruction Loss. The reconstruction loss measures the
distance from the predicted shape to the target shape. Same
as [5], we compute the distance between the predicted occu-
pancy field Fobj and the ground-truth occupancy field Ogt

of the target shape. Ogt(q) ∈ {0, 1} at location q. We
sample NΩ points in the 3D space surrounding the input
shape and compute the root mean square error of the sam-
pled point set Ω as the reconstruction loss:

Lrecon =
1

NΩ

∑
q∈Ω

||Fobj(q)−Ogt(q)||2. (9)

Deformation Regularization Loss. Our DeformNet pre-
dicts the deformation offset vji for each point to capture
the detailed geometry of each part. However, to enforce the
shape constraint of the primitives and restrict the deformed
shape to follow shape regularity of the predicted primitives,
we design a deformation regularization loss:

Ldeform =
1

NΩ

NΩ∑
j

M∑
i

||vji||2. (10)

Compactness Loss. Objects of different categories might
have various numbers of parts. In our DPF-Net, we set a
maximum part number M for various objects. However,
we want to make the learned object structure as compact
as possible to prevent over-partition. We employ the com-
pactness loss proposed in CA [31]. We sample Np points
P = {qj=1,...,Np

} on the surface mesh of the target shape
and then compute the final occupancy probability Fobj

i (qj)
of each point qj by each part. L0.5 normalization term for

assignment matrix W is computed as the compactness loss
to constrain its sparsity.

Lcomp =

 M∑
i=1

√√√√ 1

NP

∑
qj∈P

Fobj
i (qj) + ϵ


2

, (11)

where ϵ is a small constant to prevent gradient explosion.
Axis-Aligned Alignment Loss. Since many parts of man-
made objects are typically axis-aligned, we employ the axis-
aligned alignment loss proposed in HA [25]. For the pre-
dicted rotation matrix Ri of each primitive, its correspond-
ing quaternion ri is enforced to be close to the identity
transformation I = (1, 0, 0, 0)⊤ by

Lalign =
1

M

M∑
i

||ri − I||2. (12)

4. Experiments and Results
We conducted extensive experiments to demonstrate the

effectiveness of our proposed DPF-Net in reconstructing
structural models, including comparison with state-of-the-
art unsupervised shape abstraction methods and ablation
studies. We evaluate our DPF-Net and related methods on
the ShapeNet part dataset [2] using three categories, includ-
ing airplane (2, 690), chair (3, 758), and table (5, 271).

4.1. Experimental Settings

Training Details. For model training, we set the temper-
ature parameter τ = 4 used in Eq. 4 for field value nor-
malization. The four loss weights are λ1 = 1, λ2 = 0.1,
λ3 = 0.0001, and λ4 = 0.0001 respectively. We train
our DPF-Net using Adam [12] optimizer with lr = 0.0001,
β1 = 0.5, β2 = 0.9. For each object category, we train a
model progressively with the input volumes of 323 and 643

resolutions. The number of sampled points NΩ = 8, 192
for 323 resolution and NΩ = 32, 768 for 643 resolution. For
the compactness loss, NP = 1024. For each resolution, the
model is trained for 1000 epochs with a batch size of 128.
The total training time for each category is about 6 hours
with two NVIDIA A100 GPUs. The surface meshes are
constructed as 0.6-isosurface of our final occupancy field at
643 resolution by Marching Cubes [1].
Metrics. We conduct quantitative and qualitative evalua-
tions on two tasks, i.e., structural shape reconstruction and
shape segmentation. For reconstruction, Chamfer Distance
(CD) [1] and Intersection over Union (IoU) are used to eval-
uate the reconstruction precision. Specifically, CD is calcu-
lated using 4, 096 uniformly sampled points from the sur-
face of both the ground-truth shape and reconstructed mesh,
and the IoU is calculated on the volumes of 323 resolution.
For part segmentation, same as [5], we adopt the mean per-
label Intersection over Union (m-IoU) as the metric to mea-
sure the quality and consistency of the recovered parts.
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Table 1. Quantitative comparison of unsupervised structural reconstruction performance on three object categories in ShapeNet.

Chamfer Distance (CD) (×0.001) ↓ Intersection over Union (IoU) (%) ↑
Method table chair airplane Mean table chair airplane Mean

VP [26] 1.1561 0.7989 0.4587 0.8046 68.61 73.82 72.68 71.70
HA [25] 1.0034 0.7199 0.2802 0.6678 72.25 77.56 77.35 75.72
CA [31] 0.9952 0.6682 0.3609 0.6748 68.46 72.32 69.25 70.01
BAE-Net [5] 1.2775 0.6945 0.4276 0.7999 62.57 72.29 69.34 68.07
RIM-Net [17] 0.7463 0.4125 0.2228 0.4605 75.85 79.61 74.53 76.66
BSP-Net [4] 0.5140 0.3420 0.1350 0.3303 79.23 80.20 74.21 77.88
DPF-Net (Ours) 0.4756 0.3633 0.1924 0.3438 76.11 80.91 79.08 78.70

GT

RIM-Net

BSP-Net

Ours

CA

Figure 3. Qualitative comparison of unsupervised structural reconstruction methods.

