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Figure 1: Scene Graph Contrastive (SGC) Learning. We propose to use scene graphs as an auxiliary supervisory signal for
embodied agents. We iteratively build a scene graph based on the agent’s observations. The agent, the current room, and the
objects are represented as nodes in the graph, as shown in the magnified t = 2 window. Edges of the graph encode various
relationships like Sees, On and Contains. We optimize the agent belief to be closer to the graph representation at that time
step. Ep1 and Ep2 denote two different episode rollouts. g0 and b0 denote the belief and the graph representation at the t=0.

Abstract

Training effective embodied AI agents often involves ex-
pert imitation, specialized components such as maps, or
leveraging additional sensors for depth and localization.
Another approach is to use neural architectures alongside
self-supervised objectives which encourage better represen-
tation learning. However, in practice, there are few guar-
antees that these self-supervised objectives encode task-
relevant information. We propose the Scene Graph Con-
trastive (SGC) loss, which uses scene graphs as training-
only supervisory signals. The SGC loss does away with
explicit graph decoding and instead uses contrastive learn-
ing to align an agent’s representation with a rich graphi-
cal encoding of its environment. The SGC loss is simple to
implement and encourages representations that encode ob-
jects’ semantics, relationships, and history. By using the
SGC loss, we attain gains on three embodied tasks: Ob-
ject Navigation, Multi-Object Navigation, and Arm Point
Navigation. Finally, we present studies and analyses which
demonstrate the ability of our trained representation to en-
code semantic cues about the environment.

1. Introduction.
Researchers have pursued designing embodied agents

with general neural architectures and training them via end-
to-end reinforcement learning (RL) to flexibly complete

a range of complex tasks. In practice, however, training
agents to perform long horizon tasks using only terminal re-
wards has been ineffective and inefficient [37], particularly
in complex visual environments with high-dimensional sen-
sor inputs and large action spaces. This has led to the use
of several common “tricks” to improve training, e.g. manu-
ally engineered shaped rewards, use of off-the-shelf vision
models to pre-process images, imitation learning with ex-
pert trajectories, and the use of special purpose mapping
architectures [9, 10, 69, 37, 22, 56, 40].

Looking to reduce the need for such “tricks”, one
promising line of work has looked into training agents
with RL and auxiliary losses to encourage the produc-
tion of powerful and useful environment representations.
These include self-supervised losses like forward predic-
tion [31], contrastive predictive coding [32], and inverse
dynamics [55], that are task and environment independent.
The cost of this generality is that there are no guarantees
that the resulting representations will encode task-relevant
features like the semantic grounding of objects, which is
often key to agent success. Moreover, in practice, these
losses tend to work well in video game and gridworld en-
vironments but are not effective in more complex visual
worlds. On the other hand, supervised auxiliary losses such
as disturbance avoidance [53], depth generation [52] are fre-
quently designed to help with specific tasks but are not gen-
erally useful for new tasks.
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In this work, we propose the Scene Graph Contrastive
(SGC) loss. SGC uses, as its supervisory signal, a non-
parametric scene graph that develops and transforms itera-
tively as the agent interacts with its environment. The agent,
objects, and rooms are represented as nodes, agent-object
(e.g. Sees and Touches) and object-object (e.g. Contains and
Above) relationships are edges and, category and spatial co-
ordinates are represented as node attributes. SGC does not
employ any graph decoders which tend to be complex, chal-
lenging, and expensive to train [20, 49]. Instead, it uses a
contrastive learning approach in which the agent must “pick
out” the graph corresponding to the observations it has seen
– a much simpler learning mechanism which still encour-
ages the agent to develop a graph-aware belief state, see Fig-
ure 1. Additionally, it prevents the need for a scene graph
during evaluation. As we iteratively build the ground truth
scene graph in an episode, we naturally generate hard neg-
ative samples as graphs from nearby spatio-temporal states
will only be subtly different from one another.

The SGC loss has several desirable characteristics.
Firstly, it encourages the belief representations to summa-
rize object semantics, relationships, and history, informa-
tion that can be intuitively useful for completing navigation-
based embodied tasks. We present results that demon-
strate the efficacy of these representations on multiple tasks.
Second, it requires the scene graph only at training time,
which allows us to use any available supervisory data useful
for learning powerful representations for embodied tasks.
Third, it is simple to implement. SGC does not require
designing complex specialized decoders for predicting the
scene graph and instead leverages well-studied, graph en-
coder networks and contrastive losses.

