
Learning to Transform for Generalizable Instance-wise Invariance

Utkarsh Singhal1 Carlos Esteves 3 Ameesh Makadia3 Stella X. Yu1,2

1 UC Berkeley 2 University of Michigan 3 Google Research

Abstract

Computer vision research has long aimed to build systems
that are robust to transformations found in natural data.
Traditionally, this is done using data augmentation or hard-
coding invariances into the architecture. However, too much
or too little invariance can hurt, and the correct amount is
unknown a priori and dependent on the instance. Ideally,
the appropriate invariance would be learned from data and
inferred at test-time.

We treat invariance as a prediction problem. Given any
image, we predict a distribution over transformations can
and average over them to make invariant predictions. Com-
bined with a graphical model approach, this distribution
forms a flexible, generalizable, and adaptive form of in-
variance. Our experiments show that it can be used to align
datasets and discover prototypes, adapt to out-of-distribution
poses, and generalize invariance across classes. When as
data augmentation, our method shows accuracy and robust-
ness gains on CIFAR 10, CIFAR10-LT, and TinyImageNet.

1. Introduction

One of the most impressive abilities of the human vi-

sual system is its robustness to geometric transformations.

Objects in the visual world often undergo rotation, transla-

tion, etc., producing innumerable variations in appearance.

Nonetheless, we classify them reliably and efficiently.

In contrast, modern classifiers based on deep learning are

brittle [1]. While these methods have achieved super-human

accuracy on curated datasets such as ImageNet [2], they are

often unreliable in real-world applications [3], leading to

poor generalization and even fatal outcomes in systems rely-

ing on computer vision [4]. Due to this, robust classification

has long been an aim of computer vision research [1, 5].

Any robust classifier must encode information about the

expected geometric transformations, either explicitly (e.g.,

through augmentations or architecture) or implicitly (e.g.,

invariant features). In the case of humans, this knowledge

generalizes to novel (but similar) categories for one-shot

learning [6]. For unfamiliar categories or poses, we can

learn the invariance over time [7]. Finally, while we quickly

recognize objects in typical poses, we can also adapt to

Figure 1: Our goal is to build flexible, adaptive, and general-

izable invariances. Flexible: Different objects require differ-

ent degrees of invariance, and too much invariance can be

harmful (e.g. in distinguishing between 6 vs. 9). The ideal

invariance is flexible and instance-dependent. Adaptive:

The model should be able to adapt to unexpected (out-of-

distribution) poses. The figure above shows mental rotation,

where the symbols in unexpected poses are rotated to a fa-

miliar pose before being classified. Generalizable: Given

previous knowledge of objects and their invariances, we

should be able to generalize it to new objects.

novel “out-of-distribution” poses with processes like mental

rotation [8]. These properties help us robustly handle novel

categories and novel poses (Figure 1). This paper asks:

Can we replicate this flexible, generalizable, and adaptive
invariance in artificial neural networks?

For some transformations (e.g., translation), the invari-

ance can be hard-coded into the architecture. This insight

has led to important approaches like Convolutional Neural

Networks [9, 10]. However, this approach imposes severe

architecture restrictions and thus has limited applicability.

An alternative approach to robustness is data augmenta-

tion [12]. Input data is transformed through a predefined set

of transformations, and the neural network learns to perform

the task reliably despite these transformations. Its success

and wide applicability have made it ubiquitous in deep learn-

ing. However, data augmentation is unreliable since the

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6211

C

L T

I

fθ

AT

gφ

Figure 2: Our model. (left) The graphical model inspired by the image model underlined in [11]. The image generation model

(edges in black) assumes that the Latent Image L depends on class C, and the transformation distribution T depends on both. L
and T determine the resulting image I . Notably, in contrast to [11], the transformation distribution depends on both class and

latent, and every image does not share a single prototype. Since our goal is classification (image → class), we learn the reverse

process. The red arrows represent the conditional distributions we rely on. We learn an input-conditional transformation

distribution and a classifier. Input-condition augmentation distribution gφ predicts transforms T , which along with the input

image I , creates a distribution over the latent images L through the augmentation process AT . Classifier fθ predicts C
using L. (middle) Image classification pipeline. Our model predicts a distribution over image transformations. Samples

from this distribution are passed to a differentiable augmenter which transforms the input image into a set of augmented

images. The images are passed to a classifier, and predictions are averaged. (right) Visualization of the learned augmentation

distribution for the Mario-Iggy Dataset. Mario-Iggy dataset consists of rotated versions of single Mario/Iggy images. Upright

and Upside-down images are classified as different classes similar to 6 and 9 in digit classification. We show two input images

and plot the orientation distribution of the transformed versions. Each direction in the polar plot indicates an image orientation.

Dotted lines represent the orientations of samples from the original dataset, and the corresponding curve shows the distribution

of orientations after being transformed by our augmenter. The large overlap between red and blue distributions indicates that

the post-transformation distribution is approximately invariant to input orientation.

learned invariance breaks under distribution shifts and fails

to transfer from head classes to tail classes in imbalanced

classification settings [13].

Both these approaches prescribe the invariances while

assuming a known set of transformations. However, the

correct set of invariances is often unknown a priori, and

a mismatch can be harmful [14, 15, 12]. For instance, in

fine-grained visual recognition, rotation invariance can help

with flower categories but hurt animal recognition [16].

