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Abstract

Robustness to natural distribution shifts has seen re-
markable progress thanks to recent pre-training strategies
combined with better fine-tuning methods. However, such
fine-tuning assumes access to large amounts of labelled
data, and the extent to which the observations hold when
the amount of training data is not as high remains unknown.
We address this gap by performing the first in-depth study
of robustness to various natural distribution shifts in dif-
ferent low-shot regimes: spanning datasets, architectures,
pre-trained initializations, and state-of-the-art robustness
interventions. Most importantly, we find that there is no
single model of choice that is often more robust than others,
and existing interventions can fail to improve robustness on
some datasets even if they do so in the full-shot regime. We
hope that our work will motivate the community to focus on
this problem of practical importance. Our code and low-
shot subsets are publicly available at this url.

1. Introduction
In the past decade, Computer Vision has made significant

progress due to advanced architectures like Convolutional
Neural Networks (CNNs) and Vision Transformers (ViTs),
large datasets, and sophisticated training strategies [1, 2,
3, 4]. However, early learning techniques heavily focused
their evaluation on ImageNet [5] performance, which raised
concerns about their ability to generalize to distribution
shifts [6, 7]. To address this, researchers have proposed a
wide-range of evaluation datasets [8, 9, 10, 11, 12] that can
be used to measure out-of-distribution (OOD) performance
of models trained and validated with in-domain (ID) data.

Recent methods [13, 14, 15, 16, 17] use self-supervised
or large-scale vision-language pre-trained models (such as
CLIP [4]) and fine-tune them on fully labelled ID data to
achieve impressive performance on such datasets. Unfortu-
nately, fine-tuning requires large amounts of data and com-
pute that may not be accessible to most practitioners. More-
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Figure 1: Low-Shot Robustness Setting. (a) We assume access
to a pre-trained model trained on large-scale datasets such as Ima-
geNet [5] and limited in-domain images (in the order of thousands)
for training. We use different kinds of fine-tuning methods that
have been shown to improve robustness when there is typically or-
der of magnitudes higher training data. (b) We then evaluate the
(low-shot) fine-tuned model on out-of-domain (OOD) data.

over, it can be difficult and expensive to collect and consis-
tently annotate such data, especially in settings like camera
traps where images can vary significantly in quality, light-
ing, and pose (e.g iWildCam [18]). Such challenges are
also echoed by prior work [19] and compounded by the fact
that many images may belong to rare or endangered species,
making annotations even more difficult to obtain. There-
fore, it is important to study which models and fine-tuning
methods provide strong OOD robustness performance when
trained with few ID images. We refer to this setting of fine-
tuning a pre-trained model on low-shot ID images followed
by evaluation on OOD images as the “low-shot robustness”
setting (see Fig. 1).

From works that demonstrate robustness in the full-
shot regime, we seem to arrive at the following conclu-
sions for robustness to natural distribution shifts in the full-
shot regime: (1) Amongst ImageNet pre-trained initializa-
tions, SSL ViTs are more robust than their supervised and
CNN counterparts, with the more recent ones being better
[13, 14]. (2) Even without additional robustness interven-
tions (i.e. methods to improve robustness), pre-trained mod-
els on large external datasets such as CLIP [4] provide supe-
rior robustness [16]. (3) Such models when combined with
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state-of-the-art robustness interventions lead to significant
robustness improvements on several datasets [15, 16, 17].
In this paper, we question to what extent these conclusions
hold true when the amount of training data is not as high.

Overall, we perform the first in-depth study of robust-
ness to various natural distribution shifts in different low-
shot regimes: spanning datasets, architectures, pre-trained
initializations, and state-of-the-art robustness interventions.
Through our experiments, we aim to answer the following
key questions:

Q1. For ImageNet pre-trained models, what kind of pre-
training strategies and architectures are most effective for
robustness in low-shot regimes?
A: Self-supervised ViTs generally perform better than
CNNs and the supervised counterparts (where applicable)
on both ID and OOD shifts, but no single initialization or
model size works better across datasets.

• For ImageNet and iWildCam [18] datasets, MSN
ViT [14] performs better than other models on OOD
shifts, however a smaller model size (ViTS-16)
works better for iWildCam but not for ImageNet.