We evaluate the SGC loss by training agents on three
complex navigation-based tasks. These tasks include Ob-
ject Navigation (ObjectNav) [18] (evaluated across four
benchmarks), Multi-Object Navigation (MultiON) [68],
and Arm Point Navigation (ArmPointNav) [23]. Across
each of these tasks, SGC provides very significant absolute
improvements of 10% in ObjectNav, 9% in MultiON and
3.5% in ArmPointNav over models trained with pure RL.
We find that these agents learn to represent many seman-
tic cues about their environment, which we show via two
studies. First, we demonstrate that SGC-trained agents can
be quickly fine-tuned to novel goal object categories that
were observed previously in their environments but never
used as target objects for the task. Second, we present lin-
ear probing experiments to study how the SGC loss impacts
agents’ understanding of free-space and object semantics.
We find that the representations learned by the SGC-trained
agent outperform those of an RL-only trained agent; sug-
gesting that the SGC loss encourages agents to better repre-
sent these concepts.

In summary, our contributions include: (1) a proposal to

use scene graph as a supervisory signal for training embod-
ied agents, (2) the formulation of a Scene Graph Contrastive
(SGC) loss which avoids the need to use complex graph de-
coders, and (3) a suite of experimental results which demon-
strate that the SGC loss leads to significant performance and
sample efficiency gains across multiple embodied tasks.

2. Related Works.
Embodied AI in practice. The Embodied AI community
has been working on several embodied tasks such as navi-
gation [7, 39, 28, 51], instruction following [62, 4, 42], ma-
nipulation [23, 74], embodied question answering [17, 30],
and rearrangement [69, 6]. Open source simulators [41, 18,
64, 45] and benchmarks [62, 6, 69] have enabled tremen-
dous progress on these tasks. Recently, large-scale train-
ing [19] and stronger visual backbones [40] have shown
promising transfer across various environments. However,
training performant agents often requires “tricks” like man-
ually engineered shaped rewards, imitation learning with
expert trajectories [37, 56], and use of special purpose map-
ping modules [9, 10], which tend to be task specific. In
contrast, we propose a supervisory signal that encourages
agents to learn better representations and show it to be ef-
fective across multiple navigation-based tasks.
Auxiliary Tasks in Reinforcement Learning. Auxil-
iary tasks in tandem with the RL task objective have
shown promising results in improving sample efficiency
and asymptotic task performance for visual reinforcement
learning. These can be supervised tasks that provide ex-
ternal signals like depth maps [52, 29, 71], game in-
ternal states [43] and reward prediction [36]. Various
unsupervised/self-supervised auxiliary objectives like auto-
encoders [44, 34, 78], forward [31] and inverse dynam-
ics [55], spatio-temporal mutual information maximiza-
tion [2, 35], contrastive learning [32, 33, 80, 63], de-
rive supervision from the agent’s own experience. Re-
cently, [80, 79] have shown that self-supervised auxiliary
tasks can improve sample efficiency on embodied naviga-
tion tasks [3, 7].

Unfortunately, these approaches may not effectively en-
code task-relevant features, and therefore fail to provide
improvements on complex tasks in photo-realistic environ-
ments [41, 59]. To alleviate this, we propose to use scene
graphs as an auxiliary supervisory signal and show that it
leads to more performant agents across different tasks.
Scene Graphs. Building rich scene representations has
been an active area of research including approaches to
build graphs from static images [16, 47, 50, 75, 76, 81] and
ones that contain temporal information from videos [15, 38,
48, 54, 60, 65]. These methods capture 2D spatial relation-
ships between objects. There has also been work that aims
to encode 3D relationships [5, 14, 25, 67, 82].