A recent line of methods [14, 17, 15] aims to learn the

useful invariances. Augerino [14] learns a range of transfor-

mations shared across the entire dataset, producing better

generalizing models. However, these methods use a fixed

range of transformations for all inputs, thus failing to be flex-

ible. InstaAug [15] learns an instance-specific augmentation

range for each transformation, achieving higher accuracy on

datasets such as TinyImageNet due to its flexibility. How-

ever, since InstaAug learns a range for each parameter sepa-

rately, it cannot represent multi-modal or joint distributions

(e.g., it cannot discover rotations from the set of all affine

matrices). Additionally, these approaches fail to consider

generalizability and adaptability [6] (Figure 1).

We take inspiration from Learned-Miller et al. [6] and

model the relationship between the observed image and its

class as a graphical model (Figure 2). Our experiments show

that these properties emerge naturally in this framework.

Contributions: (1) We propose a normalizing flow model

to learn the image-conditional transformation distribution.

(2) Our model can represent multi-modal and joint distribu-

tions over transformations, being able to model more com-

plex invariances, and (3) helps achieve higher test accuracy

on datasets such as CIFAR10, CIFAR10-LongTail, and Tiny-

ImageNet. Finally, (4) combined with our graphical model,

this model forms a flexible, generalizable, and adaptive form

of invariance. It can be used to (a) align the dataset and dis-

cover prototypes like congealing [6], (b) adapt to unexpected

poses like mental rotation [7], and (c) transfer invariance

across classes like GAN-based methods [13].

2. Related Work
Mental rotation in humans: Shepard and Metzler [8]

were among the first to measure the amount of time taken

by humans to recognize a rotated object. They found that

the response time increased linearly with rotation, suggest-

ing a dynamic process like mental rotation for recognizing

objects in unfamiliar poses. Tarr and Pinker [18] further

study mental rotation as a theory of object recognition in

the human brain, contrasting it against invariant features

and a multiple-view theory. Cooper and Shepard [19] found

that revealing identity and orientation information before-

hand allowed the subjects to make constant-time predictions.

Hock and Tromley [20] found that the recognition time is

nearly constant for characters perceived as “upright” over a

large range of rotations. However, outside that range (and

6212

(a)

(c)

(b)

(d)

Figure 3: Our normalizing flow model can represent input-dependent, multi-modal, and joint distributions over augmentation

parameters. (a) We illustrate three samples, each with a different set of correct augmentations. Augerino learns a range

shared between all samples, so the learned range is too restrictive. InstaAug learns an instance-wise range but cannot handle a

non-axis-aligned augmentation set (middle). In contrast, our model can adapt to the loss landscape and produce the largest

possible set. (b) InstaAug fails to represent non-axis-aligned distributions. The goal of the “rotation discovery” task is to learn

the joint distribution of affine matrix parameters such that the result is rotation. (w1, w2) pairs on diagonal (i.e., w1 = −w2)

correspond to exact rotations and thus incur a small classification loss. The ideal distribution of augmentations is in the form of

a diagonal strip (left). Our model learns the joint distribution and thus discovers rotations from the full set of affine parameters,

while InstaAug fails. (c) Augerino [14] fails to learn augmentations in challenging settings. Learned rotation range for a

version of Mario-Iggy with ±90◦ rotation range. The class boundaries touch each other, so some instances lie close to the

boundary, and thus global augmentation schemes like [14, 17] are forced to learn a range of 0. Our method learns the correct

range. (d) InstaAug fails to capture multi-modal distribution for a multi-modal version of the Mario-Iggy dataset.

similarly for characters with narrow “upright” ranges), the

recognition time follows the same linear relationship, indi-

cating mental rotation is required when the object is detected

as “not upright.” Koriat and Norman [7] investigated mental

rotation as a function of familiarity, finding that humans

adapt to unfamiliar objects with extensive practice, gaining

robustness to small rotations around the upright pose. The

response curve thus becomes flatter around the upright pose.

These works suggest a flexible, adaptive, and general form

of robustness in the human visual system.

Invariance in Neural Networks: Neural networks in-

variant to natural transformations have long been a cen-

tral goal in deep learning research [5]. Bouchacourt et
al. [12] and Madan et al. [1] studied the invariances present

in modern models. One of the earliest successes in-

cludes architectures like Convolutional Neural Networks

[9, 10], and more recently, applications such as medi-

cal image analysis [21, 22, 23], cosmology [24, 25], and

physics/chemistry [26, 27, 28]. Kondor and Trivedi [29] and

Cohen et al. [30] established a general theory of equivariant

neural networks based on representation theory. Finzi et
al. [31] combined equivariant and non-equivariant blocks

through a residual connection, allowing the model to use

both features. Dao et al. [32] shows that to a first-order

approximation, data augmentation is equivalent to averaging

features over transformations. Bouchacourt et al. [12] found

data augmentation to be crucial for invariance in many mod-

ern computer vision architectures. Zhou et al. [13] demon-

strated a key failing of data augmentation in imbalanced

classification and used a GAN to generate a broad set of

transformations for every instance. In contrast, our method

only uses image transformations and yet achieves compa-

rable accuracy on CIFAR10LT. Additionally, we study the

generalizability and adaptability of the learned transform

distribution. Congealing [6] aligns all the images in a class,

simultaneously producing a prototype and inferring the rela-

tive pose of each example. The aligned dataset can be used

for robust recognition, and the learned pose distribution can

be used for new classes. However, this method assumes the

transformation distribution is class-wise, whereas we model

it for every instance. Learned canonicalization [33] learns

an energy function that is minimized at test time to align

the input to a canonical orientation. Spatial Transformer

Networks [34] predict a transformation from the input image

in an attempt to rectify it and improve classification accuracy.

