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Abstract

Curriculum design is a fundamental component of
education. For example, when we learn mathematics
at school, we build upon our knowledge of addition to
learn multiplication. These and other concepts must
be mastered before our first algebra lesson, which also
reinforces our addition and multiplication skills. Designing
a curriculum for teaching either a human or a machine
shares the underlying goal of maximizing knowledge
transfer from earlier to later tasks, while also minimizing
forgetting of learned tasks. Prior research on curriculum
design for image classification focuses on the ordering
of training examples during a single offline task. Here,
we investigate the effect of the order in which multiple
distinct tasks are learned in a sequence. We focus on
the online class-incremental continual learning setting,
where algorithms or humans must learn image classes
one at a time during a single pass through a dataset.
We find that curriculum consistently influences learning
outcomes for humans and for multiple continual machine
learning algorithms across several benchmark datasets.
We introduce a novel-object recognition dataset for human
curriculum learning experiments and observe that curricula
that are effective for humans are highly correlated with
those that are effective for machines. As an initial
step towards automated curriculum design for online
class-incremental learning, we propose a novel algorithm,
dubbed Curriculum Designer (CD), that designs and ranks
curricula based on inter-class feature similarities. We find
significant overlap between curricula that are empirically
highly effective and those that are highly ranked by our
CD. Our study establishes a framework for further research
on teaching humans and machines to learn continuously
using optimized curricula. Our code and data are available
through this link.

Full knowledge
 about math

teacher

Add Multiply Algebra

Human teacher teaches human students

Full knowledge
 about object
 recognition

teacher

AI teacher teaches AI students
Curriculum: which 
class should I teach 
students first?

Student 1 Student 2

Student 2Student 1

Figure 1: Curricula in classroom and machine learning
settings. In human education, a natural curriculum
designed by a knowledgeable math teacher prescribes
teaching, in order, addition, multiplication, and algebra.
Student 1 and Student 2 learn these concepts in a continuous
fashion. Similarly, in an image classification task, what is
the optimal curriculum for an AI teacher to continuously
teach AI students to recognize images?

1. Introduction

When learning mathematics, students continuously
advance through a curriculum that guides them to first learn
addition, then multiplication, and later algebra such that
each new concept both builds upon and reinforces existing
knowledge (Fig 1). Studies on curriculum development
in education show that careful design of curricula for
human students can enable an incremental learning process,
facilitating positive knowledge transfer to new tasks and
minimizing forgetting of learned tasks [55]. Drawing on
this inspiration, our goal is to develop a knowledgeable
artificially intelligent (AI) teacher (a “curriculum designer”)
that produces optimized curricula that enhance learning
outcomes of both human students and machine learning
algorithms (“AI students”).

A growing body of literature in the field of “curriculum
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learning” investigates the order in which training examples
are presented to machine learning (ML) algorithms. The
effects of curriculum on ML outcomes have been explored
in supervised [57, 71, 60, 66, 7], weakly-supervised [59, 53,
22], unsupervised [68, 57, 48], and reinforcement learning
(RL) [31, 19, 45] settings. Existing work in supervised
learning [57, 71, 60, 66, 7] has demonstrated improved
generalization ability and convergence speed through the
design of more effective curricula, but only by estimating
intra-class example difficulty and scheduling examples
within a single task. Unlike supervised classification
algorithms that require multiple passes over large, shuffled
training datasets to learn many classes in parallel, humans
learn a variety of tasks incrementally through a continuous
stream of non-repeating experience. This process is
more closely emulated in continual learning (CL) settings,
where ML algorithms learn a series of tasks one at a
time, and particularly in online CL settings where each
training example is shown only once [42]. Although
the presentation order of separate tasks is a central focus
in designing curricula for humans, the influence of task
order on offline and online CL outcomes remains largely
unexplored.

To address this question, we investigated the effects
of class presentation order (“curriculum”) during online
class-incremental CL by machines and humans. An
ideal learning algorithm in this setting would leverage
its knowledge of early tasks to more effectively learn
later tasks (forward transfer) while also avoiding forgetting
early tasks. The challenging problem of “catastrophic
forgetting” in artificial neural networks has been addressed
with a variety of CL-specific algorithms [61]. Since
each CL algorithm modulates the learning process using a
different strategy, we conceptualize different CL algorithms
as distinct AI students that may or may not maximally
benefit from the same curricula. Our empirical ML results
suggest that curriculum design choices greatly influence
knowledge transfer and forgetting across CL algorithms
and hyperparameter settings of each. We demonstrate a
strong correlation among different CL algorithms in the
relative effectiveness of different curricula. We also found
curriculum effects that are correlated among CL algorithms
in a continual visual question answering setting [36].

