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Abstract

In this paper, we address the problem of conditional
scene decoration for 360◦images. Our method takes a
360◦background photograph of an indoor scene and gener-
ates decorated images of the same scene in the panorama
view. To do this, we develop a 360-aware object layout
generator that learns latent object vectors in the 360◦view
to enable a variety of furniture arrangements for an input
360◦background image. We use this object layout to condi-
tion a generative adversarial network to synthesize images of
an input scene. To further reinforce the generation capability
of our model, we develop a simple yet effective scene emp-
tier that removes the generated furniture and produces an
emptied scene for our model to learn a cyclic constraint. We
train the model on the Structure3D dataset and show that our
model can generate diverse decorations with controllable
object layout. Our method achieves state-of-the-art perfor-
mance on the Structure3D dataset and generalizes well to
the Zillow indoor scene dataset. Our user study confirms
the immersive experiences provided by the realistic image
quality and furniture layout in our generation results. Our
implementation is available at https://github.com/
kcshum/neural_360_decoration.git.

1. Introduction

Panoramas (360◦images) enable immersive user experi-
ences and have been applied intensively to various virtual
reality (VR) applications [1, 4, 44]. However, automated
generation of indoor scenes in the 360◦view for architec-
tural and interior design remains understudied due to many
challenges. First, the generation process must conform the
common distortions in the 360◦view. Second, generated
content must be controllable.

Common generative models, e.g., StyleGAN [22, 23] can
generate photorealistic images. However, these methods are
unconditional generation techniques, i.e., an output image

is generated from a random code sampled in a latent space
without interpreted meaning, thus limiting content controlla-
bility. Existing conditional image synthesis techniques, e.g.,
image-to-image translation [18, 65, 54, 50], on the other
hand, do not have explicit support for scene representations
and thus have limited capability for scene manipulation.

In this work, we focus on conditional image synthesis of
360◦indoor scenes. We are inspired by the neural scene dec-
oration (NSD) in [38], aiming to generate a decorated scene
image from a given background image and user-defined fur-
niture arrangement. However, the NSD method in [38] has
several limitations. First, it requires an object layout model-
ing furniture arrangement from users, making the generation
process not fully automatic. Second, its object layout, repre-
sented by rectangles, is not applicable in the 360◦view using
equirectangular projection [47]. Third, there is no mecha-
nism to control different attributes of the generated furniture,
limiting the diversity of the generated content.

We instead take a different approach for scene represen-
tation and propose a conditional image synthesis method
for automatic scene decoration in the 360◦setting. We first
develop a 360-aware object layout generator that learns a
set of object vectors representing the furniture arrangement
of a 360◦scene. We use this layout as the latent represen-
tation in a generative adversarial network to condition the
generated content. To support the training of the layout and
generative adversarial network, we devise a scene emptier
that performs a dual task, i.e., making a decorated scene
empty. In summary, we make the following contributions in
our work.

• A 360-aware object layout generator that automatically
learns an object arrangement from a 360◦background im-
age. Generated layouts condition the scene decoration in
the 360◦viewer;

• A novel framework that synthesizes diverse and control-
lable scene decorations in the 360◦setting;

• A scene emptier for reinforcement of the conditioning
ability and generation ability in the training;
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• Extensive experiments and user studies on benchmark
datasets including the Structured3D [63] and Zillow In-
door dataset [9] to validate our method and to provide
immersive experiences to users.

2. Related work
Neural image synthesis. Existing neural image synthe-
sis techniques can be grouped in two main directions:
image-to-image translation and generative adversarial neu-
ral networks (GANs). Image-to-image translation meth-
ods [18, 65, 54, 50] aim at translating images from one
domain to another. Among these, CycleGAN [64] with a
cycle-consistency loss is well-known for its robustness yet
effectiveness due to not requiring image pairs in both do-
mains for training. Recent methods such as SPADE [39] and
OASIS [45] translate semantic maps into realistic images.
We do not use semantic maps in our work because semantic
annotation of 360◦images is a costly task; drawing object sil-
houettes in a semantic map is also complex for novice users.
Another difficulty for automatic decoration of 360◦images
is the difference in the object arrangement between the in-
put and output image, making the translation challenging to
pixel-level image translation methods.