However, STNs cannot represent a distribution of transfor-

mations. Probabilistic Spatial Transformer Networks [35]

model the conditional distribution using a Gaussian distribu-

tion with mean and variance predicted by a neural network.

In contrast, we use a normalizing flow model to model com-

plex, multi-modal, and joint distributions. We also study the

generalizability as well as adaptation.

6213

Augerino: [14] aims to learn the ideal range of invari-

ances for any given dataset. It uses the reparametrization

trick and learns the range of uniform distribution over each

transformation parameter separately (e.g., range of transla-

tions, rotations, etc.) . This ability allows Augerino to learn

the useful range of augmentations (and thus invariances) di-

rectly and produce more robust models with higher general-

ization. However, Augerino is sensitive to the regularization

amount and the parametrization of the augmentation range

(Table 1). LILA [17] tackles this problem using marginal

likelihood methods. However, for both Augerino and LILA,

the resulting invariance is shared among all classes, even

though different classes (such as 0 and 6 in a digit classifica-

tion setting) may have entirely different ideal augmentation

distributions. Figure 3 illustrates how these limitations lead

Augerino to learn an overly restricted augmentation range.

InstaAug: [15] aims to fix the inflexibility of Augerino

by predicting the augmentation ranges for every instance.

This allows for larger effective ranges and thus better gen-

eralization in image classification and contrastive learning

settings. However, while InstaAug is instance-wise, it mod-

els the range of each parameter separately (the mean-field
assumption). Thus it cannot represent multi-modal or joint

distributions. Like Augerino, the representational limitations

greatly limit the set of learnable transformations, especially

for complex augmentation classes like image cropping [15],

necessitating tricks like selecting among a pre-defined set

of image crops. Furthermore, like Augerino, InstaAug is

sensitive to parametrization (see Figure 3 and Table 1).

3. Methods
We begin by describing our graphical model approach.

We derive its inference equation and training loss and com-

pare it to existing methods. We then construct a normalizing

flow model to represent the conditional transform distribu-

tion. We also derive an analytical expression for the model’s

approximate invariance. Finally, we describe the mean-shift

algorithm for adapting to out-of-distribution poses.

Graphical model: We follow the model described in

Figure 2. Here, C refers to the class, I refers to the observed

image, L refers to the latent image (equivalent to the proto-

type in [6]), and T refers to the unobserved transformation

parameters connecting the latent image and the observed

image. The latent image is produced by passing the pair

(I, T) through a differentiable augmenter A, which applies

the transform to the observed image, i.e., L = AT (I).
One notable difference to [6] is that our distribution is

instance-wise (similar to [15]), not class-wise. This allows

for a more general conditional distribution model.

Given the values C,L, T, I , the model defines a joint

probability distribution P (C,L, T, I):

P (C,L, T, I) = P (C|L)P (L|T, I)P (T |I)P (I) (1)

and the conditional class probability P (C|I) as:

P (C|I) =
∫
L,T

P (T |I)P (L|T, I)P (C|L)dLdT (2)

Since L = AT (I), this can be further simplified to:

P (C|I) =
∫
L,T

P (T |I)δ(L−AT (I))P (C|L)dLdT (3)

=

∫
T

P (T |I)P (C|L = AT (I))dT (4)

= ET∼P (T |I)
[
P (C|L = AT (I))

]
(5)

Thus the predicted class probability is averaged over trans-

formations sampled from the conditional transform distri-

bution P (T |I). This is analogous to the idea of “test-time

augmentations” used in image classification literature as well

as Augerino and InstaAug [14, 15]. Augerino assumes that

the transformation T is independent of I . InstaAug models

T as a uniform distribution conditioned on I . PSTN [35]

arrives at the same expression and uses a Gaussian distri-

bution. All these frameworks can be viewed as different

approximations in this formulation.

Variational approximation: We approximate each of the

key distributions P (C|L) and P (T |I) with neural networks.

Our fθ(C;L) is a simple classifier that operates on the latent

image L, and gφ(T ; I) is a normalizing flow model [36]

which takes in the image I:

fθ(C;L) ≈ P (C|L), gφ(T ; I) ≈ P (T |I) (6)

Since L = AT (I), we use fθ(C;L), fθ(C;T, I) and

fθ(C;AT (I)) interchangeably.

Inference: The expression for P (C|I) then becomes:

pθ,φ(C|I) =
∫
T

gφ(T ; I)fθ(C;AT (I))dT (7)

= ET∼gφ(T ;I)

[
fθ(C;AT (I))

]
(8)

This equation describes the act of sampling transformations

from the normalizing flow model and averaging the classifier

predictions over the sampled transformations.

Training Loss: During training, we observe (I, C) pairs.

We train the classifier fθ by maximizing a lower bound to

the average log pθ,φ(C|I). It is common to use Jensen’s

inequality to make this tractable:

log pθ,φ(C|I) ≥ ET∼gφ(T ;I)

[
log fθ(C;AT (I))

]
(9)

and maximize the resulting lower bound instead. This further

reduces to the loss function Lclassifier:

Lclassifier = ET∼gφ(T ;I)

[− log fθ(C;AT (I))
]

(10)

6214

which is simply the cross-entropy loss averaged over sam-

pled augmentations.

We would like the transform distribution gφ(T ; I) to max-

imize log pθ,φ(C|I) by minimizing Lclassifier. However, in

practice, this leads to gφ collapsing to a 0-variance distribu-

tion as the model overfits to the training data (as observed in

Augerino [14] without regularization).