Building upon these findings, we propose an automatic
curriculum designer (CD), an algorithm that efficiently
designs and ranks curricula. In a nutshell, our CD enables
pairs of object classes that are nearer to each other in feature
space to be separated farther from each other in time during
the training processes of neural networks and humans.
Unlike pre-defined curriculum learning algorithms [59,
41, 63, 56], our CD does not require prior knowledge
from domain experts, nor any human intervention. Our
results demonstrate that curricula ranked highly by our

CD improve learning performance across multiple CL
algorithms.

To probe further whether the optimal curricula for
continual machine learning are also beneficial for human
learning, we conducted a series of human psychophysics
experiments and contributed a new novel-object recognition
CL benchmark. From the experiments, we observed a high
degree of agreement between the most effective curricula
for CL algorithms and humans.

Our main contributions to this work are as follows:
• We establish a methodology to study curriculum

effects in online class-incremental learning.
• We introduce a new novel-object recognition dataset

to benchmark the effectiveness of class-incremental
curricula for humans and CL algorithms.

• We quantify commonalities among empirically
optimal curricula for CL algorithms and humans.

• We propose an automated curriculum designer that
can design the optimal curricula and rank (score) the
existing curricula by their effectiveness.

2. Related Works
2.1. Continual Learning (CL)

CL strategies can be grouped into three categories:
weight regularization, replay, and architecture expansion.
Regularization methods constrain or regularize weight
updates during training on new tasks using information
from previous tasks [37, 10, 24, 30, 70, 35]. Replay-based
strategies involve storing a subset of examples from
previous tasks and interspersing them with training data
from newly encountered tasks to mitigate forgetting [65,
47, 2, 10, 44, 40, 5]. Architecture adaptation methods
involve expanding or restructuring neural networks to
assimilate new tasks [37, 24, 30, 70, 35, 20, 50, 17, 46,
52, 1]. CL methods are predominantly evaluated in offline
class-incremental settings where many passes over data
within each task are permitted. Researchers report average
performance over multiple runs with random class orders.
Here, we exhaustively study the effect of class presentation
order during online class-incremental learning, where only
one pass over the data within each task is allowed.

2.2. Curriculum Learning

Curriculum learning refers to learning with a meaningful
ordering of training examples, commonly from “easier”
to “harder” data [8, 3]. The efficacy of proposed
curricula is evaluated in terms of generalization to test
data and convergence speed during training. Previous
works in curriculum learning can be categorized into
predefined curriculum learning [8, 56, 12, 13] and automatic
curriculum learning [62, 29, 16, 21]. Predefined curriculum
learning entails designing a data scheduler or a difficulty
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measure with human priors. These algorithms work well
when designed for specific tasks, but generalize poorly to
out-of-domain tasks. In contrast, we propose an automatic
curriculum designer that can design and rank curricula
based on inter-class feature differences.

In automatic curriculum learning, most works adopt
data-driven approaches [29, 16, 21] and RL-based
approaches incorporating student feedback [54, 25, 15, 43,
51]. These methods are often deployed in teaching both
machines [59, 53, 22, 68, 57, 48, 31, 19, 45] and humans
[54, 25, 15, 43, 51]. In image classification settings,
curriculum learning approaches are almost exclusively
oriented toward measuring intra-class example difficulty.
Existing methods specifically focus on a single multi-class
object recognition task [64, 58, 49, 22] in which all
examples from each class can be trained on multiple times.
We deviate from previous studies in examining the order in
which classes or tasks are presented to the network, rather
than the ordering of training examples within one task.

One recent study highlighted how the most widely-used
curriculum design strategy (increasing difficulty) may not
always be optimal, and how anti-curricula (“harder” to
“easier”) or random orderings yield comparable results in
multi-class image classification settings [64]. The study
reported that curriculum effects become stronger when the
number of training iterations is limited. Aligned with this
constraint, we investigated the effect of curriculum on CL
algorithms under stringent online conditions where training
is limited to a single pass through the data.

3. Experiments
We conducted our experiments in the online

class-incremental learning setting. An image dataset
D comprises N object classes {c1, c2 · · · cN} with K
training images each. The objective is to propose a
temporal order of class presentation T from t1, t2 · · · tN
(a “curriculum”) such that a given CL algorithm A (a
“student”) yields the optimal learning outcome. That is, A
learns to adapt to new classes with minimal forgetting of
previously learned classes while progressing through T .