Recent developments in GANs have sparked great inter-
est in image synthesis, e.g., the family of StyleGAN [22,
23, 19, 21]. These models have demonstrated groundbreak-
ing results in generating human faces [22] and on some
in-the-wild datasets [5]. They can also be conditioned on lay-
outs for image synthesis [29, 56]. Several methods improve
the quality of generated images using various cues such as
layout reconfiguration [49], object context [13], and local-
ity [32]. Some methods conditionally enhance the object
layouts through layout-to-semantic prediction [51], layout-
to-graph reasoning [15], automatic layout positioning [60],
and layout completion [42].

For indoor scene image synthesis, ArchiGAN [6] and
HouseGAN [37] generate apartment rooms and furniture
layouts. BachGAN [31] hallucinates a background from an
object layout. NSD [38] conditions an image generator on
both a background image and an object layout defined by
users. Our method is perhaps the most related to [38] in the
problem setting, but we address a more challenging problem
where the object layout is learned automatically, eliminating
the need for user input while enabling controllability in the
generated content.
360-degree image synthesis. Several methods employ gen-
erators that produce smaller spatially-aware patches, which
can be assembled together into a high-resolution, seam-
less output image. For example, COCO-GAN [34] syn-
thesizes a cylindrical set of patches to be assembled into
a 360◦panorama. InfinityGAN [35] generates in-between
patches between two fixed patches via the latent code inver-

sion procedure in [7]. Several works show that a panorama
can be synthesized from various conditional information,
such as from a single perspective image [2], multiple per-
spective images [48] or aerial views [55].
Indoor scene modeling. Traditional indoor scene modeling
methods reason the 3D space, with analysis on structural and
functional aspects of the space, for furniture arrangement.
Early attempts include creating a physical model of a scene
for object insertion [25, 11, 26, 24], optimizing the spatial ar-
rangement of furniture [12, 57] with additional consideration
of object relations and room attributes [14, 30], and spatial
constraints such as relation graph prior [52, 17, 37] and con-
volution prior [53]. Recently, Ritchie et al. [43] used neural
networks to predict the category, location, orientation, and
dimension of objects in a top-down view. Zhang et al. [62]
optimized a GAN-based architecture that models object po-
sition and orientation, where the discriminator takes both
rendered images and 3D shapes into account. Compared
with existing scene unfurnishing [59] and scene furnishing
nethods [58, 61, 33], our method is image-based and thus
does not require the use of 3D models.

3. Proposed Method
We propose a conditional model for automatic scene dec-

oration for 360◦images. Given a 360◦background image
X that captures an empty scene, our model generates a
360◦image Ŷ of the scene in X , but with furniture. We use
the equirectangular format to represent 360◦images, where
each pixel’s x and y coordinate are mapped to the azimuth
and polar angle in a spherical coordinate system, respectively.
Our model has three sub-modules: (1) a conditional layout
generator, (2) a conditional scene decorator (a GAN architec-
ture), and (3) a scene emptier. The layout generator, trained
in an unsupervised manner, disentangles possible objects to
be generated in X into an object layout L that uses a set of
latent vectors to represent objects in the 360◦setting. The
decorator generates Ŷ by conditioning on the background
image X and the predicted object layout L. The scene emp-
tier clears up the decorated image Ŷ to revert it to the input
background image. The scene emptier is used in training of
our model to reinforce its conditioning and generation ability
via a cycle loss. We illustrate our method in Figure 1 and
describe its sub-modules in the corresponding sub-sections.