Table 2. Quantitative comparison of segmentation m-IoU (↑).

Shape (#parts) table (2) chair (4) airplane (4)

Segmented
parts

top,
support

back, seat,
leg, arm

body, tail,
wing, engine

VP [26] 62.1 64.7 37.6
HA [25] 67.4 80.4 55.6
CA [31] 89.2 82.0 64.2
BAE-Net [5] 87.0 65.5 61.1
BSP-Net [4] 90.3 80.9 74.2
RIM-Net [17] 91.2 81.5 67.8
DPF-Net (Ours) 91.3 84.3 66.0

4.2. Structural Shape Reconstruction

We evaluate our model on the shape reconstruction task
compared with unsupervised shape abstraction methods, in-
cluding cuboid-based methods [26, 25, 31] and implicit
function methods [5, 4, 17]. We train our model with the
predefined maximum number of parts M = 16 for chairs,
M = 8 for tables and airplanes empirically. We test two

types of primitives and mainly use the results obtained us-
ing cuboid primitives for comparison with other methods.

Quantitative analysis. Table 1 shows the quantitative
comparison results of shape reconstruction. The cuboid-
based methods VP [26], HA [25], and CA [31] have trou-
ble capturing diverse geometric details due to the lim-
ited expression ability of cuboids. Regarding the implicit
function-based methods, while BAE-Net [5] does not per-
form well due to its simple three-layer MLP architecture,
RIM-Net [17] improves the reconstruction performance by
its hierarchical presentation. BSP-Net [4] achieves better
reconstruction quality by generating hundreds of convexes
from thousands of planes to fit the target shapes with fine-
grained details. In comparison, our DPF-Net achieves com-
parable CD and higher IoU with BSP-Net with much fewer
primitives, conveying more accurate and explicit structural
correspondences between semantic parts.

Qualitative analysis. We show reconstruction results for
the three categories in Figure 3. The cuboid-based shape
abstraction method CA well recovers the structure of ob-
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Input Image IM-Net OursRIM-NetBSP-Net

Figure 4. Qualitative comparison on SVR task. Our DPF-Net bet-
ter reconstructs the target shapes (chair arms, table legs, airplane
engines) with a more reasonable part partition.

jects that are mainly composed of parts in cuboid shape.
But for more complex part shapes, CA tends to generate a
lot of cuboids to fit the target shape, thus leading to over-
partition, such as the second table and the second chair ex-
ample. RIM-Net can approximate various shapes that fol-
low Gaussian point distributions but fails to reconstruct par-
ticular parts. For the table samples, most of the training
examples have symmetric legs, so RIM-Net tends to gen-
erate symmetric shapes even for the three legs in the first
example. CA [31] and RIM-Net [17] both have difficulty
capturing shape details for particular structures, such as the
chair legs. CA suffers over-partition in regions of rich shape
details. RIM-Net fails to model the shape of singular parts,
e.g., the three legs of the first table and the beam between
the legs. In comparison, our reconstruction results show
consistent structural partition while recovering unique part
shapes, such as the beam of the second table example and
the wheels of the second chair example. BSP-Net [4] better
reconstructs the target shape by assembling massive primi-
tives but leads to corrugated surfaces, such as the back of the
second chair and the airplane head. With fewer primitives,
our DPF-Net generates high-quality 3D reconstruction with
smooth surface meshes and consistent part structures.

4.3. 3D Shape Segmentation

We compare the unsupervised shape segmentation per-
formance with cuboid-based methods [26, 25, 31] and im-
plicit function methods [5, 4, 17] to demonstrate the struc-
tural consistency of our reconstructed shapes. Following
RIM-Net [17], the part annotations in the ShapeNet dataset
are merged to fewer groups. For example, “leg” and “sup-
port” of tables are merged into “support”. While there are
no semantic part annotations for the unsupervised segmen-
tation task, we assign each primitive with semantics fol-
lowing the common settings [31, 17] and compute the per-
label m-IoU. As shown in Table 2, our method outperforms
the others on the chair and table categories which exhibit
more diverse structures, demonstrating the superiority of

Table 3. Single view reconstruction performance in CD (×0.001).

Methods table chair airplane mean

IM-Net [6] 0.8762 0.8799 0.4041 0.7201
BSP-Net [4] 0.9807 0.7472 0.4716 0.7332
RIM-Net [17] 1.1223 0.7446 0.3993 0.7554
Ours 0.9029 0.7466 0.3840 0.6847

our DPF-Net in recovering consistent structures across vari-
ous shapes. For airplanes, our method achieves comparable
performance to RIM-Net but slightly underperforms BSP-
Net. This is mainly because BSP-Net groups many prim-
itives as one semantic part, while mixing the shape corre-
spondences. In contrast, our method uses much less prim-
itives and the structural corespondences are naturally en-
coded by the primitive deformation.