3.1. Datasets and Baselines

We used three datasets for our experiments: MNIST
(60, 000 training images, 10, 000 test images) [33],
FashionMNIST (60, 000 training and 10, 000 test images)
[67], and CIFAR10 (50, 000 training and 10, 000 test
images) [32]. Each dataset consists of 10 object classes.
Ideally, each curriculum is a permutation of 10 object
classes, resulting in a total of 10! (more than 3e6) possible
curricula per dataset. Thus, running all permutations is
infeasible due to limited computational resources. To
mitigate this issue, we introduced two paradigms: in
“paradigm-I”, we chose a subset of the dataset comprising

5 classes with 1 class per task, and in “paradigm-2”, we
made 5 tasks with 2 classes each. In both paradigms, the
order of the exemplars from the classes within a task is
fixed and only the task sequence is permuted, resulting in
a total of 5! = 120 curricula. Without loss of generality,
we only present and discuss results for paradigm-I. See
Sec S2 for details of class grouping, and see Sec S7-S9,
and Fig S11-S13, S18-S22, S24, S27, S28 for results in
paradigm-I. In general, the conclusions drawn in the first
paradigm also hold true in the second. In paradigm-I,
we used classes ‘0,’ ‘1,’ ‘2,’ ‘3,’ and ‘4’ from MNIST,
classes ‘coat,’ ‘dress,’ ‘pullover,’ ‘top,’ and ‘trouser’ from
FashionMNIST, and classes ‘airplane,’ ‘automobile,’ ‘bird,’
‘cat,’ and ‘deer’ from CIFAR10.

As we are the first to study curriculum learning in online
class-incremental learning, we used a random curriculum
designer as our baseline. The random designer randomly
ranks the 120 curricula for each dataset. We repeated the
random designers over 100 times with different random
seeds, resulting in 100 sets of 120 randomly ranked
curricula per dataset.

3.2. Continual Learning Algorithms

Among the CL algorithms surveyed in Sec 2.1, we
chose two weight regularization methods: Elastic Weight
Consolidation (EWC) [30] and Learning without Forgetting
(LwF) [37]. EWC estimates the importance of all weights
after each task and penalizes weight updates in proportion
to their prior importance in the loss function. LwF uses
the knowledge distillation loss [26] to regularize the current
loss with soft targets acquired from a preceding version
of the model. Replay-based CL algorithms involve joint
training on old and new samples and often yield superior
performance. We thus also include one replay method,
where the images from previous tasks are randomly selected
for the memory buffer and intermixed with the training
data in the current task for replays. We fix the memory
buffer size constant over all the tasks, which approximately
equals the size of storing 2% of the entire training set
in each dataset. See curriculum analysis of the replay
method in Sec S10 and Fig S25. However, these results
should be interpreted with caution since the replay sequence
of replay data interferes with the fixed class order in a
given curriculum. We evaluate EWC, LwF, and naive
replay alongside a “vanilla” fine-tuned method without any
measures to prevent catastrophic forgetting.

The objective of this paper is not to exhaustively
compare the performance of CL algorithms, but to study
how curriculum affects the learning mechanism of each
algorithm. For fair comparisons, we used a frozen
SqueezeNet [27] pre-trained on a subset of 100 classes
from ImageNet [14] (ImageNet100) as the feature extractor
for all three CL algorithms. We ensured that the 100
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Figure 2: Curricula influence the learning efficacy of the Vanilla CL algorithm (Sec 3.2) across MNIST,
FashionMNIST, and CIFAR10 datasets (Sec 3.1). We trained the vanilla CL algorithm on all curricula from each dataset.
Each dot represents one curriculum. We report the distribution of average accuracy α over all the seen classes (left panel,
Sec 3.3) and the distribution of forgetfulness β at the last task (right panel, Sec 3.3). We introduced F as the measure of
the learning efficacy of a given curriculum (Sec 3.3). See the colorbar on the right for different F values. Note that the
y-axis does not carry any meaning. All the dots are randomly spread along the y-axis for easy visualization of the α and β
distributions.

classes used for pre-training do not overlap with any of
the classes selected for our CL experiments (Sec 3.1). The
fine-tunable classification layers for all CL algorithms were
initialized with the same set of random weights prior to
continual training. Results in Sec 5 are reported based on
the performance of the three selected CL algorithms over 3
independent runs with different random seeds.

We used the standard public implementations of each
CL algorithm from [39]. Note that the online CL results
reported in our paper deviate from the original CL results
in [39], because each training example can be seen only
once in the online setting. All three CL algorithms are
trained using the Adam optimizer with a learning rate of
1e−3. We performed hyperparameter searches for all CL
algorithms. See Sec 5.4 for results and discussions about
hyper-parameter variations. However, we emphasize that
each CL algorithm with a different set of hyper-parameters
is conceptualized as a different “student.” Though the same
curriculum can be applied to all CL algorithms, the learning
outcomes for different students might vary.