• For Camleyon [20] dataset which is non object-
centric, DINO ViTS-16 [21] outperforms other
models including DINO ViTB-16 and MSN ViTS-
16 on both ID and OOD shifts.

Q2. Do models pre-trained on large external datasets,
such as CLIP, provide superior robustness compared to
ImageNet pre-trained ones on different datasets?
A: While we generally conform with the findings of re-
cent works [15, 16, 17] and find that models such as CLIP
[4] provide superior robustness on ImageNet and in full-
shot regimes, we find that ImageNet pre-trained models
can be better on other datasets such as iWildCam and
Camelyon in the low-shot regimes.

• Comparing ViTB-16 architecture on these datasets,
DINO initialization outperforms CLIP (zero-shot or
otherwise) and ImageNet-21k [22] supervised ViT
on both ID and OOD shifts.

• ImageNet supervised ViT [23] significantly outper-
forms ImageNet-21k supervised ViT on OOD shifts.

Q3. When using robustness interventions, does better ro-
bustness in the full-shot regime also imply better robust-
ness in the low-shot regimes?
A: Not always. We find that depending on the initializa-
tion, existing interventions can fail to improve robustness
in the full-shot regime or in some of the low-shot regimes
for datasets other than ImageNet.

• On iWildCam, interventions often fail to improve
robustness with MSN ViTB-16 in the full-shot

regime. On the other hand, only WiSE-FT [16] sig-
nificantly improves robustness with CLIP ViTB-16
in both the full and low-shot regimes.

• On Camelyon, while interventions often improve
robustness in the full-shot regime for both MSN and
CLIP ViTB-16, they fail to do so either in extreme
(∼ 3000 images) or in moderate (∼ 15000 images)
low-shot regimes, except WiSE-FT with CLIP.

As highlighted by our findings, conventional wisdom
for robustness to natural distribution shifts in the full-shot
regime might not apply in the low-shot regimes, and should
be seen as an important challenge for future work.

2. Related Work
Robustness studies. Real-world models may encounter
and struggle to generalize on data distributions different
than the ones used for training [24, 25]. Previous works
have studied such generalization capability of models un-
der synthetic [26, 27, 28, 29, 30, 31] and natural distribution
shifts [7, 8, 9, 10, 11, 12]. Researchers have also looked at
the effect of architecture, i.e. CNNs and ViTs on robust-
ness to different kinds of shifts [32, 33, 34, 35] and distor-
tion robustness of several models in comparison to humans
[36]. In particular, [37] performs a large-scale study of sev-
eral supervised models and finds that interventions used for
synthetic shifts offer little to no robustness gains for natu-
ral distribution shifts. On the other hand, accuracy under
natural distribution shifts can often be reliably estimated
by the in-distribution accuracy [38, 39, 37, 40] except for
some shifts [41, 42]. Crucially, these works perform eval-
uations after training on fully labelled datasets with hun-
dreds of thousands or millions of images which can be out
of reach for most practitioners. While some recent works
[43, 19, 44] attempt to study the impact of training data
amount on out-of-distribution robustness, they do not adopt
the recent pre-training strategies [4, 21, 14] and fine-tuning
techniques [15, 16, 17] that have led to unprecedented ro-
bustness gains. We therefore adopt such methods and per-
form experiments in the low-shot regime to observe its im-
pact on robustness to various natural distribution shifts.
Self-supervised learning. Researchers have shown self-
supervised learning (SSL) to be better or on-par with su-
pervised learning for pre-training deep networks for vari-
ous downstream tasks [45, 46, 21, 47, 13, 14] and we refer
the reader to [48, 49] for thorough literature reviews. Re-
cent methods that leverage ViTs [13, 14] demonstrate supe-
rior robustness to some natural distribution shifts [9, 10, 11]
compared to previous state-of-the-art methods without ad-
ditional interventions. However, such evaluations are per-
formed only after fine-tuning on full ImageNet and whether
the trend holds for other datasets and in different low-shot
regimes remains an open question. We aim to address this
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gap in our work by evaluating some of the most recent SSL
ViTs on a variety of datasets and distribution shifts, also
comparing with CNNs and the supervised counterparts.
Few-shot learning. Few-shot learning aims to generalize to
novel classes from a few samples belonging to these classes
[50, 51, 52]. While meta-learning based approaches used to
be popular on standard benchmarks [53, 54, 55, 56], a grow-
ing wave of research showed that simpler transfer learning-
based approaches can also achieve competitive performance
[57, 58]. Recently, [59] conforms with this finding on
the more challenging cross-domain few-shot learning (CD-
FSL) scenario where the source and novel classes belong
to different domains. Since then, works often perform SSL
pre-training on the source data followed by low-shot fine-
tuning on the few examples of novel classes [47, 60, 61].
However, unlike the (cross-domain) few-shot scenario, we
use the target or out-of-distribution (OOD) data only for
evaluation purposes similar to most other robustness stud-
ies. Nonetheless, we use the classifiers adopted in [59] and
present their detailed comparison on different datasets and
associated design choices in section 1.2 of appendix. We
discuss other related works that are either not applicable or
already described in our experiments in appendix Sec. 6.