3.1. Conditional 360-aware object layout generator

Our aim is to estimate and represent a possible furniture
arrangement from the given background image X in the
360◦setting. Our layout generator is a conditional image
encoder followed by a multi-layer perceptron (MLP) to map
the background image X into a proper set of object vectors
in the 360◦view. Moreover, rather than representing the set
of objects in a 2D plane [10], our layout generator considers
distortions and left-right boundary discontinuity artifacts
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Figure 1. Overview of our method. Input is a 360◦background image of an empty scene. The input is fed to a layout generator to produce
a set of object vectors to form a 360◦object layout. The object layout and input background image are integrated to condition a GAN
architecture (our decorator and discriminator) to generate a decorated image of the same scene. During training, the output decorated image
is fed to a scene emptier to render back the background image of the empty scene. This estimated background is compared with the input
background for a cyclic constraint. At inference time, users can manipulate the object vectors to produce different object layouts to generate
diverse images.

(a) (b) (c)

Figure 2. Visualization of calculating the distance d from a pixel point (θ, ϕ) to an ellipse object center (α, β). A panorama image (a) is
modeled in the spherical coordinate system (b) and then rotated to align with the image origin to (α, β) in (b). In (c), the rotated image is
projected to the polar coordinate system to effectively model an ellipse given ellipse rotation γ and eccentricity e.

in the omnidirectional view. Mathematically, we let each
object vector composed by an ellipse location α, β ∈ R, an
ellipse size s ∈ R, an ellipse rotation γ ∈ R, an ellipse
eccentricity e ∈ [0, 1), and a feature vector f ∈ Rdf . The
layout generator can be defined by a function that maps
X ∈ RW×H×3 7→ {(αi, βi, si, γi, ei, fi)}ni=1 ∈ Rn×(5+df )

where n is the number of object ellipses to generate, W and
H are respectively the width and height of the image X .

To make the object vectors adaptive to a GAN architec-
ture, we reshape them into an object layout L ∈ RW×H×d in
the same spatial dimension with X . Intuitively, we assume
that a pixel closer to an object ellipse should convey more in-
formation about that ellipse. This can be modeled by measur-

ing the distance d from each pixel (θ, ϕ) ∈ {(0, 2π], [0, π]}
to every ellipse center (α, β), where the tuple (θ, ϕ) is the
sphere coordinate of a pixel in a 360◦image. Calculating the
distance d requires geometric manipulations. An option is
to use geodesic distance on a sphere and model the object
as a circle instead of an ellipse. However, we found this
results in collapsed object size during training possibly due
to difficulty in modeling of irregular-shaped objects.

Instead, we propose the following distance calculation,
which is visualized in Fig. 2. We summarize the main steps
in calculating d as follows. First, we align the sphere image
center with the ellipse location (α, β) by rotating the sphere
with the right-hand rule to obtain a rotated coordinate (θ′, ϕ′).
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Next, we project the sphere image specified by (θ′, ϕ′) to
2D polar coordinate system (ρ, ω). Finally, we count the
effect of ellipse rotation γ by adding it to polar coordinate ω
and shrink the shape of the ellipse with ellipse eccentricity
e to get the final distance d. We refer the readers to our
supplementary material for detailed equations.

After calculating distance d, we fuse the features f based
on the inverse of d and ellipse size s to make a feature opacity
o = sigmoid(s− d) for each ellipse. The feature vector at
a location (θ, ϕ) in the object layout L is computed using
alpha-compositing [10, 41]:

L(θ, ϕ) =

n∑
i

{fioi
n∏

k=i+1

(1− ok)}. (1)

3.2. Conditional scene decorator

We adopt the generator G and the discriminator D from
StyleGAN2 [23] for our conditional scene decorator. The
input of the decorator includes the background image X with
the object layout L. Like [40], we split L ∈ RW×H×df into
Lu ∈ RW×H×du and Ly ∈ RW×H×dy where df = du +
dy. Lu and Ly capture the structure and style information
of the input scene, respectively. These maps are input for
the generator G where Lu is considered for convolution
operations and Ly is considered for spatial modulation [40].

To further strengthen the conditioning ability on X and
preserve its high-frequency information, we concatenate Lu

and X and pass the concatenated result to G pyramidally.
The output of G is a synthetically decorated image Ŷ , which
is then classified (as real vs. fake) by the discriminator D.