3.3. Evaluation Metrics

Learning Effectiveness F . An effective CL algorithm
quickly adapts to new classes with minimal forgetting of
previously learned classes. To evaluate the learning efficacy
of a CL algorithm for a given curriculum, we introduced
the effectiveness score F . The metric F accounts for
two aspects: (1) the average accuracy α over all seen
classes should be as high as possible, and (2) the accuracy
difference β on the test images from the first task between
the first task and the last task should be as small as possible.
We formulate F as 2

β+ 1
α

. F considers contributions from
both α and β, while penalizing extreme values.

We report the distribution of F for all curricula over

three datasets in Fig 2 and Sec 5.1. We see that a curriculum
with high F (darker dots) has high α (Fig 2, left panel) and
low β (Fig 2, right panel), highlighting how F reflects the
overall learning effectiveness of a CL algorithm. We also
reported F as a function of number of tasks (Sec S5 and
Fig S29) and found that the curriculum effect becomes more
prominent with longer task sequences.
Recall@K. We used Recall@K to assess the teaching
effectiveness of our curriculum designer (CD, Sec 4).
Recall@K calculates the proportion of overlap between the
top-K recommended curricula by our CD among the union
set of all the top-K empirically ranked curricula by all As.
We used the empirical curriculum rankings of EWC, LwF,
and Vanilla for these calculations. Recall@K ranges from 0
to 1, where a higher value indicates better CD performance.
Note that Recall@K also depends on the similarity of the
curriculum effect among different CL algorithms.

Recall@K quantifies our CD’s ability to identify the
top-k empirically ranked curricula, but is not influenced at
all by the rankings of less effective curricula. We argue that
the CD’s rank order among the most effective curricula is of
special importance, particularly for applications where the
goal is simply for the CD to find the most effective possible
curriculum. We nonetheless include supplementary results
for Spearman’s rank correlation coefficient, which assesses
the degree of agreement in rankings across all curricula
(see Sec S6). One disadvantage of both Recall@K and
rank correlation coefficients is that they do not account for
the similarities between the curricula themselves. In the
next section, we introduce the discrepancy measure H as
a complementary measure that addresses this issue.
Curriculum Discrepancy H. To assess the consistency
between two sets of ranked curricula, we propose
the curriculum discrepancy measure (H), inspired by
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gene sequence comparison methods [9]. H quantifies
the dissimilarity between two sets of ranked curricula.
Curriculum rankings are either determined by a CD or
empirically determined based on F after exhaustively
running A on all curricula of a given dataset.

We sort curricula using F in ascending order, and divide
the range of F into 5 uniformly-sized bins or “tiers.” Since
studying the characteristics of the most effective curricula is
critically important for the benefits of human and machine
learning, in this work we focus on analyzing the curriculum
discrepancy H from the top tier with the highest F .

To calculate H, we first assign each object class to a
unique letter identifier and convert each curriculum to a
string. As an example, 5 object classes in a dataset can
be represented with letters A, B, C, D, and E. Any
curriculum can then be represented as a combination of
these 5 letters, such as ABCED for curriculum 1 and
DECBA for curriculum 2. For a ranked curriculum set
in the top tier, we can concatenate all the curricula into one
string. In the example above, we have ADBECCEBDA.
Given a pair of strings (two sets of ranked curricula), we
use the Hamming distance to measure their curriculum
discrepancy H. The lower the H value, the higher the
consistency: if the two ranked curricula are in exactly the
same order, H = 0. Note that Recall@K and ranking
metrics like NDCG [28] and rank correlations [69] focus
solely on comparing the order in which curricula are ranked,
without reference to similarities among class orderings
within curricula. We are unaware of any existing metrics
that address rank similarities both within and between
curricula.

In Fig 2, we observe a skewed distribution of F where
there are a few curricula with very high F but many
curricula with similarly low Fs. Thus, different tiers
have different numbers of curricula. For a pair of ranked
curricula sets in tier 5 where each set may have a different
number of curricula, we choose the number of curricula in
one set as a reference and compare it with the other curricula
set containing an equal number of curricula. We do this
once with each of the sets as the reference. The mean is
then reported as the H for this pair of ranked curricula sets.

We conducted statistical tests for all experiments
involving the above evaluation metrics, and report the
results in Sec S13.

3.4. Human Benchmark

Novel Object Dataset (NOD)
We introduce the Novel Object Dataset (NOD)

containing novel 3D objects with a categorical structure
to test the continual learning abilities of humans and
continual learning algorithms. NOD is a subset of the
larger “Fribbles” dataset [6]. The dataset comprises 5
object families with 5 object instances per family. The

instances and families differ in their main body structure
and in the locations and shapes of various appendages
(Fig 3a). We used Blender [18] to load the 3D object
meshes, and rendered a 1920 × 1080 sized image of each
object for every 10 degrees of azimuth and every 10 degrees
of elevation, resulting in a total of 32,400 images (362

images per instance). We rendered the objects against
a grey background to avoid confounding factors such as
background biases. We randomly colored every object
instance’s body and appendages separately. To make the
families easier for subjects to remember, we assigned a
commonly used surname to each family.
Psychophysics Experiments

Following standard protocols approved by our
Institutional Review Board, we evaluated human
performance on NOD using Amazon Mechanical Turk
(MTurk) with the subjects’ informed consent. The
experiment duration on average was 20 minutes. Each
participant was compensated. For quality control purposes,
we also conducted in-lab experiments. We report the results
from MTurk here and provide the details and results of
the in-lab experiments in Sec S1 and Fig S2-S4, S6, S7.
The in-lab results support the conclusions drawn from the
MTurk experiments.