Scene graphs have been used in embodied settings for
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Figure 2: Iterative Graph Building. Illustrative example
of how a scene graph is built. The agent, the room, and the
objects are all added as nodes to the graph. As the agent
moves in the environment, we add the objects that it sees,
for instance at t=3, the coffee machine, sink, and counter-
top. We also add edges that signify various relationships
like Contains, On, and Sees.

learning physics engines [8], visual navigation [21, 77, 11,
12, 58, 73], manipulation [83] and building actionable rep-
resentations [46, 57]. There has also been work [26] to en-
code scene graph relationships for use in downstream tasks
like object tracking and room rearrangement. However,
contrary to this stream of work, we do not attempt to gener-
ate scene graphs or use it as an input to the agent. Instead,
we use it as an auxiliary training signal in a contrastive
learning setup. This avoids using complex graph decoding
while enabling graph-aware belief representations.

3. Approach.

In this section, we present the Scene Graph Con-
trastive (SGC) loss for aiding embodied agent training. We
begin by discussing the approach of iteratively building a
scene graph from the agent’s observations. Subsequently,
we discuss how we use scene graphs as a training signal in
our contrastive learning framework. Lastly, we describe our
model architecture and how we train embodied agents for
various tasks with our proposed loss.

3.1. Iterative Scene Graph.

Embodied AI simulators provide a rich trove of informa-
tion like scene semantics, object positions, geometry, and
spatial relationships. We attempt to distill this information
by building a scene graph consistent with the agent’s ex-
plored environment and use it to construct a supervisory sig-
nal. We define this scene graph as a non-parametric, object-

centric, directed, graph representation. Figure 2 shows an
example of how we iteratively build the scene based on the
agent’s exploration in the environment.
Node Features. We build a scene graph that iteratively up-
dates based on the agent’s path through the environment.
We begin with the agent as the first node in the graph. Then,
we add all the objects as nodes that are visible and within a
threshold distance of the agent. Every instance of a partic-
ular object type is treated as a separate node. Additionally,
if we’re operating in house-sized environment, we add the
room in which the agent is currently present as a node in the
graph. Note that, once an object node is added in the graph,
it continues to exist on the subsequent time-step graphs as
well, even if the object goes out of view. This allows the
scene graph to retain the history of an episode, which can
be a useful attribute for long-horizon tasks.

Additionally, we also assign node-specific features to
each node. These comprise of a concatenation of (1) an
embedding of the object’s type and, (2) the (x, y, z) 3-D co-
ordinates of the object, i.e. its position. Each object position
is defined relative to the agent, to encode spatial awareness
about the environment with respect to the agent’s current
state. Note that these node features are updated after every
agent step as they would otherwise quickly become invalid.
Edge Features and Relationships. We use the edges of
the scene graphs to encode various relationships between
the nodes. These relationships can be Agent-Object like
Sees, Holds or Touches. Other agent-agnostic relationships
include Object-Object relationships like On or Near. We
also have Agent conditioned Object-Object relationships
like Right, Left, Above which depend on the object posi-
tions relative to the agent perspective. We provide a list of
all relationships and how they are estimated in the supple-
mentary materials. We also have a relationship Contains,
between the rooms of a house and other nodes, that deter-
mine whether the agent or a particular object is present in
that room. At each time step, we compute these relation-
ships between all the nodes based on their positions and
geometry. The information needed to compute these rela-
tionships, i.e. object and agent poses, is readily available in
most open source simulators [41, 18, 19, 64, 61, 74, 27],
making it straightforward to construct this scene graph.

If a relationship is true, for instance, Sees(Agent, Ap-
ple), we add a directed edge between the agent node and
apple node with the attribute Sees set as true. Relationships
are updated at each time step. This means that the set of
edges between nodes is not static and may change between
agent steps, e.g. the agent might lift an apple off of a table
resulting in the apple no longer being On the table.

3.2. Scene Graph Contrastive Learning.

The scene graph described in the Section 3.1 is a rich
source of information about the environment and can allow
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Figure 3: Scene Graph Contrastive (SGC) framework. We show a standard Embodied-AI model which takes, as input,
an egocentric RGB observation and outputs a policy and scalar value for RL training. We supplement this with our Scene
Graph Contrastive Model. It takes as input, the belief, bt, and graph representation gt, at each time step. The prediction of
this model, pt is passed into the Scene Graph Contrastive Loss. The SGC Loss optimizes the model to predict which graph
embedding belongs to a particular time step, t.

the agent to perform a range of tasks with ease. However,
the privileged metadata information required for the scene
graph’s construction is often unavailable during inference
time when deploying to unseen environments or real-world
settings. Therefore we propose to use it as an auxiliary
training-only signal. This alleviates its need during infer-
ence, allowing us to deploy our trained policies even in the
absence of privileged metadata information.