3.3. Scene emptier

Ideally, removing decorated objects from the image Ŷ
should result in the background X . We apply this duality to
reinforce the generation quality of our model. Specifically,
we create a scene emptier E that transforms a decorated
image of a scene into an empty version of that scene. The
emptier is implemented as an encoder-decoder architecture
(see our supplementary material). We pretrain E together
with an unmodified version of the discriminator from Style-
GAN2 [23], denoted as Demp, using the following losses:

LGemp
= EY [1−Demp(E(Y ))], (2)

LDemp
= EX [1−Demp(X)] + EY [Demp(E(Y ))], (3)

Lrecon = ∥X − E(Y )∥22, (4)
Lemp = LGemp

+ LDemp
+ Lrecon, (5)

where Y and X represent a ground-truth decorated image
and an empty image from training data.

Given the decorated image Ŷ , the produced background
E(Ŷ ) from the pretrained scene emptier is used to form a

cycle consistency loss between E(Ŷ ) and X to train the
scene decorator. We note that the scene emptier and the
cyclic constraint are necessary for the conditioning ability
and generation ability of our model. This is because scene
decoration is a weakly-constrained problem as there could
be multiple solutions given a single background. Therefore,
directly comparing the generated content Ŷ with its ground-
truth Y via pairwise losses (MSE, perceptual loss) would
hinder the diversity of the synthesis since there is only one
ground-truth decoration per input image. The scene emptier,
with cycle-consistency loss, can relax the hardness of the
pairwise losses while enforcing the background consistency.

We emphasize that the selections of the architecture for
E and Demp are not of significance as the decorated-to-
empty translation task is dual with, but less challenging than
the empty-to-decorated translation task, which rigorously
requires reasonable object arrangements. This observation
allows us to choose a simpler design for the emptier. As
shown in experimental results, a simple emptier already
suffices to strengthen the entire scene decoration process.

We opt for pretraining the scene emptier before training
the scene decorator as it leads to improved generation qual-
ity with the cycle consistency loss being a critic. This is
explained by that with pretraining, the emptier is trained
only with ground-truth decorated images and so it implicitly
boosts the decorator to generate ground-truth-like results to
fit the cycle consistency loss. In contrast, when the emptier
is jointly trained with the scene decorator from scratch, the
emptier can learn to empty low-quality decorated images
synthesized in early iterations, and eventually tolerates such
low-quality images in the learning process, degrading the
overall performance of the entire pipeline.

3.4. Horizontal circular padding

A typical property of a panorama image is that the left and
right boundaries loop around. However, convolutional layers
in a neural network are weak in capturing information across
the left-right boundaries of panorama images. Like [46], we
overcome this issue by applying circular padding. Precisely,
for all the convolutional layers in our networks (L, G, D), we
circularly pad pixels from the left to the right boundary and
vice versa prior to performing convolutions, while regular
padding is applied to the top and bottom boundaries.

3.5. Training objectives

Given the pretrained emptier E, we train our entire model
by a loss Ltotal:

Ltotal = λGAN (LG + LD) + λcycleLcycle, (6)

which includes GAN losses (LG, LD) and a cycle loss Lcycle

that leverages the emptier E to impose a cyclic constraint
on the background image X; λGAN and λcycle are the coef-
ficients of the corresponding losses, respectively.
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The losses LG and LD are defined as:

LG = EŶ [1−D(Ŷ )], (7)

LD = EŶ [D(Ŷ )] + EY [1−D(Y )], (8)

where Y is a decorated image from the ground truth.
The cycle loss Lcycle constrains the consistency of the

background image X and the empty version E(Ŷ ) made by
the emptier E via a reconstruction loss:

Lcycle = ∥X − E(Ŷ )∥22. (9)

4. Experiments
4.1. Dataset

We trained and evaluated our method on the Structured3D
dataset [63]. To the best of our knowledge, it is the only
dataset that contains a significant amount of paired unfur-
nished and furnished 360◦images. The Structured3D dataset
provides 21,835 360◦image pairs rendered from distinct
rooms in 3,500 indoor scenes. We trained our method and
report its performance only on the bedroom subset and living
room subset of the Structured3D dataset since only these
two sets contain a sufficient number of images for training.
We split the bedroom subset into 3,318 training and 350 test
images, and the livingroom subset into 1,900 training and
237 test images. We also tested our model on the test set
of the Zillow Indoor Dataset (ZInD) [9], which consists of
4,359 undecorated 360◦images.