We divided the experiment into 4 tasks, such that the
first task had 2 object families and each subsequent task
had 1 object family; this makes a total of

(
5
2

)
× 3! = 60

possible curricula. Each subject is randomly assigned a
curriculum. We recruited 242 subjects for a total of 34,848
test trials, with an average of 4 subjects tested on each
curriculum. A schematic of the experiment is illustrated
in Fig 3b. During the training rounds, the subjects were
presented with 3 object instances per family that were
shown rotating continuously along the azimuth. During the
testing rounds, the subjects were shown a 640 × 480 sized
GIF for each trial from the remaining 2 object instances per
family (Fig 3c). Train and test instances differ. We took
several precautions to ensure data quality and that subjects
paid attention to the experiments (see Sec S1). Despite
our simple stimulus design, we found that the majority of
the participants ranked the experiments as difficult with an
average difficulty score of 6.8/10 (10 = max. difficulty).

4. Curriculum Designer
We propose a proof-of-concept model, a Curriculum

Designer (CD) for online class-incremental learning. Given
a curriculum, our CD assigns a ranking score based on
inter-class feature similarity. Our CD scores all possible
curricula to produce a ranked set of curricula for each
dataset. The low discrepancy in the ranked curricula of
different continual learning algorithms (see the results in
Sec 5.4) suggests that our CD does not necessarily need to
depend on the feedback of a specific learning algorithm A.
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(b) Class incremental learning setting
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(c) Test trial schematics

Figure 3: Overview of human behavioral experiments in a class incremental setting. (a) Two example object instances
from each of two families in the Novel Object Dataset (NOD, Sec 3.4). (b) Experiment schematic. Subjects progressed
through 4 tasks, each with a training and testing round. During training, subjects were presented with three rotating object
instances per family for 30 seconds, with the goal of being able to recognize the objects presented in the testing round. In
the first training round, 2 families were introduced. In subsequent training rounds, one additional family was introduced per
task, without showing instances from previously learned families. During testing, subjects were tested on 10 trials from each
learned family. The trial order was randomly shuffled during testing. (c) In each test trial, subjects were presented with a
fixation cross (2000ms) followed by the stimulus (200ms). After the image offset, subjects were asked to choose the family
of the presented object among all previously encountered families.

The objective of our CD is to propose a universal curriculum
that improves learning outcomes of any given A relative to
the average of randomly chosen curricula.

4.1. Feature Distance Confusion Matrix

Given an curriculum defined as ct=1, ct=2, ..., ct=N , our
CD uses an inter-class distance confusion matrix M of size
N × N , where any element M(i,j) represents a distance
measure between two class prototypes, ct=i and ct=j . To
calculate a class prototype vector for each class, we used a
teacher network to extract features from all images of the
given class and took the vector mean. The feature distance
M(i,j) between each pair of class prototypes ct=i and
ct=j is calculated with the cosine distance. We conducted
ablation experiments on distance metrics (Sec 5.3). In
practice, extracting features from all images in a large
dataset is computationally costly. Thus, we randomly
sampled 500 images per class to compute the prototypes.

We used layers 1-12 of 2D-CNN SqueezeNet as our
teacher network for computing class prototypes [27].
Drawing on the analogy that a human teacher has full
knowledge of the subject they teach, the teacher network
is pre-trained on ImageNet [14]. For consistency with the
learning algorithms themselves (Sec 3.2), we fine-tuned
the teacher network on the same set of 100 classes from
ImageNet. The extracted feature vector of an input image
is of size 1000. Prior knowledge of either the teacher or the
student influences learning outcomes. We investigated the
effect of prior knowledge in Sec 5.3.

4.2. Ranking Curricula

Given the inter-class distance confusion matrix M ,
we introduce a ranking score s that keeps track of

the accumulative advantage vt of choosing class ct at
incremental step t up to the final incremental step N : s =∑t=N

t=1 vt. Among all the curricula, the curriculum with the
highest s is selected as the optimal. Next, we introduce the
design of the advantage vt for ct and its motivations.