One common approach for leveraging supervisory infor-
mation for representation learning is simply to build a de-
coder module that directly attempts to predict that supervi-
sory information. Building such a decoder in our setting is
computationally expensive and cumbersome: attempting to
directly predict a scene graph with an unknown number of
nodes would, similarly as for language prediction, require
an iterative decoding mechanism which would, one by one,
add nodes and edges to a graph until some stopping criterion
was reached. While directly predicting such a graph would
certainly have advantages, its computational cost makes it
unappealing in a RL setting. We consider another approach.

Intuitively, we would like an agent’s representation of
their environment, commonly called the agent’s belief, to be
similar to a scene graph representation of the agent’s envi-
ronment. We achieve this by training a contrastive loss that
effectively asks the agent to pick out the scene graph cor-
responding to its observations at particular time step from
among other distractor graphs. Unlike decoding, encoding
a scene graph is a significantly easier task, see Sec. 3.3.

We collect scene graphs from parallel agent rollouts,
which implies that we have some scene graphs in the batch
that are from the same episode, and some from entirely dif-
ferent episodes. As discussed in Section 3.1, we iteratively

build the scene graphs as the agent observes new objects in
an episode. This enables us to automatically generate hard
negative samples as graphs from nearby time steps of the
same episode differ very slightly from one another.

3.3. Training Embodied Agents with SGC.

We propose to train Embodied-AI models using scene
graphs as auxiliary supervision as described in Section 3.2.
As shown in Figure 3, we consider a typical Embodied-AI
model. It consists of a visual encoder to process the ob-
servations from the environment. Following [40] we use
a frozen CLIP-ResNet50 encoder for encoding our visual
observations. We also have a recurrent unit, specifically a
GRU for keeping a memory of these visual features, fol-
lowed by a linear actor-critic layer for reinforcement learn-
ing. We refer to the GRU output as beliefs, denoted by bt,
where t is the time step.

To enable auxiliary learning we propose a Scene Graph
Contrastive Model as shown in Figure 3. It consists of
a graph encoder, comprised of three Graph Attention Lay-
ers [66], followed by a global max-pool across node fea-
tures. The graph encoder produces a representation, gt, for
the current time step’s scene graph. Following [13], we use
two multi-layer perceptrons, denoted by MLPb and MLPg in
Figure 3, to encode the beliefs, namely we let:

Hbt = MLPb(bt) ∈ RD, Hb = [Hb1 . . . HbT ] ∈ RD×H ,

Hgt = MLPg(gt) ∈ RD, Hg = [Hg1 . . . HgH ] ∈ RD×H .

Without loss of generality, above we consider the case
where our loss is computed using H sequential agent steps;
in practice, our loss will be computed on a batch of such
trajectories. As shown in Figure 3, we take a dot product of
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embeddings Hb and Hg , to generate a prediction matrix P :

pt,s = Hbt ·Hgs , P = HT
b Hg = [pt,s] ∈ RH×H .

We take a softmax across the columns of P, and pass
each row to a cross entropy loss. The ground truth for this
loss is a diagonal matrix as shown in the Scene Graph Con-
trastive (SGC) Loss panel in Figure 3, i.e. the entries of P
where t = s. This classification objective attempts to pre-
dict which graph embedding belongs to a particular time
step. Note that the SGC loss, is optimized as an auxiliary
objective alongside usual reinforcement learning losses; in
our experiments we use the DD-PPO RL loss [72].

It is worth noting that, constructing a scene graph at ev-
ery step can be computationally expensive. To avoid this
overhead, we randomly sample time steps at which we gen-
erate the graph, and only compute the loss at those steps.
We show the effectiveness of SGC through various experi-
ments and analysis in Section 4.