3. Preliminaries: Robustness Metrics

Although using out-of-distribution (OOD) shifts to mea-
sure absolute performance can suggest robustness, it over-
looks the in-domain (ID) performance of a model. As
pointed in [37], two models with similar OOD performance
can have vastly different ID performances. A better defi-
nition of robustness should consider the OOD performance
beyond what is expected from achieving some level of ID
performance. Therefore, to measure robustness, in addition
to absolute performance comparison we also adopt the ef-
fective and relative robustness framework used in previous
works [7, 37, 16]. We now describe these metrics in detail.

Key to measuring effective robustness is establishing an
expected baseline OOD accuracy given some ID accuracy
x. This is established by computing a log-linear fit β(x)
over ID and OOD accuracies, i.e. accsid and accsood respec-
tively, for a set of standard models fs

1 , f
s
2 , . . . f

s
n as:

β(x) = σ(w logit(x) + b) (1)
where logit(x) = ln 1

1−x and σ is the inverse of the logit
function. In practice, β(x) is obtained by mapping each
point (x, y) → (logit(x), logit(y)) and solving linear re-
gression. This can be visualized by plotting (accsid, accsood)
on a scatter plot with the x and y axes denoting ID and OOD
accuracies respectively.

Once obtained, effective robustness of an “intervention”1

1For models pre-trained on large external datasets such as CLIP [4],
it’s unclear what datasets are considered in or out-of-distribution, so we
exclude it from the standard set of models and treat it as an intervention.

Dataset Low-Shot Regimes (Imgs / Class)
Extreme Moderate High

1 ImageNet [5] 1 5 ∼ 13
2 iWildCam [18] 1-480 1-4802 1-9604
3 Camelyon [20] 1500 7500 15000

Table 1: Different Low-Shot Regimes. We consider low-shot
regimes with similar number of images for different datasets and
describe them in more detail in section 4.1.

r applied on the model fs, i.e. fr = (accrid, acc
r
ood) can be

expressed as:
ρ(fr) = accrood − β(accrid) (2)

which outlines if the intervention leads to OOD accuracy
beyond what is expected from having a higher ID accuracy.

While effective robustness is important, it is not enough
to provide a comprehensive evaluation of models, especially
in the low-shot regimes. An “intervention” on a model may
result in high positive ρ(fr), indicating effective robust-
ness, but it could also decrease both ID and OOD accura-
cies which is not desirable. Thus, in addition to effective
robustness, we measure relative robustness by assessing the
impact of an intervention on OOD accuracy as:

τ(fr) = accrood − accsood (3)
Following [37], an intervention r is said to improve the

robustness of a model fs only when it exhibits both ef-
fective and relative robustness, that is, ρ(fr) > 0 and
τ(fr) > 0. However, our experiments indicate that inter-
ventions frequently lack simultaneous effective and relative
robustness across various low-shot regimes. For simplicity,
we refer to ρ(fr) as ρ and τ(fr) as τ .

4. Experimental Setting
Following prior work, we assume full label-space over-

lap and study image classification under natural distribution
shifts [4, 16]. Additionally, we refer to low-shot as 103−104

images, as also shown in Fig. 1 and table 1. We describe our
experimental setting with the associated design choices and
justifications in this section.