To increase the scale of the training data (for the bedroom
subset), we applied panoramic-specific data augmentation.
Particularly, except for random horizontal flipping, we imple-
mented random horizontal circular translation on panorama
images. Since the content crossing the left-right boundaries
of a panorama image is connected, we circularly padded a
random number of columns of pixels at the left to the right
boundary to construct more panorama images.

4.2. Baselines

Our primary goal is to synthesize a decorated 360◦image
given an unfurnished 360◦image and to provide a certain
level of object control. This task could be partially tackled
by conditional image-to-image (I2I) translation methods as
they translate images to a target domain although they do not
provide controllability over the generated objects. Therefore,
we compare our method with well-known and state-of-the-
art I2I works including Pix2PixHD [54] that uses a one-to-
one paired reconstruction loss to model domain translation,
StarGANv2 [8] that learns a one-to-many image translation
model, and StyleD [27] that learns to implicitly categorize
images in the target image domain and provide translation
control towards categorized image domain.

For conditional layout-based generation methods, we
compare our work with the methods by Pang et al. [38] and

He et al. [13] which achieve state-of-the-art performance in
conditional image synthesis for scene decoration. As these
methods additionally require ground-truth object labels and
bounding boxes (not used in our model), to adapt them to
our task, following [38], we generate object layouts by ex-
tracting object bounding boxes from semantic and instance
maps from the ground-truth of the Structured3D dataset.

4.3. Implementation details

We present implementation details of our layout generator,
decorator, and emptier in the supplementary material. We
set the number of object ellipses n to 20 and the feature
dimension df to 1024. The emptier and the entire model are
trained using the Adam optimizer [28] with a learning rate
of 0.01. We set λGAN = 1 and λcycle = 5. The model was
trained on equirectangular images. However, since several
baselines require square images for training, we reshaped
rectangular images into square images in both training and
testing. Particularly, we experimented with our methods and
other baselines in Sec. 4.4 under 512× 512 resolution and
ablation study in Sec. 4.5 under 256× 256 resolution.

4.4. Results

Quantitative results. We quantitatively evaluate our method
and compare it with other baselines using the Frechet In-
ception Distance (FID) [16] and Kernel Inception Distance
(KID) [3] metrics. FID and KID assess the generation qual-
ity of a method by measuring the similarity (in feature space)
between images generated by that method and those from
the ground-truth. We use KID×103 in all experiments.

As reported in Table 1, our method outperforms all the
baselines on both FID and KID scores. The conditional
layout-based methods generally perform better than I2I meth-
ods except for the Pix2PixHD [54]. We speculate the reason
is that layout-based methods receive extra hints from explicit
object layout to better model object distribution. Meanwhile,
I2I methods commonly have difficulty in object understand-
ing, except for the Pix2PixHD [54] that uses a one-to-one
paired loss (to ground truth decorated images).
Qualitative results. We qualitatively compare our method
with the baselines in Figure 3. As shown in the results, our
method generates photo-realistic images in the 360◦viewer
with plausible furniture arrangements. Background details in
input images are well maintained. More importantly, while
I2I baselines show difficulty in generating objects in the
360◦setting, our model can create decent results with proper
object distribution without using any explicit object labels.
Compared with other layout-based generation results, our
results also have fewer visual artifacts and more realistic
object texture.
Controllability. To illustrate the controllability of our
method over the generated content, we manipulate object
vectors generated by the layout generator. In particular, as
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(a) Input

(b) Pix2PixHD

(c) StarGANv2

(d) StyleD

(e) Pang et al. [38] (with object layout)

(f) He et al. [13] (with object layout)