Drawing on the idea of metric learning [11] as well as the
theoretical and practical foundations behind the impact of
task ordering [38, 34], we choose the class ct=1 at the first
incremental step with the following criteria: the variance
of the distances between the selected class prototype and
the other classes’ prototypes should be as small as possible.
Intuitively, lower class distance variance implies relatively
similar distances to other classes: the first class is near the
center of the multivariate class feature distribution. Starting
to learn from the class comprising features shared with most
other classes facilitates positive knowledge transfer when
learning other classes at later steps. Thus, to encourage our
CD to prioritize selecting the first class with the smallest
distance variance, we define the advantage vt=1 at the first
incremental step as 1 − V ar({M(1,j)}Nj=2), where j is the
corresponding class cj at incremental step t = j and V ar(·)
is a function computing the variance from a set of distances.

Subsequently, to eliminate catastrophic forgetting over
incremental steps, we draw ideas from replay mechanism
in CL [65, 47, 2, 10, 44, 40, 5] and select the last class ct=N

based on the following criteria: the prototype of the selected
class should have the smallest distance to ct=1. The design
motivation is to ensure that ct=N is the most similar to ct=1

in terms of features. While A learns to classify ct=N , these
common features are functionally analogous to a feature
replay of ct=1, which regularizes the parameters of A to
prevent forgetting. Correspondingly, to encourage CD to
prioritize replay-like class selection at the last incremental
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step, we define the advantage vt=N as 1−M(N,1).
Conversely, for the selection of the second class to

learn at step t = 2, we encourage CD to select the class
whose prototype is the farthest away from its previous class
ct=1. This is in accordance with the classical notion in
the curriculum learning literature that a curriculum should
always be arranged in order, from easiest to the hardest [8].
The farther away the distance between two class prototypes,
the easier it is for the algorithm A to learn the classification
boundary between these two visually distinct classes. In this
case, we define the advantage vt=2 as M(2,1)

We complete the ranking process of a given curriculum
by iteratively performing the advantage evaluation back and
forth over all subsequent incremental steps until we have
examined all the classes. We summarize the piece-wise
advantage function below:

vt =


1−Var({M(1,j)}N

j=2) , t = 1

Mt,t−1 , 1 < t ≤ ⌊N
2 ⌋

1−Mt,N−t+1 , ⌊N
2 ⌋ < t ≤ N

For every curriculum from a dataset, we compute its
corresponding ranking score s by summing the advantage
for each class in a curriculum. Although it is daunting
to perform heuristic searches for optimal curricula by
exhaustively going through all possible curricula for a
dataset, it is still computationally efficient for our CD
given that it only scores curricula based on a 2D distance
confusion matrix M . See Algorithm 1 (Supp.) for the
pseudo-code of CD implementation.

5. Results
5.1. Curriculum Strongly Impacts Performance

Fig 2 highlights the effect of curricula on the vanilla A
(Sec 3.2) over all three datasets (Sec 3.1). We observed a
large variance in average accuracy α, which ranged from
19% to 26% depending on the curriculum. This implies
that curriculum strongly influences the overall performance
over all tasks for the vanilla A (Sec 3.3). β reflects the
degree of forgetting of the first task while learning later
tasks (Sec 3.3). The large variance in β indicates that
curriculum plays a significant role in preventing the vanilla
A from forgetting the first class. The empirically optimal
curriculum results in a more gradual decline in the accuracy
on images from the initial task as subsequent tasks are
introduced, which leads to a smaller β.

We introduced the learning effectiveness score F , which
incorporates both α and β (Sec 3.3). Darker dots in Fig 2
indicate higher F , generally implying larger α and smaller
β. For example, for a model which learns the 1st task
perfectly well and achieves 100% accuracy but fails to adapt
to any new tasks (0% for the other four classes), we can

calculate its effectiveness scores as: α = (100% + 4 ×
0%)/5 = 20%, β = 100% − 100% = 0% and F =
2/(0 + 5) = 0.4. Another instance would be α = 0.25
but higher β, where the CL model learns a bit of each
task and tends to forget previous tasks. The F differs by
0.09, 0.07 and 0.07 from the best to the worst curriculum
for MNIST, FashionMNIST and CIFAR10. These results
from regularization-based CL algorithms As (Sec 3.2) are
constrained by the online class-incremental setting. Their F
scores are in contrast to those of the highly effective replay
method (Sec 3.2) with an average F = 0.99, 0.87, 0.69 on
MNIST, FashionMNIST and CIFAR10, which often serve
as upper bounds of continual learning performances. We
present the distributions of α, β, and F for EWC [30] and
LwF [37] in Sec S4 and Fig S14-S17. The curricula trends
observed in the discussion here are also applicable to these
two algorithms.