4.1. Datasets and Low-Shot Regimes

Prior studies [37, 40] have observed a linear trend for
certain supervised models on ImageNet [5] and iWild-
Cam [18] datasets after applying the logit function (see
Eq. 1), while contrasting evidence has been reported for
other datasets, such as Camelyon [20], in [42]. To obtain
a comprehensive view of robustness in low-shot regimes,
where a strong correlation between in-domain (ID) and out-
of-distribution (OOD) performances may or may not exist,
we conduct experiments on all three datasets.
ImageNet & Distribution Shifts. ImageNet (IN1k) [5] is
an extensive dataset for image recognition that consists of
objects and scenes belonging to one of the 1000 classes.
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Figure 2: Datasets & Distribution Shifts. We show some sam-
ple images from ImageNet [5], iWildCam [18], and Camelyon
[20] datasets and associated distribution shifts [9, 11].

For training, we use the subsets with 1, 5, and ∼13 images
per class (see table 1 row 1) used by [14] for comparison of
self-supervised methods based on in-domain (ID) accuracy.
We use the IN1k validation split for model validation based
on top-1 accuracy.2 For testing, we report the average top-1
accuracy on the following 5 natural distribution shifts:
ImageNet-R (IN-R) [11] has 200 classes in common with
IN1k and rendition images such as sculptures and paintings.
ImageNet-S (IN-S) [9] consists of around 50,000 images of
sketches, similar to the size of IN1k’s validation set.
ImageNet-A (IN-A) [10] has 200 classes in common with
IN1k and images that are classified incorrectly by a super-
vised ResNet-50 (RN50) [1] trained on IN1k.
ImageNet-v2 (IN-v2) [7] consists of similar images as in
IN1k’s test set but from a different distribution.
ObjectNet (ON) [8] has 113 common classes with IN1k and
images that vary in rotation, background, and viewpoint.
iWildCam. The iWildCam [18] dataset comprises images
of 182 animal species captured by various cameras traps,
which are treated as different distributions. We use the
WILDS benchmark [12] and manually curate low-shot sub-
sets from train shift for training which has 129809 im-
ages, val-id shift for validation which has 7314 images,
and val-ood shift for testing which has 14961 images.
Since these sets have an imbalanced class distribution, We
sample images from the different classes in 1%, 10%, and
20% ratios from the train shift, ensuring that each class
has at least one image. This results in low-shot subsets with
1370, 12973, and 25931 images, respectively (see table 1
row 2). Additionally, we report average per-class accuracy
for both validation and testing.

2While the optimal model checkpoint for ID performance might not
be so for OOD performance, it is a widely adopted practice [37, 15] that
allows for a fair comparison across different methods.

Camelyon. The Camelyon [18] dataset consists of 96× 96
histopathological images that may or may not contain tu-
mor tissue, resulting in 2 classes. These scans are sourced
from different hospitals that are considered different dis-
tributions. We again use the WILDS benchmark [12] and
manually curate low-shot subsets from train shift for
training which has 302436 images, val-id shift for val-
idation which has 33560 images, and val-ood shift for
evaluation which has 34904 images.3 The shifts are well-
balanced, so we create subsets containing 1500, 7500, and
15000 images per class (see table 1 row 3). We report the
average per-class accuracy for validation and testing and
find that it is within 1 percentage point of top-1 accuracy.

4.2. Standard Models

Recall that to establish a baseline out-of-distribution ac-
curacy β(x) for a given in-domain accuracy x, fitting Eq. 1
for a set of “standard” models is required. We consider a
standard set of ImageNet (IN1k) pre-trained models for this
purpose, which are not subjected to additional robustness
interventions or pre-training data. The selection of these
models is based on their low-shot ID performance compari-
son on IN1k [62] or average performance on various down-
stream tasks [47]. We show the architectures used in our
experiments ordered by the number of parameters (i.e. size)
below. More detailed comparison is also shown in table 6
in appendix.