Instead, we define the target distribution p̃λθ,φ(T |C, I) as:

p̃λθ,φ(T |C, I) =
1

Z
pθ(C|T, I)λ (11)

where Z ∈ R
+ is a normalization constant and λ ∈ R

+ is

a temperature constant. This distribution assigns a higher

probability to the transformations, leading to lower loss. λ
here is analogous to the temperature parameter in softmax,

and large values of λ make the distribution highly peaked.

In contrast, small values suppress peaks and make the dis-

tribution less ill-behaved as a target. λ → 0 corresponds

to a uniform distribution, whereas λ → ∞ collapses the

distribution to the single transformation that minimizes the

classification loss. We also note that when λ = 1, the target

distribution 1
Z pθ(C|T, I) is exactly the posterior pθ(T |C, I)

of the transformation T given observed (C, I), assuming

uniform prior Pθ(T |I). Different choices of this distribution

lead to other possible loss functions, but we stick to uniform

for simplicity. Next, we plug in fθ:

p̃λθ,φ(T) =
1

Z
fθ(C; I, T)λ (12)

Thus we train the transform distribution gφ by minimizing

the KL divergence to the target, i.e.:

Laugmenter = KL(gφ(T ; I)‖p̃λθ,φ(T)) (13)

= ET∼gφ(T ;I)

[
log gφ(T ; I)− log p̃λθ,φ(T)

]
(14)

We plug in (15) and ignore the normalizing constant Z:

ET∼gφ

[
log gφ(T ; I)− λ log fθ(C;T, I)

]
(15)

= λLclassifier −H[gφ] (16)

Finally, we rescale the loss to get:

Laugmenter = Lclassifier − αH[gφ] (17)

where α ∈ R
+ is a regularization constant and H[gφ] is the

entropy of the distribution gφ.

This formulation is equivalent to regularizing the trans-

form distribution gφ with an entropy term to prevent dis-

tribution collapse, similar to the augmentation range width

regularization used in Augerino [14] and entropy regulariza-

tion used in InstaAug [15]. However, our derivation also

explains why the collapse phenomenon occurs in the un-

regularized case. For α → 0 ≡ λ → ∞, the augmenter

minimizes KL divergence to a highly peaked distribution

concentrated at the single loss-minimizing transformation,

leading to distribution collapse.

Since our normalizing flow model produces log prob-

ability for each generated sample, we penalize log gφ for

sampled transformations. The resulting loss is:

Laugmenter = Lclassifier + αET∼gφ

[
log gφ(T ; I)

]
(18)

This regularization generalizes the ad-hoc regularizers used

by previous methods (e.g. “width” in Augerino), which may

not be suitable for general distributions.

Representing the conditional distribution: Our ap-

proach uses parametrized differentiable augmentations sim-

ilar to Augerino. However, instead of learning the global

range of transformations, we predict a distribution over the

transformations conditioned on the input image. We use an

input-conditional normalizing flow model [36].

A normalizing flow model starts with a simple pre-defined

probability distribution p0, e.g., Normal distribution. For

a sample z0 ∼ p0, it successively applies transformations

f1, f2, . . . , fK , producing a more complicated distribution

by the end. The log probability density of the final sample

is given by log p(zk) = log p0(z0) − log | det dzk
dz0

|, and the

architecture is designed to allow efficient sampling and com-

putation of log p. We use the samples to augment the input

(Figure 2) and log p term in the loss. Our model is based on

RealNVP [37], using a mixture of Gaussians as the base p0.

Given any input image I , we use a convolutional feature

extractor to extract an embedding vector e. This embedding

vector is then projected down to a scale and bias used by each

layer of the normalizing flow and the base distribution. This

normalizing flow model outputs samples s from the augmen-

tation distribution and their corresponding log-probabilities

log p(s). These samples are passed to the differentiable aug-

mentation, which transforms the input image to be processed

by the model (Figure 2) using PyTorch’s grid sample. While

we use affine image transformations for our experiments, our

method generalizes to any differentiable transformation.

Approximate invariance: The approximate invariance

in our method comes from (1) the classifier’s inherent in-

sensitivity to transformations, (2) the width of the transform

distribution being used for averaging, and (3) the canonical-

ization effect of the transform distribution. Each of these

properties corresponds to a different theory of object recog-

nition explained by Tarr and Pinker [18] and connected to

deep neural networks by Kaba et al. [33]. We formalize

this intuitive argument as follows: Given an input image I ,

our model’s output is the classifier prediction averaged over

gφ(T ; I), i.e. pθ,φ(C|I) = ET∼gφ(T ;I)

[
fθ(C;AT (I))

]
(see

equation 9). This can be written as:

pθ,φ(C|I) =
∫
T

gφ(T ; I)fθ(C;AT (I))dT

Let a new image I ′ be formed by transforming the original

6215

image by a transformation ΔT , i.e. I ′ = AΔT (I). Then:

pθ,φ(C|I ′) =
∫
T

gφ(T ; I
′)fθ(C;AT (I

′))dT

=

∫
T

gφ(T ;AΔT (I))fθ(C;AT+ΔT (I))dT

=

∫
T

gφ(T −ΔT ; I ′)fθ(C;AT (I))dT

Where the last step substitutes T for T +ΔT . Then, the

change in prediction, denoted as err(C; I, I ′), is:

err(C; I, I ′) = |pθ,φ(C|I)− pθ,φ(C|I ′)|

=
∣∣∣
∫
T

[
gφ(T −ΔT ; I ′)− gφ(T ; I)

]
fθ(C;AT (I))dT

∣∣∣
Next, we will derive bounds on this quantity based on prop-

erties of gφ and fθ.