(g) Ours

Figure 3. Visualization of the generated 360◦images. Compared to ours, Pang et al. [38] and He et al. [13] require an additional explicit
object layout as input. More results are in the supplementary material.
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bedroom living room

Method FID ↓ KID ↓ FID ↓ KID ↓
Pix2PixHD [54] 73.33 20.56 83.64 14.20
StarGANv2 [8] 81.04 36.87 99.03 47.46
StyleD [27] 96.41 78.54 104.79 65.31

He et al. [13] 68.97 24.22 113.58 54.80
Pang et al. [38] 71.83 26.64 99.31 41.28

Ours 64.55 11.61 76.81 6.30

Table 1. Quantitative results. Note that He et al. [13] and Pang
et al. [38] require explicit object layout for training and inference.
Lower FID/KID scores indicate higher image generation quality.

our layout generator is trained in an unsupervised manner,
we can only obtain the semantics of object vectors in a
synthesized image after the image is generated. Through
matching object ellipses via their locations and shapes with
generated objects, we then select ellipses in the layout for
object manipulation. We observe from our results that, oper-
ations such as minimizing the object ellipse size s or moving
the ellipse location (α, β) result in the removal or translation
of corresponding objects. Since the training of the model
is conducted without explicit object labels, multiple object
ellipses may contribute to a single object of a bigger size.
Note that some object ellipses may not be strictly bound to
any generated objects. We hypothesize that the generated
object layout recommends possible furniture arrangements
for the decorator to consider. The decorator may ignore
some arrangements to produce a more plausible output. We
illustrate the controllability of our method in Figure 4, which
shows the diversity of generated images by manipulating the
learned object layout.
Generalization to real-world images. We validate the
generalization ability of our method on real-world scenes
from the ZInD. As shown in Figure 5, our model generates
plausible decorated images given real-world undecorated
360◦images. Fine objects can also be generated to fit differ-
ent bedroom structures.

To quantitatively evaluate the generalization quality, we
run our model and all the I2I baselines on the ZInD. We do
not include the layout-based methods in this experiment due
to lack of ground-truth object labels. We evaluate all the
methods using FID and KID scores on both the ZInD and
the decorated split of the Structured3D dataset. The reported
results in Table 2 show the superior generalization ability of
our method over all the I2I baselines on real-world data.
Emptier results. As mentioned, our emptier adopts a simple
architect but produces sufficient emptying results for our
pipeline to reinforce the generation ability. For reference,
we qualitatively show the results of our emptier in Figure 6.

(a) Remove wardrobe and remove TV

(b) Shift lamp layout left (move to the camera top right) and remove bed

(c) Remove TV and shift bed rightward (new bed at the opposite wall)

Figure 4. Perform removal and translation manipulation on the
object layout to control the generation of objects. (a), (b), and
(c) show different sets of controls over different generated images.
For each set of controls, the top left is the original image before
manipulation, the top right is its object layout and the type of
manipulation on specific object ellipses, bottom left and right are
the generated image and object layout after the manipulation.

4.5. Ablation studies

Effectiveness of the conditional layout generator. Recall
that the layout generator creates a group of object vectors
from an input image. These vectors are fused into an ellipse-
like 360◦object layout for further generation. To validate the
layout generator, we disable it in our pipeline and simply
pass the input image to the scene decorator. Furthermore,
to validate the 360◦setting for the object layout, we do not
apply the 360◦conversion in Eq. (1) but rather fuse all raw
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vs. Structured3D vs. ZInD

Method FID ↓ KID ↓ FID ↓ KID ↓
Pix2PixHD [54] 114.70 71.94 93.29 75.30
StarGANv2 [8] 93.56 49.47 73.73 58.80
StyleD [27] 102.02 70.36 59.43 45.78

Ours 88.86 47.29 51.56 33.74

Table 2. Quantitative evaluation on real-world images from the
ZInD and the decorated split of the Structured3D dataset.

(a) Input (b) Generated

Figure 5. Generation results of our method on real-world scenes.
Input images are from the 360◦bedrooms of the ZInD [9]. More
results are in the supplementary material.