4.4. Single-View Reconstruction

We also apply our DPF-Net for single-view image re-
construction to further demonstrate the scalability of our
structural shape representation. We use chair, table and air-
plane data from ShapeNet [2] with rendered views by 3D-
R2N2[7]. The train/test splitting is the same as [4]. Follow-
ing RIM-Net [17], we first pretrain a 3D auto-encoder for
each category. A 2D image encoder is trained to extract im-
age features by minimizing the mean square error between
the extracted image feature and the features extracted by the
pretrained 3D auto-encoder. Table 3 and Figure 4 show the
quantitative and qualitative comparisons respectively. Our
DPF-Net ourperforms IM-Net [6], BSP-Net [4], and RIM-
Net [17] averagely on the three categories. All methods
perform similar results in the chair category due to the oc-
clusion problem of chair images. Our DPF-Net obtains 3D
shapes closer to the input image with better part partition.

4.5. Ablation Study

Deformed Primitive Field. To explore the effect of the pro-
posed deformed primitive field representation, we compare
the reconstruction results generated by our full DPF-Net
and a variant with the parameterized primitive field only. In
the model “w/o PDM”, we directly regress the primitive pa-
rameters to approximate the target shape without using the
deformation module. In the model ‘PPM’, We approximate
the target shapes using only the intermediate parameterized
primitives in our full model. As Table 4 shows, the inter-
mediate PPM show more consistent part structure (higher
m-IoU) but lower reconstruction quality (higher CD). Our
full model performs best on both reconstruction and struc-
tural partition, by decomposing the challenging structural
reconstruction task for diverse shapes into two steps. With
strong shape priors, the parameterized primitive generation
module focuses on extracting consistent structures among
instances. Based on the superior structural partition, the
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Table 4. Ablation study of three variants of DPF-Net.

table chair airplane

Method CD m-IoU CD m-IoU CD m-IoU

w/o PDM 0.7356 85.6 0.5286 79.4 0.2412 56.3
PPM 0.8265 89.8 0.8127 82.4 0.2783 58.4
Full Model 0.4756 91.3 0.3633 84.3 0.1941 66.0

Input (a) (c)(b)

Figure 5. Reconstruction results of different model variants. (a)
Model without PDM. (b) Results of intermediate parameterized
primitives in our full model. (c) Results of our full DPF-Net.

primitive deformation module focuses on reconstructing di-
verse shape details of each individual part. For the parts
with rich geometry detail, without PDM, the network with
only parameterized primitives tends to sacrifice the struc-
tural consistency for better reconstruction quality using lim-
ited primitives, as Figure 5 (a) shows. In comparison, while
letting the deformation module approximate the shape de-
tails, the generated primitives in the first step of our full
DPF-Net capture better global part structures (Figure 5 (b)).
Integrating the deformation module, our DPF-Net finally re-
constructs the target shape accurately for objects in diverse
structures, as Figure 5 (c) shows.
Primitive Type. Our DPF-Net supports different pre-
geometric primitives to impose different shape priors. We
test our method with cuboid and cylinder primitives sepa-
rately and report the quantitative results in Table 5. Fig-
ure 6 shows the reconstruction results and the intermediate
primitives using cuboid and cylinder primitives for two ta-
ble examples. While the reconstruction results using differ-
ent primitive types show superiority on specific part shapes
that follow the shape priors, for example, cylinders are bet-
ter for the first table and cuboids are better for the second
table, the global structure can be consistently extracted with
either type of primitives. The final reconstruction results
using different primitive types are very close, verifying the
robustness and flexibility of our DPF-Net.

Table 5. Quantitative results using different primitives.

Primitive Type CD m-IoU

Cuboid 0.4756 91.3
Cylinder 0.4251 90.4

Cuboid

Input

Cylinder

Intermediate 

Primitives

Reconstruction ReconstructionIntermediate 

Primitives

Figure 6. Ablation experiment of different primitive types.

5. Conclusion

We introduce DPF-Net, an unsupervised structural shape
reconstruction method to approximate detailed shapes in di-
verse structures. The proposed deformable primitive field
representation imposes strong shape priors via parameter-
ized geometric primitives to enforce global structure consis-
tency and restores local shape details via a deformation field
from geometric primitives. By decomposing the structural
reconstruction task into a primitive generation module and a
primitive deformation module, our DPF-Net can effectively
prompt its structure extraction ability of diverse structures
and expression capability for shape details. The reconstruc-
tion results of our DPF-Net on the ShapeNet show high vi-
sual quality and consistent structures.

Our DPF-Net is flexible and robust to support different
types of geometric primitives. We achieve comparable re-
sults using both cuboid and cylinder primitives. In the fu-
ture, we would like to extend our DPF-Net to support more
primitive types. Integrating multiple geometric primitives
in the same network is a possible direction to better express
the local part shapes in various structures. One limitation
of our current DPF-Net is that our reconstructed surfaces
are not smooth enough. We think adding a penalty on large
deformation gradients, like DIF-Net [9], will be helpful to
improve surface smoothness.
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