Let S = supp(gφ(.; I)) ∪ supp(gφ(.; I
′)) is the support

set of the transform distributions, i.e. all the samples for I
and I ′ are inside S. We can thus limit the integration to S:

=
∣∣∣
∫
T∈S

[
gφ(T −ΔT ; I ′)− gφ(T ; I)

]
fθ(C;AT (I))dT

∣∣∣
Let’s now quantify the behavior of fθ on S. Let M be the

maximum and m be the minimum of fθ on this set, i.e.

M = max
t∈S

fθ(C;AT (I)), m = min
t∈S

fθ(C;AT (I)),

Note that the first term gφ(T − ΔT ; I ′) − gφ(T ; I) is the

difference of two probability density functions and so inte-

grates to 0. Thus, if we add a constant value to fθ, it doesn’t

change the whole integral. Subtracting m, we get:

∣∣∣
∫

T∈S

[
gφ(T −ΔT ; I ′)− gφ(T ; I)

]
(fθ(C;T, I)−m)dT

∣∣∣

Using |∫ f(x)dx| ≤ ∫ |f(x)|dx and |xy| = |x||y| we have:

≤
∫

T∈S

∣∣∣gφ(T −ΔT ; I ′)− gφ(T ; I)
∣∣∣
∣∣∣fθ(C;T, I)−m

∣∣∣dT

≤(M −m)

∫

T∈S

∣∣∣gφ(T −ΔT ; I ′)− gφ(T ; I)
∣∣∣dT

=2(M −m) TV[gφ(T −ΔT ; I ′)‖ gφ(T ; I)]

where TV refers to the Total Variation Distance defined as

TV[p‖q] = 1
2

∫ |p(x)− q(x)|dx. In summary:

err(C; I, I ′) ≤ 2(M −m) TV[gφ(T −ΔT ; I ′)‖gφ(T ; I)]
Thus, the prediction change (err(C; I, I ′)) is upper bounded

by two factors: (1) M −m, which measures how much the

classifier predictions change over the relevant range, and (2)

The total variation distance between the original transform

distribution gφ(T ; I) and the new version gφ(T −ΔT ; I ′).
This result explains how the method achieves approximate

invariance. If the classifier features are invariant to the input

transformations, we get M − m ≈ 0, and thus error ≈
0. Similarly, if the transform distribution is approximately

equivariant, i.e. gφ(T −ΔT ; I ′) ≈ gφ(T ; I), then TV ≈ 0,
and it follows that error ≈ 0.

Mean-shift for handling out-of-distribution poses:

While the conditional transformation distribution gφ(T ; I)
can adjust to in-distribution pose variation, this approach

does not work for out-of-distribution poses (see Figure 7).

We use a modified version of the well-known mean-shift
algorithm. Instead of sampling points from a dataset and

weighting them with a kernel, we directly use gφ samples.

The core idea is to push the image closer to a local mode

where our models may work better. We start with image I0
and the transform parameter T0 = 0. Then, at every step:

Tk := Tk−1 + γET∼gφ(T ;Ik−1)[T], Ik := ATk
(I0)

where γ ∈ R
+ is the step size. In summary, the algorithm re-

peatedly samples from the conditional distribution, computes

the mean, and accumulates the result into T .

Since our method learns an input-conditional probability

distribution, the mean of the augmentation transformation

ET∼gφ(T ;I)[T] for any given image is an estimate of the

difference between the local mode and the current transform

T . Thus each step moves the image closer to the local mode,

which is the fixed point for this process.

4. Experiments
We benchmark accuracy on datasets such as CIFAR10

and TinyImageNet, and plot the learned transformation dis-

tribution for toy examples on Mario-Iggy [14] and MNIST.

Finally, we test applications of the learned distribution.

CIFAR10: We benchmark our method against Augerino

and LILA [17] on learning affine image transformations for

CIFAR10 classification. We use the models and libraries

provided by [17]. We use a RealNVP flow [37] with per-

mutation mixing, 12 affine coupling layers, and a 2-layer

MLP of width 64 for each layer. We turn the input into an

embedding using a 5-layer CNN and append this embed-

ding to each layer’s MLP input as well as project it to the

parameters of the base distribution, which is a mixture of

Gaussians. We also add a tanh at the end of the flow to

ensure the produced distribution stays within bounds. Please

see the supplementary material for more details. Using a

modified ResNet18 [38], and train our model for 200 epochs.

We report the accuracy in Section 3. Our method is able to

achieve a 7.8% test accuracy gain compared to Augerino and

2.6% against LILA. We note that our method is still based

6216

Method CIFAR10 FMNIST MNIST CIFAR10-LT

Baseline 74.1 ± 0.5 89.6 ± 0.2 99.1 ± 0.02 70.8 ± 0.8

Augerino 79.0 ± 1 90.1 ± 0.1 98.3 ± 0.1 63.6 ± 1.3

LILA 84.2 ± 0.8 91.9 ± 0.2 99.4 ± 0.02 76.4 ± 0.9

Ours 86.8 ± 0.4 (+2.6%) 92.3 ± 1.4 (+0.4%) 99.2 ± 0.1 78.1 ± 1 (+1.7%)

Method Acc (%) with LRP(%)

Baseline 55.1 —

Random Crop 64.5 —

Augerino 55.0 —

InstaAug 54.4 66.0

Ours 65.4 66.0

Table 1: (left) Classification accuracy on the modified ResNet used by LILA [17]. Numbers for baselines reproduced from

[17]. Our method can learn a larger effective class of augmentations, helping the classifier achieve the highest test accuracy on

CIFAR10 and CIFAR10-LT(rho=10). Imbalanced classification is a particularly challenging setting for learned invariances as

the learned invariances do not transfer from head classes to tail classes [13]. We note that our method is complementary to LILA

(i.e., marginal likelihood), and can be combined in future work. (right) TinyIN classification accuracy on PreActResNet used

by InstaAug, with and without LRP (Location-relation parameterization). InstaAug is limited by its mean-field representation,

performing poorly without LRP. In contrast, our method performs well regardless of parametrization

on maximum likelihood; thus, LILA’s marginal likelihood

method is complementary to ours. These methods may be

combined for even higher accuracy in future work. We also

report the accuracies for MNIST and FashionMNIST.