4. Results.
4.1. Experiment Setup.

Dataset. We use the ProcTHOR [19] framework to train
agents for various embodied tasks. ProcTHOR provides
10,000 training houses, which we refer as ProcTHOR-
Train. We train all our agents on these environments.
ProcTHOR also provides ProcTHOR-Val, 1000 validation
houses that the agent does not see during training. We use
the AllenAct [70] framework to train our models.
Model variants. For each task, we train two agents:
• RL [19] This agent is trained with pure reinforcement
learning (RL), specifically DD-PPO [72]. We use the model
from [19] that achieved state-of-the-art results on various
embodied navigation benchmarks.
• RL+SGC: To demonstrate the efficacy of our Scene Graph
Contrastive (SGC) loss, we train this agent with SGC as an
auxiliary objective to RL as described in Section 3.3.

Note that both agents are trained with the same hyperpa-
rameter setups. We provide the hyperparameter and training
details in the appendix. We use a frozen CLIP-ResNet50 as
our visual encoder, and a GRU as the recurrent unit and train
these agents on three embodied tasks, namely Object Navi-
gation, Multi-Object Navigation, and Arm Point Navigation
for 350M, 180M, and 90M steps, respectively.
Note on ProcTHOR [19] results. We would like to remark
that due to recent updates in AI2-THOR [41], the simulated
LoCoBot agent is now allowed to look down by up to 60◦

(in previous versions this was 30◦). The models presented
in [19] were trained before this update, therefore we use the
authors’ code to retrain the agents and present updated num-
bers. We have confirmed with the authors of [19] about this
change and validated our results. Additionally, we present

Benchmark Model SR SPL EL

RoboTHOR RL+SGC (ours) 53.2 32.8 245
RL [19] 41.0 28.0 193

ARCHITECTHOR RL+SGC 53.8 34.8 204
RL [19] 48.7 33.4 152

AI2-iTHOR RL+SGC (ours) 71.4 59.3 124
RL [19] 62.6 53.6 75

ProcTHOR-Val RL+SGC (ours) 70.8 48.6 173
RL [19] 62.4 45.5 80

Table 1: Results on Object Navigation. SR, SPL, and EL
indicate the success rate, success weighted by path length
and episode length.

training curves for Object Navigation training in the sup-
plementary to justify the efficacy of the proposed SGC loss.
Note that, for a given task, we use the same hyperparame-
ters for all the models trained on it for a fair comparison.

4.2. Object Navigation.

Task. Object Navigation (ObjectNav) requires an agent to
locate a specified object category. The agent begins the
episode at a random location and is given a target object
category, for instance, apple. All our ObjectNav agents are
trained with a simulated LoCoBot (Low Cost Robot) [1],
and use egocentric RGB images as input. We provide de-
tails about the action space in the supplementary.
Metrics. An episode is considered successful if the agent
takes an END action and the target object category is visible
and within 1m of the agent. We report the success rate (SR)
and Success weighted by path length (SPL) [3] for this task.
We also report the average episode lengths (EL) for the tra-
jectories traversed by the agent.
Results. In Table 1, we evaluate our trained models across
4 ObjectNav datasets. To reiterate, we train our models on
ProcTHOR-Train. First, to show in-domain generalization,
we evaluate both agents on ProcTHOR-Val and achieve an
improvement of 12% in SR and 4.8% in SPL.

Moreover, following [19], to investigate the cross-
domain generalization of our approach, we perform zero-
shot evaluations on the RoboTHOR, AI2-iTHOR, and AR-
CHITECTHOR ObjectNav datasets. Zero-shot here implies,
that neither of the models have been trained on scenes from
these datasets. As shown in Table 1, we observe that using
SGC provides a clear gain across all domains, thereby in-
dicating its effectiveness in producing generally performant
ObjectNav models. We see a substantial improvement of
12% on RoboTHOR, 9% on AI2-iTHOR, and 5% on AR-
CHITECTHOR in the SR metric.

Another interesting insight from our experiments is that
ObjectNav models trained with SGC consistently traverse
longer trajectories, as reflected by the EL metric. On fur-
ther investigation, we find that this can be attributed to our
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Benchmark Model SR SPL EL

MultiON-2 RL + SGC (ours) 36.7 23.7 255
RL 34.4 18.2 298

MultiON-3 RL + SGC 21.4 11.6 354
RL 13.3 7.62 338

Table 2: Results on Multi-Object Navigation. SR, SPL,
and EL indicate the success rate, success weighted by path
length and episode length.