ViTS-16 ≈ RN50 < ViTB-16 ≈ RN50w2 < ViTL-16
Self-supervised models. We include the following self-
supervised (SSL) models for our experiments.
SwAV [63]: SwAV is a SSL method for pre-training CNNs
by predicting cluster assignments for different augmented
views of an image and enforcing consistency between them.
We use the RN50 and RN50w2 checkpoints for all datasets.
DINO [21]: DINO self-trains a student network to match
the feature embeddings of augmented local and global
views of an image to that of a teacher network which sees
only the global view. We use the RN50, ViTS-16, and
ViTB-16 checkpoints for all datasets.
MSN [14]: MSN matches the predicted cluster assign-
ments for masked and unmasked augmented views of an
image and performs well on low-shot ID evaluation on Im-
ageNet. We use the ViTS-16 and ViTB-16 checkpoints for
all datasets and ViTL-16 checkpoint for ImageNet.
Supervised models. For datasets other than ImageNet, we
additionally include DEIT [23] (ViTS-16, ViTB-16) and
supervised ResNet-50 from PyTorch [64]. Note that for Im-
ageNet, these models violate the “low-shot” condition as
they have already been trained with the full labelled dataset.

3We emphasize that the val-ood shifts are used only for evaluation.
While test-ood shifts are also available in WILDS benchmark [12],
they have similar creation processes but larger number of images than the
val-ood shifts, so we opt for the latter due to limited compute.
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Fitting Standard Models. To obtain the parameters (w and
b) of the log-linear curve for β(x) in Eq. 1 for a dataset,
we first train individual models from the standard set on
different low-shot subsets and full-shot subset (details in
Sec. 4.2). Fine-tuning and subset details are provided in
appendix, Sec. 2. We then evaluate the trained models on
both ID validation and OOD test shifts, out of which only
the former is used for hyperparameter tuning. In case of
multiple OOD test shifts, we calculate the average OOD
performance following previous work [16]. We assess the
quality of the curve fit via mean absolute error (MAE) and
coefficient of determination (R2) of the curve on these data
points, as shown in table 4. Finally, the curve β(x) is used to
calculate effective robustness of an intervention using Eq. 2.
Low-Shot Training. For low-shot training with the stan-
dard models, we freeze the pre-trained models and train a
classifier on top with the available training data. We com-
pare the following classifiers based on prior work in cross-
domain few-shot learning [59] – Logistic Regression [58],
Mean-Centroid Classifier [54], and Baseline++ [57] – and
select the best-performing one for each dataset. While Lo-
gistic Regression performs better or on-par on both ID and
OOD shifts for ImageNet and iWildCam, Baseline++ per-
forms better on Camelyon. We provide this comparison and
more details in section 1.2 of appendix.

4.3. Robustness Interventions

We consider some of the most recent methods for im-
proving robustness to natural distribution shifts and models
pre-trained on large external datasets as robustness interven-
tions (see Sec. 2). We briefly summarize them below:

LP-FT [15]: LP-FT follows a two-stage strategy of first
fine-tuning only the randomly initialized linear head fol-
lowed by fine-tuning the entire model end-to-end on fully
labelled datasets.

CLIP [4]: CLIP is a vision-language model that is pre-
trained on a large number of (∼ 400M) image-text pairs. It
shows strong zero-shot performance on several datasets and
is often used as the de-facto initialization by several works
[15, 17, 16].

WiSE-FT [16]: WiSE-FT applies a weight-space ensemble
between a zero-shot model such as CLIP and this model
fine-tuned on fully labelled datasets. For IN1k pre-trained
models, we ensemble between the weights of linear-probed
(LP) and LP-FT checkpoints due to the absence of a zero-
shot head. We use α = 0.5 unless mentioned otherwise.

Model Soups [17]: Model Soups uses a weight-space en-
semble of several models that are trained with a different
epochs, learning rates, weight decay, label smoothing [65],
mixup [66], and RandAugment [67]. Due to limited com-
pute and the scale of experiments, we use a greedy soup

with 9 models and again use linear-probing for the head ini-
tialization. We follow the paper for hyperparameter values.

RobustViT [68]: RobustViT first uses an unsupervised ob-
ject localization method such as TokenCut [69] to dump
offline segmentation maps. It then optimizes a supervised
ViT’s saliency maps [70] to resemble these offline segmen-
tation maps while maintaining its classification accuracy.