Imbalanced CIFAR-10 Classification: Imbalanced clas-

sification is a particularly challenging setting for invariance

learning. As shown by [13], invariances learned through

data augmentation do not transfer from head classes to tail

classes. This is especially harmful since the tail classes,

due to a small number of examples, benefit the most from

the invariance. CIFAR10-LT is an imbalanced version of

CIFAR10 where the smallest class is 10x smaller than the

largest. Here, our model outperforms Augerino by 14.5%
and LILA by 1.7% on this dataset.

Augerino 13-layer CIFAR10: We also evaluate our

method on Augerino’s 13-layer network, re-using the same

hyperparameters as the LILA experiments Section 3. Our

method achieves 94.3% test accuracy (0.5% gain).

No Aug. Fast AutoAug Augerino Ours

Acc 90.6 92.65 93.8 94.3

Table 2: Test accuracies for Augerino’s 13-layer model

TinyImageNet Classification: We evaluate our method

against InstaAug on the TinyImageNet dataset. This 64x64

dataset contains 200 classes. The goal of this task is to

learn cropping augmentations. A crop can be parametrized

with four parameters: (centerx, centery,width, height), so

we represent it with a 4-dimensional distribution. Please see

the supplementary material for architectural details.

Cropping is a challenging augmentation to learn since the

crop location and size are correlated. InstaAug’s mean-field

representation cannot represent this, so achieves low accu-

racy without the location-related parameterization (LRP).

LRP consists of 321 pre-defined crops and predicts the prob-

ability of each crop. This approach does not scale to high

dimensional distributions (e.g. specifying more transforma-

tions). In contrast, our method can achieve high accuracy

without LRP, beating InstaAug by nearly 11% (Table 1).

Learned invariance visualization Mario-Iggy [14] a

toy dataset consisting of rotated versions of two images.

Upright images and upside-down images are classified as

different classes, and each sample lies within ±45◦ of its

class prototype (Figure 2). As the total range of rotations can

be easily varied, this dataset is useful for studying learned

invariance. We consider two variations: ±90◦ rotation
range, and Multi-modal dataset with 3 modes. Since the

target distributions here are much simpler, our RealNVP

model uses 4 affine coupling layers for this task. Please see

supplementary material for architectural details.

The ideal augmentation distribution for Mario-Iggy

dataset is ±90◦ around the class prototype. As the input

image rotates, the augmentation distribution shifts such that

the resulting augmented image distribution is constant. Our

model trained on Mario-Iggy is able to reliably learn an

invariant augmentation distribution (Figure 3). In the chal-

lenging multimodal distribution setting, our model is able to

represent the three modes, whereas InstaAug fails.

Representing joint distributions: We test the ability

of our normalizing flow to represent joint distributions by

intentionally sampling from a larger set of transformations

and letting the model learn the useful subset. Specifically,

we start from the Lie algebra parametrization of affine trans-

forms (used by Augerino). For rotation by r radians, the

transformation matrix is:

TAugerino(r) = exp

⎛
⎝
⎡
⎣ 0 r 0
−r 0 0
0 0 1

⎤
⎦
⎞
⎠ (19)

For this experiment, we generalize this formulation as:

TDecoupled(a, b, c, d, e, f) = exp

⎛
⎝
⎡
⎣a b c
d e f
0 0 1

⎤
⎦
⎞
⎠ (20)

This matrix represents a rotation if b = −d. Since the

Mario-Iggy dataset only contains rotations, the goal is to

produce samples such that b = −d. Samples that do not

follow this constraint will be out-of-distribution. In Figure 3,

we see that compared to our model, InstaAug [15] fails to

6217

Figure 4: Invariance transfer from head classes to tail classes

in imbalanced classification. We follow Zhou et al. [13] (Fig

3) and plot the expected KL-divergence under image rota-

tions for RotMNIST-LT and CIFAR10-LT (lower is better).

RotMNIST-LT is a long-tail version of the MNIST dataset

where each image has been randomly rotated. As Zhou et
al. [13] shows, neural networks learn rotational invariance

for head classes (indicated by low eKLD) but fail to trans-

fer this invariance to tail classes. This problem persists for

Augerino to a lesser extent. In contrast, our method success-

fully transfers invariance across classes. This effect is even

more pronounced for CIFAR10-LT (±10◦ rotations)

learn rotation transforms on the Mario-Iggy dataset, even

though skewed samples incur a higher loss. This is due to

InstaAug’s mean-field model, which predicts the range for

each parameter separately, thus preventing it from follow-

ing the b = −d constraint. In contrast, our model learns

to represent this joint distribution accurately. We also mea-

sure the deviation of sampled transformations from a true

rotation and plot that distribution in Figure 5. We find that

the sampled distribution is concentrated close to the rotation

transformations, showing that our method can start from a

large group of transformations and learn to constrain it to

Figure 5: Our model learns the rotation constraint from data.