RL+SGC agent producing fewer false positives by waiting
for episodes to timeout instead of taking the END action
when the target object is not visible. Our conjecture is that
an agent trained with SGC keeps exploring its environment
unless its very certain it has found the target or exhausts
the maximum number of steps allowed. For instance, in
RoboTHOR, we find that agents trained with just RL exe-
cute the END action incorrectly in 45% episodes. On the
other hand, RL+SGC does so in only 14.9% episodes. Our
conjecture is that the SGC loss enriches the agent’s under-
standing of the environment and prevents it from misrecog-
nizing objects and pre-maturely ending episodes. We ob-
serve this trend across all ObjectNav datasets.

4.3. Multi-Object Navigation.

Task. We implement the Multi-Object Navigation (Mul-
tiON) task originally proposed in [68] in ProcTHOR [19]
environments. We create two variants, MultiON-2 and
MultiON-3, which require the agent to navigate to 2, and 3,
objects in an episode respectively. Similar to ObjectNav, we
train our agents with a simulated LoCoBot [1] and use ego-
centric RGB images as input. We provide details about the
action space in the supplementary. We provide the first goal
object category to the agent at the beginning of the episode.
Once an agent successfully finds the first target, by calling
the FOUND action with the object visible and nearby, we
provide the next target object.

Metrics. The target object must be visible and within 1m of
the agent for the FOUND action to be successful. An episode
is successful if the agent can finds all the target objects. It
is considered a failure otherwise. Following [68], we report
the Success Rate , SPL and Episode Length metrics.

Results. We collect a validation dataset in the ProcTHOR-
Val environments. We use 200 houses that the agent never
sees during training. As mentioned before, we present re-
sults on two MultiON variants, MultiON-2 and MultiON-3,
where the agent needs to navigate to 2 and 3 target objects
respectively. As shown in Table 2, for MultiON-2, we ob-
serve an improvement of 2.3% in Success Rate, and 5.5%
in SPL. We replicate a similar setup for MultiON-3, and see
a large 8% improvement in Success Rate, and 4% in SPL.

Benchmark Model SR SRwD EL

ArmPointNav RL + SGC (ours) 51.2 25 150
RL [19] 47.9 22.6 147

Table 3: Results on Arm Point Navigation. SR, SRwD
and EL indicate the success rate, success rate without dis-
turbance metrics and episode length.

4.4. Arm Point Navigation.

Task. To evaluate our approach on a mobile manipulation-
based task, we train models to complete ArmPointNav, a
visual mobile manipulation task proposed in [24]. This task
requires an arm-equipped agent to move a target object from
its starting location to a goal location. These locations are
given to the agent in the agent’s relative coordinate frame.
Note that we do not use any other visual inputs besides ego-
centric RGB images. The action space consists of naviga-
tion actions and arm-based action for manipulating objects.
We provide the complete action space in the supplementary.
Metrics. An episode is considered successful if the tar-
get object reaches the goal location. We report two met-
rics, Success Rate (SR) and Success Rate without Distur-
bance (SRwD). SRwD indicates how often the agent can
complete the task without colliding with non-target objects.
Results. We evaluate on the AI2-iTHOR test tasks
from [24], and report performance for both our models. We
see a gain of 3.3% on SR and 2.4% on SRwD.

4.5. Ablation and Analysis.

4.5.1 SGC v.s. Other Auxiliary Objectives

As shown in Tables 1, 2 and 3, training with the SGC loss
as an auxiliary objective with RL improves performance
across various embodied tasks. However, to investigate how
it compares to other auxiliary objectives, we present a com-
parison with two additional baselines:
• RL+CPCA-16 [32]: A self-supervised objective that has
shown sample efficiency improvements in PointNav [80].
• RL+Visibility: We implement an auxiliary loss in which
the agent must predict whether a set of objects are visible or
not at a every time step. This supervisory loss can be con-
sidered task-specific to ObjectNav as it directly informs the
agent whether its seeing a certain object or not, intuitively a
strong signal for this task.