For a uniform comparison across datasets, we apply the
relevant interventions on MSN ViTB-16 and use it as the
reference model for computing effective and relative robust-
ness (see Sec. 3). Additionally, we include CLIP with LP-
FT, WiSE-FT, and Model Soups as interventions, based on
their reported performances [15, 16, 17] and strong perfor-
mance on ID and OOD shifts in our experiments. Despite
being amenable to low-shot training, it remains challeng-
ing to implement RobustViT on non-object centric datasets
such as Camelyon due to its requirement of offline seg-
mentation maps. We provide details on the hyperparameter
choices for every intervention in section 3 of appendix.

5. Results
We now present findings for 3 key questions from Sec. 1

– (1) among ImageNet pre-trained models, which ones are
more robust in low-shot regimes (see table 1) (2) how do
they compare with models pre-trained on larger datasets and
(3) do robustness interventions help in the low-shot regimes.

5.1. Comparing ImageNet Pre-trained Models

We compare ImageNet pre-trained models with similar
number of parameters (ViTS-16 and RN50) on the basis of
absolute ID and OOD performances in Fig. 3. For a uniform
comparison, we randomly initialize the classifier head (see
Sec. 4.2) and use the same hyperparameters for all models.
It can be seen that self-supervised (SSL) ViTs often perform
better than SSL CNNs on ImageNet and supervised ViTs
and CNNs on iWildCam and Camelyon datasets.

However, the best initialization and model size varies for
each dataset as shown in table 2. For a concise comparison,
we show the average ID and OOD performances across dif-
ferent low-shot regimes. MSN ViTB-16 outperforms DINO
ViTB-16 and MSN ViTS-16 on ImageNet, but not on iWild-
Cam where MSN ViTS-16 performs better on OOD shift.
Similarly, DINO ViTS-16 performs better than other mod-
els on both ID and OOD shifts on Camelyon.

Thus, while SSL ViTs perform better than SSL CNNs
and the supervised counterparts (where applicable) on both
ID and OOD shifts in the low-shot regimes, no single ini-
tialization or model size performs the best across datasets.

5.2. Pre-training Data Scale and Strategy

We question whether models pre-trained on large ex-
ternal datasets provide superior robustness over ImageNet
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Figure 3: Comparison of ImageNet pre-trained architectures
and initializations. With similar number of parameters, self-
supervised (SSL) ViTs generally perform better on both ID and
OOD shifts compared to SSL CNNs and the supervised counter-
parts where applicable.

ImageNet iWildCam Camelyon

ID OOD ID OOD ID OOD

1 MSN ViTS-16 [14] 58.99 21.51 26.41 19.99 83.62 75.67
2 DINO ViTS-16 [21] 53.78 19.09 24.78 19.75 88.08 85.09
3 MSN ViTB-16 [14] 61.40 22.81 24.78 19.65 86.40 78.84
4 DINO ViTB-16 [21] 56.72 21.98 27.40 19.82 86.93 84.33

Table 2: Comparison of ImageNet pre-trained self-supervised
ViTs. On average across low-shot regimes, no single self-
supervised initialization or model size outperforms others on ID
and OOD shifts across datasets.

(IN1k) pre-trained ones in the low-shot regimes without ad-
ditional interventions. We compare CLIP ViT and a su-
pervised ViT pre-trained on ImageNet-21k (IN21k) [3, 22]
with IN1k pre-trained ViT’s. We use the ViTB-16 architec-
ture with the same classifiers described in Sec. 4.2.

We again compare the absolute performance on ID and

ImageNet iWildCam Camelyon

ID OOD ID OOD ID OOD

1 CLIP zero shot [4, 16] 67.93 57.37 9.67 16.82 50.48 51.55
2 CLIP [4] 50.8 27.50 23.75 19.10 84.9 77.3
3 Supervised (IN21k) [3] N/A N/A 16.84 16.90 85.18 81.07
4 Supervised (IN1k) [23] N/A N/A 22.27 18.57 83.35 83.24
5 MSN (IN1k) [14] 61.40 22.81 24.78 19.65 86.40 78.84
6 DINO (IN1k) [21] 56.72 21.98 27.40 19.82 86.93 84.33

Table 3: Comparison between ViTs pre-trained on different
datasets. On average across low-shot regimes, ImageNet (IN)
pre-trained SSL ViT’s such as DINO are worse than CLIP on Im-
ageNet. However, it performs much better than CLIP and IN-21k
supervised ViT on iWildCam and Camelyon datasets.