Here we plot the histogram of relative errors of the produced

samples to the nearest rotation matrix and find that it is much

smaller than random affine baseline.

O
u
rs

A
u
g
er

in
o

Figure 6: Our method learns flexible instance-wise augmen-

tation distributions. We illustrate learned invariance for a

subset of MNIST digits (0,1,5,6,9). The classes 0,1,5 can

be learned with full invariance, whereas 6 and 9 require

partial invariance (±90◦). Our model (top) can learn the

correct instance-dependent range, whereas Augerino (mid-

dle) instead learns a much narrower shared invariance for

all classes. (bottom) A plot of the classwise learned rota-

tional invariance for our model over time. Classes 0,1, and 5

achieve close to full rotational invariance, whereas 6 and 9

achieve close to ±90◦ rotational invariance.

only what is useful for the dataset and task.

Learning selective invariance for MNIST: We test our

model’s selective invariance ability on the MNIST dataset

(specifically classes 0,1,5,6,9) and visualize the augmenta-

tion range for a few examples as well as class averages (see

Figure 6). For digits 0, 1, 5 which can be recognized from

any rotation, the learned rotation range corresponds to the

entire 360◦, whereas for 6 and 9 which may be confused

with each other, the range is only 180◦. In contrast, augerino

learns a constant range. We also plot the average rotation

range for each class and observe the trend hold at class level.

Generalizing invariance across classes: Zhou et al. [13]

shows that invariances learned from head classes fail to trans-

fer to tail classes. This is a major drawback of traditional data

augmentation methods. We test how our method generalizes

across classes by plotting the same metric as [13] (expected

KL divergence) across a range of rotations for CIFAR10-LT

and RotMNIST-LT classifiers. Since RotMNIST-LT is a rota-

6218

(a)

(c)

(b)

(d)

Figure 7: The conditional augmentation distribution can be used to align an image dataset, discover prototypes similar to

congealing [6], and adapt to out-of-distribution poses. (a) A conceptual figure showing the modified mean-shift algorithm.

For a given input, we repeatedly compute the mean of the conditional transform distribution and perturb the input in that

direction, pushing the input close to a local mode. (b) Demonstration of an augmentation distribution aligning rotated (±90◦)

versions of a single image. We separately apply mean-shift to each rotated image and observe that they converge to the same

mode. Unlike [6], there is no joint optimization, and each image is “aligned” separately. This alignment also works for

MNIST images even though the model has only trained on Mario-Iggy. (c) Mean-shift algorithm can add robustness against

unexpected poses without reducing accuracy. We plot each CIFAR10 model’s accuracy as images rotate at test time. Augerino

is susceptible to large rotations since they are out-of-distribution for CIFAR10. The baseline trained with augmentations is

robust but inaccurate. Our method with mean-shift achieves high accuracy for both in-distribution and out-of-distribution

rotations. (d) We apply the model trained on Mario-Iggy to align each class in the MNIST test set, and we make the task

more challenging by adding ±45◦ rotations to each image. The top row shows the average class image before alignment, and

the bottom row shows images after alignment. For classes such as 0, 1, 3, 8, 9, this model successfully discovers prototypes,

whereas for classes such as 4, 6 the model fails due to multiple possible modes.

tionally invariant dataset, we rotate all the images randomly

in ±180◦ range, whereas for CIFAR10-LT we use a ±10◦

range. Our model achieves significantly lower eKLD, espe-

cially for tail classes (Figure 4), indicating higher robustness.

Aligning image datasets like in Congealing [6]: We

apply the mean-shift algorithm using the augmentation dis-

tribution trained on the Mario-Iggy (45◦) dataset. The Mario-

Iggy dataset contains rotated versions of the Mario image

with one unknown prototype, making it ideal for this test.

For each image, we apply the mean-shift algorithm. Each

step moves the image closer to the local mode. We apply this

procedure for 50 iterations for every image separately. This

process results in all the images in a small neighborhood

agglomerating to the local prototype (Figure 7).

We also tested this approach on MNIST, an out-of-

distribution dataset for the mario-iggy model, and added

±45◦ rotations for additional challenge. Surprisingly, the

method still aligns images and discovers prototypes (Fig-

ure 7) despite not being trained on any MNIST images.

Robustness to out-of-distribution poses: We benchmark

our model’s ability to handle out-of-distribution poses on

CIFAR10 and measure how the mean-shift method helps the

model adapt to unexpected poses. We plot the classification

accuracy curves in Figure 7 as the inputs rotate. For the

mean-shift algorithm, we sample 100 transform samples,

γ = 0.1, and 10 iterations. The rotation-invariant baseline is

robust but inaccurate. Augerino, which induces invariance

to a small range of rotations, fails for large rotations. Our

model without mean-shift also fails under large rotations.

However, our method with mean-shift is accurate and robust.

Summary: We propose normalizing flows to learn the

instance-wise distribution of image transformations. It helps

us make robust and better generalizing classifiers, perform

test-time alignment, discover prototypes, and transfer in-

variance. These results highlight the potential of flexible,

adaptive, and general invariance in computer vision.

Acknowledgements: We thank the BAIR/Google fund

for funding this project.