We train these baselines with the same hyperparameter
setup as the models presented in Table 1. Table 4 presents
evaluation results on the ProcTHOR-Val ObjectNav bench-
mark. We find that RL+Visibility actually performs worse
than RL, meaning that adding an auxiliary loss does not nec-
essarily lead to performance benefits. We suspect that, as
objects of most categories will not be visible to the agent
at a given time step, the visibility loss is overwhelmed by
negative examples and thus fails to provide a strong super-
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Model SR SPL

RL + SGC (ours) 70.8 48.6
RL + CPCA-16 66.2 45.9
RL + Visibility 54.8 40.3
RL [19] 62.4 45.5

Table 4: Comparing SGC with other auxiliary losses. SR
and SPL indicate the success rate and success weighted by
path length on the ProcTHOR-Val ObjectNav benchmark.

visory signal. This emphasizes the challenge of designing
good auxiliary losses: intuition often fails.

RL+CPCA-16 outperforms RL and RL+Visibility, but
still lags RL+SGC by 4% in success rate. Our SGC loss is
computed at only 20% of the timesteps for the purpose of
computational efficiency. On the other hand, we computed
the RL+CPCA-16 loss at every time step without subsam-
pling; despite this, SGC outperforms.

4.5.2 Adapting to Novel Object categories.

Today’s ObjectNav agents, including the models presented
in this work, are trained to find a fixed set of object cat-
egories. However, in practice, we may wish to adapt our
agents so as to enable them to navigate to novel object types
outside their existing vocabulary. One, brute force, solution
is to simply retrain from scratch every time we’re presented
with a new set of object categories. This would require an
vast amount of compute and time, making it unfeasible.

We present an alternative, we take an ObjectNav model,
trained on a set of object categories, and attempt to quickly
finetune it on a set of new object categories. We achieve this
by freezing the recurrent unit, usually a GRU, thereby pre-
serving the belief representation. After freezing, the only
parameters being optimized are the Actor-Critic head, and
target object type encoder. This method builds upon the in-
tuition that, after training the belief representations once,
the GRU should learn to summarize information about the
environment into actionable representations. Therefore, the
success of this approach is dependent on, and hence indica-
tive of, the quality of the belief representations.

To analyze the quality of the learned belief representa-
tions of our agents, we finetune them to navigate to novel
object categories that were previously not used as targets.
Note that these new categories were, however, present in
the training environments. We follow the methodology de-
scribed above and keep the belief representation frozen. We
randomly sample 5 object types that were not in the ini-
tial training object categories, and then fine-tune both mod-
els, RL and RL + SGC, for 2 million steps in ProcTHOR-
train environments with just reinforcement learning (DD-
PPO [72]). To evaluate these fine-tuned models, we col-
lect a validation dataset in the ProcTHOR-Val environments
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Figure 4: Adapting to Novel Object types. We sample 10
sets of 5 novel object types, and finetune RL + SGC and RL
initialized models with DD-PPO [72] for 2 million steps.
We observe consistent success rate improvements across all
sets. For this visualization, we arrange the sets in the as-
cending order of success for the RL initialized model.

with the newly sampled target object categories.
Figure 4 displays the validation-set success rates of fine-

tuned models corresponding to 10 randomly sampled sets
of 5 object categories. We also conduct a paired t-test to en-
sure that the large observed difference between RL+SGC
and RL is statistically significant. We indeed find that the
gains in SR and SPL are significant at 0.01 and 0.05 lev-
els, respectively. Note that RL+SGC initialized models
generalize better to objects that are both easy (Set1), and
hard (Set10), to navigate to. The results indicate that the
beliefs trained with SGC are able to encode general seman-
tic information about the environment, allowing the model
to generalize to novel object categories much faster than the
RL model. Details on the object pool and the 10 sets in
Figure. 4 are provided in the supplementary materials.