OOD shifts on average across low-shot regimes. As with
the IN1k supervised models, IN21k supervised ViT violates
the “low-shot” premise so we don’t use it on ImageNet.
For CLIP zero-shot results, we match the implementation
of [16] and provide additional details in appendix, Sec 1.2.

As shown in table 3, CLIP’s zero-shot performance on
ID and OOD shifts on ImageNet is significantly better
than both CLIP and IN1k pre-trained models. However,
CLIP (zero-shot or otherwise) performs worse than IN1k
pre-trained models on iWildCam and Camelyon, on which
DINO performs better than other models. IN21k supervised
ViT often performs significantly worse than IN1k super-
vised ViT on these datasets, especially on OOD shifts.

Thus, IN1k pre-trained models can perform better on
both ID and OOD shifts than the models pre-trained on large
external datasets in low-shot regimes, on datasets such as
iWildCam and Camelyon.

5.3. Effect of Robustness Interventions

We question the extent to which existing robustness in-
terventions improve robustness in the low-shot regimes,
and we examine how the trend compares with the full-shot
regime. We present the dataset-wise observations below.

ImageNet. We show the results of this experiment in
Fig. 4. With MSN, interventions are largely effectively and
relatively robust in the different low-shot regimes, except
LP-FT in the high low-shot regime. While the interven-
tions are also effectively robust in the full-shot regime, they
are often not relatively robust, except RobustViT which im-
proves robustness in all regimes.

When coupled with CLIP, Model Soups and WiSE-FT
also become effectively and relatively robust in all data
regimes with the latter providing largest robustness im-
provements. Zero-shot CLIP also improves robustness sig-
nificantly in low-shot regimes (see table 5), suggesting that
not using the limited training data is a better approach.
However, we find that it is not the case on other datasets.

iWildCam. We show the results of this experiment in
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Figure 4: Effect of robustness interventions on ImageNet. Plots (a), (b), and (c) show performance of interventions in low-shot regimes
(see table 1). Plot (d) shows performance of interventions in the full-shot regime. Interventions located above the line (ρ > 0) and in the
blue region (τ > 0) are said to improve robustness (see Sec. 3). Interventions largely improve robustness in the low-shot regimes with
MSN ViTB-16, and in all data regimes when coupled with CLIP ViTB-16.

Figure 5: Effect of robustness interventions on iWildCam. Interventions often fail to improve robustness in both the full and low-shot
regimes with MSN ViTB-16. Only WiSE-FT with CLIP ViTB-16 improves robustness in all data regimes.

Dataset MAE ↓ R2 ↑
1 ImageNet [5] 1.75 0.94
2 iWildCam [18] 1.50 0.96
3 Camelyon [20] 3.44 0.50

Table 4: Quality of curve fit. Curve β(x) fit on the accuracies
of standard models (see Sec. 4.2) leads to a relatively higher MAE
and lower R2 on Camelyon, indicating the poor quality of fit.

Fig. 5. With MSN, interventions are often relatively but not
effectively robust in the low-shot regimes and neither effec-
tively nor relatively robust in the full-shot regime. Unlike
ImageNet, CLIP’s zero-shot performance is quite poor (see
table 5) and WiSE-FT with CLIP is the only intervention
which improves robustness in all data regimes.

Camelyon. We show the results of this experiment in
Fig. 6. Note that for Camelyon, the quality of curve β(x)

fit with the ID and OOD accuracies of standard models is
relatively low compared to other datasets as shown in ta-
ble 4, in which case relative robustness should be priori-
tized since it doesn’t rely on the quality of the fit. While
interventions improve relative robustness in the full-shot
regime with MSN, they fail to do so in the moderate low-
shot regime. Similarly, interventions improve robustness
in the full-shot regime with CLIP, but LP-FT fails to be
relatively robust in the moderate low-shot regime whereas
Model Soups fails to be relatively robust in both the extreme
and moderate low-shot regimes. Only WiSE-FT (α = 1)
with CLIP improves robustness in all data regimes. CLIP’s
zero-shot performance is near random as shown in table 3.