5.2. Our CD Predicts Optimal Curricula

To evaluate the effectiveness of the predicted curricula
by our CD for CL algorithms As, we report results in
terms of Recall@K (Sec 3.3) in Fig 4. We used a random
curriculum designer as a baseline for comparison to our CD.
Across all three datasets, our CD (blue) outperformed the
random model (green), particularly at small k values. Our
CD achieves peaks in Recall@K of 0.5, 0.2, and 1 at K=2,
K=5 and K=10 for MNIST, FashionMNIST and CIFAR10
respectively.

Our results suggest that the CD performance does
not depend on data complexity, as CD performs well
on both MNIST and CIFAR10 despite CIFAR10 having
more complex image features. Our curriculum designer
exhibits remarkable performance on CIFAR-10. A
plausible conjecture could be that these results are
attributed to the striking resemblance between CIFAR-10
and ImageNet. The latter was employed for pre-training
and served as the fundamental feature extractor for our
curriculum designer. We provide visualizations of the top-5
empirically-determined and CD-predicted curricula for all
datasets in Fig S8-S13. The top curricula seem to align with
the intuitions behind our CD design (Sec 4). Although our
CD is effective in most cases, there is considerable room
for improvement. We note that our CD has relatively weak
performance on FashionMNIST, with Recall@K below the
random CD for K < 4 and only slightly above random for
K ≥ 4.

5.3. Analysis of CD Design Decisions

To evaluate the impact of individual design choices
in our CD, we conducted experiments with variations of
our CD on MNIST and presented the Recall@K results
for K=5, 10, and 20 in Fig 5. First, instead of the
cosine distance metric used in our CD, we changed the
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Figure 4: Our Curriculum Designer (CD) predicts
optimal curricula better than a random CD. Recall@K
(Sec 3.3) of our CD (blue, Sec 4) and a random curricula
designer (green) are reported as a function of K ranging
from 1 to 30 across all three datasets (Sec 3.1), where K
is the number of top curricula included in the metric.

distance metric to Euclidean and Optimal Transport Dataset
Distance (OTDD) [4] (euclidean and otdd). The ablated
model with Euclidean outperforms OTDD and performs
competitively well as our CD with cosine distance. This
implies that the choice of measure for the inter-class
distance is essential for curriculum designs. Next, we
evaluated the effect of changing the layers used in the
feature extractor to compute the distance confusion matrix
M by using layers 6 and 11 (layer-6 and layer-11). We
observed that using layer-11 or layer-6, on average, leads
to a performance decrement in recall at earlier Ks. This
implies that the higher layers of the network produce more
class-representative features that are useful for curricula
ranking. Furthermore, we replaced our default feature
extractor SqueezeNet with ResNet34 and ResNet18 [23].
Though the recall of these ablated models is not as high
as our CD at K=5, they achieve a high recall at K=10.
This implies that a change in architecture does not lead to
dramatic performance deterioration in continual learning.

To study the effect of prior knowledge of our CD as the
teacher, we introduce two variations. First, we pre-trained
the feature extractor of our CD on MNIST (p.t. MNIST).
Compared with our original CD pre-trained on 100 classes
of ImageNet (Sec 4.1), we did not observe any increase in
recall at K=5; but we observed the high recall at K=10.
It is possible that the 100 classes from ImageNet share
similar features with the classes from MNIST. Drawing on
an example in pedagogy that a teacher with general math
knowledge can teach arithmetic as efficiently as a teacher
with only arithmetic-specific expertise, this experiment
indicates that a teacher with broad knowledge in the field
is as good as a teacher with area-specific knowledge.
Next, we evaluate our CD with the weights of its feature
extractor randomly initialized (random-teacher). With the
observation of the drastic drop in recall even at K=20,
we conclude that prior knowledge of a teacher is indeed
important for designing efficient curricula.

5.4. Analysis on Curriculum Agreement

We set out to study the extent of agreement among
curricula empirically optimized for individual students.

Figure 5: Ablation results on our CD. Recall@K bar plots
for k=5, 10, and 20 with our CD and its ablations compared
against the empirical curricula ranking determined by all
continual learning algorithms As (Sec 3.2) on MNIST
(Sec 3.1) for paradigm-I (5 classes, Sec 3.1). See Sec 5.3
for the description of ablated CDs.

Figure 6: There exists low discrepancy on optimal
curricula determined by between-algorithms,
algorithm-CD, algorithm-humans, and CD-humans.
Left panel: curricula discrepancy H (Sec 3.3) is reported
between pairs of CL algorithms As (between-algorithm,
blue), between As and our CD (algorithm-CD, green),
between A and the random designer (algorithm-random,
orange). Right panel: H is reported on NOD dataset
between As and humans (algorithm-human, blue
hashed), between CD and humans (CD-humans, green
hashed), and between the random designer and humans
(random-humans, orange hashed) (Sec 5.4).