4.5.3 Probing Learned Representations

To understand how SGC impacts the representations
learned by our agent, we perform two linear probing ex-
periments. Specifically, we evaluate two ObjectNav agents,
our trained RL+SGC and RL agents, along fixed trajecto-
ries set in the ProcTHOR training scenes. At each step,
we save both the agent’s current belief states and additional
metadata regarding what areas around the agent are free-
space and what objects are visible to the agent. We then
partition this data into training, validation, and testing splits,
and train linear probes upon the frozen agent beliefs to pre-
dict the saved metadata. In particular, we fit binary logis-
tic regression models to predict, for each object category:
whether or not that object is currently visible and, to test
agent memory, whether or not the agent has seen the ob-
ject previously during the episode. We also fit such models
to predict, at every step, whether or not various locations
around the agent are “free-space” (i.e. can be occupied by
the agent without collision). We summarize our test-set re-
sults in Figure. 5. We find that the RL+SGC agent is, al-
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Figure 5: Linear probing. (a) Balanced accuracy of pre-
dicting if a given object is currently visible to the agent. (b)
As for (a) but predicting if an object was ever seen till that
point. (c) and (d) denote the accuracy for predicting if a lo-
cation is reachable by the agent for RL+SGC and RL meth-
ods respectively. In {blue, orange, green}, we denote the
accuracy along different directions for radii of {1m, 1.5m,
2m} around the agent oriented towards 0◦.

most uniformly across object categories, better able to both
predict which categories are visible and if they were pre-
viously seen. Similarly, the RL+SGC agent’s beliefs are
uniformly better at predicting free space about the agent,
especially when predicting free-space behind the agent. To-
gether this suggests that the SGC loss encourages develop-
ing both a semantic and geometric understanding of the en-
vironment. See supplementary materials for further details.

4.5.4 Importance of positional information

As discussed in Section 3.1, we encode the 3-D spatial po-
sitions of objects relative to the agent at each node in the
graph. The knowledge of spatial positions can allow the
agent to disambiguate between object instances of the same
type, and enable the agent to spatially locate objects it had
seen at previous time steps. To investigate the importance
of this positional information, we remove it from our scene
graph and train an ObjectNav model which we refer to as
RL+SGC-no position. As shown in Table 5, we observe
a 4% drop in performance on RoboTHOR ObjectNav. This
suggests that encoding the positional information within the
graph likely enables the agent to have better spatial aware-
ness about its own state and the objects that it has seen, and
thus leads to better performance at ObjectNav.

Model SR SPL

RL [19] 41 28
RL + SGC-no hist. 34.8 26.1
RL + SGC-no position. 48.1 28.4
RL + SGC (ours) 53.2 32.8

Table 5: Variants of SGC. SR and SPL metrics on
RoboTHOR ObjectNav benchmark.

4.5.5 Importance of retaining history.

Section 3.1 discusses how we build an iterative scene graph
from the agent’s exploration of the environment. Once an
object is added as a node to graph, it continues to exist in
the graph, even if it goes out of view. We update the re-
lationships and node position features between each pair
of nodes at every step. One disadvantage of retaining the
history of nodes is increasingly larger scene graphs as the
episode progresses. This leads to some computational and
memory overhead which lead us to investigate the impor-
tance of preserving the history in the scene graph. We train
a model with a variant of the SGC loss that removes the
history of nodes, thereby constructing a graph with only ob-
jects that are visible at the current time step. We refer to this
model as RL + SGC-no hist. We summarize the results in
Table 5. We find that when SGC is trained without retain-
ing the history of nodes, it ends up performing worse than
just RL. We believe that SGC-no hist. would encourage the
agent’s belief representation to only remember information
about its observations at a given time step.

5. Conclusion.
We propose Scene Graph Contrastive (SGC) learning as

a general-purpose, supervisory signal for training embod-
ied agents. SGC employs non-parametric scene graphs as a
training-only signal in a contrastive learning framework. It
effectively asks the agent to pick-out the graph correspond-
ing to its present and past observations, thereby encouraging
the agent to develop a graph-aware belief state. We evalu-
ate SGC, by training agents on three embodied tasks, Object
Navigation, Multi-Object Navigation and Arm Point Navi-
gation and show performance improvements across all of
them. Additionally, we evaluate the quality of our belief
representations by showing adaptation to novel object cate-
gories and via a linear probing analysis.
Limitations and future work. Building an iterative scene
graph adds a computational overhead during training. En-
gineering solutions to speed these up can allow denser sam-
pling of graphs and lead to a potentially stronger training
signal. We use vanilla Graph Attention Networks [66] to
encode scene graphs. Stronger graph encoders models have
been proposed and may provide an even richer graph repre-
sentation and lead to better embodied agents.
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Piot, Bernardo Ávila Pires, Tobias Pohlen, and Rémi Munos.
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