Method FID ↓ KID ↓
w/o layout generator 99.64 72.33
Traditional 2D layout [10] 75.27 25.57
Ours (full pipeline) 69.17 19.54

Table 3. Effectiveness of our proposed 360◦object layout.

pixels into a naive 2D layout (like in BlobGAN [10]). We
report the results of this experiment in Table 3, which clearly
shows the effectiveness of our layout design.
Effectiveness of the pretrained emptier and cycle loss.
We show the effectiveness of the pretrained emptier and
cycle loss in our pipeline in Table 4. Specifically, in this
experiment, we disable the emptier and remove the cycle

(a) Input

(b) Emptier Output

(c) Ground-truth

Figure 6. Qualitative results of our emptier. Inputs are the ground-
truth furnished 360◦images from the Structured3D dataset.

Emptier Consistency loss FID ↓ KID ↓
w/o emptier N/A 91.28 34.40
w/o emptier pairwise loss 73.40 23.77

w/o pretraining cycle loss 76.74 23.67
pretraining cycle loss 69.17 19.54

Table 4. Effectiveness of our proposed scene emptier.

Method FID ↓ KID∗ ↓
w/o pano. data augmentation 72.16 25.37
with pano. data augmentation 69.17 19.54

Table 5. Effectiveness of the panoramic-specific data augmentation.

loss from the total loss. We also consider replacing the cycle
consistency loss with a pairwise loss. We also validate the
necessity of pretraining of the emptier. Table 4 verifies the
improvement gained by the pretraining and the cycle loss.

Effectiveness of the panoramic-specific data augmenta-
tion. The improvements of our panoramic-specific data aug-
mentation are shown in Table 5, which validates the benefits
brought by the increased data richness.

Backbone selection. We adopt StyleGAN2 [23] for our
decorator due to its robustness proven in various tasks and
datasets. Our method is not limited to a specific backbone.
To prove this, we experiment with our pipeline on different
backbones and report the results in Table 6.
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Backbone FID ↓ KID∗ ↓
LightweightGAN [36] 84.29 35.93
StyleGAN2-ADA [20] 69.32 21.09

StyleGAN2 [23] (in our pipeline) 69.17 19.54

Table 6. Ablation study of backbone selection.

Figure 7. User study results. We show the average rankings and the
percentage of the participants selecting the methods as ranking 1st.
The symbol S and Z refer to the Structured3D and ZInD. PR and
OA refer to photo-realism and object arrangement.

4.6. User study

We conducted a user study on the generation quality of
our method and other baselines. We presented generated
360◦images in perspective views to participants. Since ob-
jects are often generated at the middle and bottom of output
images, we randomly rendered two perspective views with
the camera facing toward these areas. We took generation
results on both the Structured3D and ZInD, then asked par-
ticipants to rank the results in regard to image photo-realism
and quality of furniture arrangement among our work and
other baselines. For the Structured3D dataset, we evaluate
Pix2PixHD [54], Pang et al. [38], and He et al. [13]. For
the ZInD, benchmark Pix2PixHD [54], StarGANv2 [8], and
StyleD [27]. Figure 7 shows the results of the user study
with 35 participants. It is clearly seen that our generated
images are preferred by the participants for both the datasets
and in terms of photo-realism and furniture arrangement.

5. Conclusion

We propose a conditional image generative model to
solve the task of automatic neural scene decoration in the
360◦viewer. Our method offers immersive experiences of
indoor scenes while enabling the controllability of generated
content. We show that our method can generate realistic
360◦images with diverse furniture layouts on the synthetic
Structured3D dataset and generalize well to the real-world
Zillow indoor dataset. As 360◦images provide better context
for scene understanding, an interesting research direction
is to incorporate structural and semantic scene understand-
ing into layout and image generation to improve furniture

arrangement and object controllability. Our method also
shares the limitations of generative models, i.e., the gener-
ation quality largely depends on the scale of the training
dataset, which we aim to improve in our future work.
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