For example, do the most effective curricula for EWC
share commonalities with the most effective curricula for
LwF? To address this question, we report the discrepancy
H between any sets of ranked curricula determined
empirically by CL algorithms A, by our CD, and by the
random curriculum designer on three image datasets of
varying complexity (Fig 6). A decrease in H indicates an
increase in the agreement (Sec 3.3). As a lower bound
(“between-algorithms”), we first calculated the averaged
discrepancy H over all pairs of As chosen among Vanilla,
EWC, and LwF (Sec 3.2). We consistently observe
a large H decrease in “between-algorithms” relative to
“algorithm-random” (average discrepancy H between sets
of empirically ranked curricula and set of randomly ranked
curricula). This implies that continual learning algorithms
As agree with each other in empirically ranking the most
effective curricula, more so than with random curricula. In
other words, curricula that work well for one A tend to
work well for another. We also examined the effect of A’s
hyperparameters on curriculum agreement (see Sec S3 and
Fig S5), and found that the relative efficacy of curricula is

11715



consistent even with variations in the number of epochs, the
learning rate and the network initialization.

We also assessed the discrepancy H between our CD’s
curriculum rankings and empirical curriculum rankings
from A. Across the three datasets (MNIST, FashionMNIST
and CIFAR10, Sec 3.1), there is an average decrease of 0.02
in H from algorithm-random to algorithm-CD. It implies
that our CD can predict optimal curricula well aligned
with the curricula determined by As. However, H in
between-algorithms is still higher than in algorithm-CD,
indicating that the curricula ranked empirically by different
As are more consistent with one another than with those
ranked by our CD.

The right panel in Fig 6 shows the agreement in
algorithm-humans, CD-humans, and random-humans on
the Novel Object Dataset (NOD, Sec 3.4). There
is an H decrease of 0.13 from random-humans to
algorithm-humans. This indicates a notable degree of
agreement between optimal curricula for humans and As.
We further observe that there is a slight decrease in H
from random-humans to CD-humans, indicating a minimal
degree of alignment between humans and our CD. However,
we notice that there still exists a huge gap in H from
algorithm-humans to CD-humans.

6. Discussion
Curriculum design is an important problem in both
machine learning and human education. Key goals
for both humans and machines include maximizing
forward knowledge transfer across tasks while minimizing
forgetting of previous tasks. In practice, there are numerous
potential curriculum design considerations, such as the
ordering of training examples within and between classes
and tasks, hierarchical learning across super-categories
and sub-categories, learning characteristics of students,
and feedback from students. Here, we introduce an
initial proof-of-concept curriculum designer, which designs
effective curricula for multiple CL algorithms by optimizing
the ordering of a sequence of continuously learned tasks.

While curriculum design proves effective for enhancing
CL algorithms, its direct translation to human learning
still encounters challenges. To benchmark curriculum
efficacy in humans, we introduced the Novel Object Dataset
(NOD) and conducted human behavioral experiments. We
observed a high discrepancy between optimal curricula
ranked by our AI teacher and effective for human
learning. There could be multiple reasons for this.
First, the visual diets for humans and our AI teacher are
different. Humans learn from temporally correlated video
streams, which our AI teacher does not take into account.
Second, there remains a gap between the background
knowledge of humans and our AI teacher. Humans
accumulate rich experiences through interactions with the

real world involving multiple sensory modalities, but our
AI teacher has been limited to knowledge from static
naturalistic images in vision. Third, human individuals
have large variability in learning due to individual cognitive
capabilities and knowledge backgrounds. Our AI teacher
lacks specialized curriculum designs for learning in
individual humans.

To resemble a human learning process, we took
initial efforts and formulated our study of curriculum
learning in the online class-incremental learning setting.
Given computational resource constraints, we only
exhaustively and empirically surveyed the 5-class and
10-class incremental settings on 3 CL algorithms across
3 datasets (Sec 3.1). Additional studies could explore a
wider range of problem settings, such as task-incremental
learning and long-range CL with many classes. As
a preliminary follow-up, we explored the effect of
curriculum on the problem of visual question answering in
function incremental settings (Sec S12, Fig S26). We also
investigated offline class-incremental learning, allowing
the CL models to make multiple passes over the data within
each task (Sec S11, Fig S23). Moreover, we extended
our online learning tests to replay-based CL approaches
(Sec S10, Fig S25). Throughout all of these experiments,
we observe curriculum effects that persist across variations
in problem settings, datasets, and continual learning
algorithms.

AI for education and education for AI remain open
challenges. Our study establishes a methodology for the
community to evaluate and benchmark curriculum design
approaches for both humans and AI. The insights obtained
from our work open doors to many research opportunities,
such as AI-assisted learning and education systems for both
AI and human students.
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