We show the effective and relative robustness of the in-
terventions in the full-shot regimes in table 5. To com-
plement our findings, we also highlight the interventions
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Figure 6: Effect of robustness interventions on Camelyon. Interventions often improve robustness in the full-shot regime with both
MSN and CLIP ViTB-16 but fail to do so in extreme or moderate low-shot regimes, except WiSE-FT with CLIP ViTB-16.

ImageNet iWildCam Camelyon

ρ ↑ τ ↑ ρ ↑ τ ↑ ρ ↑ τ ↑
Full-Shot Regime

1 LP-FT [15] 5.16 -0.61 -1.41 -0.17 -0.45 7.48
2 + CLIP 19.60∗ 13.77∗ -3.60 -6.09 0.37 11.28
3 WiSE-FT [16] 6.66 -0.86 -3.84 -5.87 6.22 12.66
4 + CLIP 22.24∗ 16.41∗ 3.98 4.78 2.85 14.18
5 Model Soups [16] 0.53 -10.58 -0.93 -0.14 -0.35 11.68

6 + CLIP 11.00† 4.29† 3.20 -4.84 5.93 9.50
7 RobustViT [68] 6.73 1.13 N/A N/A N/A N/A
8 CLIP zero-shot [4, 16] 30.28 10.79 8.46 -23.167 -14.63 -28.54

Table 5: Robustness intervention comparison. The table shows
effective (ρ) and relative (τ ) robustness of different interventions
in the full-shot regime. ∗ and † denote numbers obtained from
papers for ViTB-16 and ViTB-32 architecture respectively. Inter-
ventions that do not improve robustness in the full-shot regime
are shown in gray, while interventions that do so are shown in
black. Interventions that significantly improve robustness in both
the full-shot regime and majority of low-shot regimes are high-
lighted in blue for each dataset. Robustness results for the low-
shot regimes (as shown in Fig. 4, 5, and 6) are also provided in the
appendix. Most interventions significantly improve robustness on
ImageNet but not on other datasets, except WiSE-FT with CLIP.

which significantly4 improve robustness across both the
full-shot regime and majority of low-shot regimes for each
dataset. We see that (1) most interventions significantly im-
prove robustness on ImageNet but not on other datasets and
(2) no intervention significantly improves robustness across
datasets and data regimes, except WiSE-FT with CLIP.

We also measure the statistical significance of our results
by obtaining the mean and standard deviation across 2 dif-
ferent runs and show them in table 13 of appendix. We ob-
serve that the best performing interventions such as WiSE-

4We use the standard deviation of residuals obtained after fitting β(x)
to determine significance, and provide more details in appendix, Sec. 4.

FT with CLIP also exhibit small (within 2 pp) variance.
Limitations. We note that there are limitations to our study.
First, we were unable to theoretically analyze our results
due to the vast and empirical nature of our study. Recent
works [71, 72] demonstrate the data specificity of ViTs and
the global semantic invariance of SSL approaches such as
DINO, which can be helpful for this purpose. Second, we
were unable to observe the effects of in-domain SSL pre-
training on datasets other than ImageNet. Recent work [62]
has also shown that the current objectives of self-supervised
methods such as MSN and DINO might not be suitable for
class-imbalanced datasets (e.g. iWildCam). Third, while we
incorporate different kinds of augmentations and loss func-
tions as a part of interventions such as Model Soups, singly
analyzing their effect on robustness in low-shot regimes re-
mains an avenue for future work.

6. Conclusion

We conclude our study of low-shot robustness to sev-
eral natural distribution shifts, which addresses the gap in
the literature and marks the first in-depth study of its kind.
Taken together, our results demonstrate that: (1) Modern
architectures (i.e. ViT) and pre-training strategies (i.e. self-
supervised learning) lead to better robustness in low-shot
regimes, but the best initialization and model size is dataset
dependent. (2) Without additional interventions, large-scale
vision-language pre-training can be underwhelming com-
pared to ImageNet pre-trained models on datasets other
than ImageNet. (3) Robustness in the full-shot regime may
not imply robustness in low-shot regimes on datasets other
than ImageNet. While the performance of interventions is
largely dependent on datasets and initializations, ensem-
bling in weight-space seems promising to bridge this gap.
We hope that our study will motivate researchers to also fo-
cus on this problem of practical importance.
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