6219

References
[1] Spandan Madan, Tomotake Sasaki, Tzu-Mao Li, Xavier Boix,

and Hanspeter Pfister. Small in-distribution changes in 3d

perspective and lighting fool both cnns and transformers,

2021. 1, 3

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009. 1

[3] Vaishaal Shankar, Achal Dave, Rebecca Roelofs, Deva Ra-

manan, Benjamin Recht, and Ludwig Schmidt. Do image

classifiers generalize across time? In Proceedings of the
IEEE/CVF International Conference on Computer Vision,

pages 9661–9669, 2021. 1

[4] NTS Board. Collision between vehicle controlled by develop-

mental automated driving system and pedestrian. Transporta-
tion Safety Board, Washington, DC, USA, HAR19-03, 2019.

1

[5] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar

Veličković. Geometric deep learning: Grids, groups, graphs,

geodesics, and gauges, 2021. 1, 3

[6] E.G. Miller, N.E. Matsakis, and P.A. Viola. Learning from

one example through shared densities on transforms. In

Proceedings IEEE Conference on Computer Vision and Pat-
tern Recognition. CVPR 2000 (Cat. No.PR00662), volume 1,

pages 464–471 vol.1, 2000. 1, 2, 3, 4, 9

[7] Asher Koriat and Joel Norman. Mental rotation and visual fa-

miliarity. Perception & Psychophysics, 37(5):429–439, 1985.

1, 2, 3

[8] Roger N Shepard and Jacqueline Metzler. Mental rotation

of three-dimensional objects. Science, 171(3972):701–703,

1971. 1, 2

[9] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Ben-

gio. Object recognition with gradient-based learning. In

Shape, contour and grouping in computer vision, pages 319–

345. Springer, 1999. 1, 3

[10] Kunihiko Fukushima. Neocognitron: A hierarchical neural

network capable of visual pattern recognition. Neural net-
works, 1(2):119–130, 1988. 1, 3

[11] E.G. Learned-Miller. Data driven image models through

continuous joint alignment. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(2):236–250, 2006. 2

[12] Diane Bouchacourt, Mark Ibrahim, and Ari Morcos. Ground-

ing inductive biases in natural images: invariance stems from

variations in data. In M. Ranzato, A. Beygelzimer, Y. Dauphin,

P.S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages

19566–19579. Curran Associates, Inc., 2021. 1, 2, 3

[13] Allan Zhou, Fahim Tajwar, Alexander Robey, Tom Knowles,

George J. Pappas, Hamed Hassani, and Chelsea Finn. Do

deep networks transfer invariances across classes? 2022. 2,

3, 7, 8, 13

[14] Gregory Benton, Marc Finzi, Pavel Izmailov, and An-

drew Gordon Wilson. Learning invariances in neural net-

works, 2020. 2, 3, 4, 5, 6, 7, 13

[15] Ning Miao, Tom Rainforth, Emile Mathieu, Yann Dubois,

Yee Whye Teh, Adam Foster, and Hyunjik Kim. Instance-

specific augmentation: Capturing local invariances, 2022. 2,

4, 5, 7, 13, 14

[16] Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Dar-

rell. What should not be contrastive in contrastive learning. In

International Conference on Learning Representations, 2021.

2

[17] Alexander Immer, Tycho F. A. van der Ouderaa, Gunnar

Rätsch, Vincent Fortuin, and Mark van der Wilk. Invariance

learning in deep neural networks with differentiable laplace

approximations, 2022. 2, 3, 4, 6, 7, 13

[18] Michael J Tarr and Steven Pinker. Mental rotation and

orientation-dependence in shape recognition. Cognitive psy-
chology, 21(2):233–282, 1989. 2, 5

[19] Lynn A Cooper and Roger N Shepard. Chronometric stud-

ies of the rotation of mental images. In Visual information
processing, pages 75–176. Elsevier, 1973. 2

[20] Howard S Hock and Cheryl L Tromley. Mental rotation

and perceptual uprightness. Perception & Psychophysics,

24(6):529–533, 1978. 2

[21] Marysia Winkels and Taco S. Cohen. Pulmonary nodule

detection in CT scans with equivariant cnns. Medical Image
Anal., 55:15–26, 2019. 3

[22] Maxime W Lafarge, Erik J Bekkers, Josien PW Pluim, Remco

Duits, and Mitko Veta. Roto-translation equivariant convolu-

tional networks: Application to histopathology image analy-

sis. Medical Image Analysis, 68:101849, 2021. 3

[23] Simon Graham, David B. A. Epstein, and Nasir M. Rajpoot.

Dense steerable filter cnns for exploiting rotational sym-

metry in histology images. IEEE Trans. Medical Imaging,

39(12):4124–4136, 2020. 3

[24] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu.

Exploiting cyclic symmetry in convolutional neural networks.

In Proceedings of the 33nd International Conference on Ma-
chine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, pages 1889–1898, 2016. 3

[25] Nathanaël Perraudin, Michaël Defferrard, Tomasz Kacprzak,

and Raphaël Sgier. Deepsphere: Efficient spherical convolu-

tional neural network with healpix sampling for cosmological

applications. Astron. Comput., 27:130–146, 2019. 3

[26] Brandon M. Anderson, Truong-Son Hy, and Risi Kondor.

Cormorant: Covariant molecular neural networks. In Ad-
vances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 14510–14519, 2019. 3

[27] Kristof Schütt, Oliver T. Unke, and Michael Gastegger. Equiv-

ariant message passing for the prediction of tensorial prop-

erties and molecular spectra. In Proceedings of the 38th
International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, pages 9377–9388, 2021. 3

6220

[28] John Jumper, Richard Evans, Alexander Pritzel, Tim Green,

Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvu-

nakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al.

Highly accurate protein structure prediction with alphafold.

Nature, 596(7873):583–589, 2021. 3

[29] Risi Kondor and Shubhendu Trivedi. On the generalization of

equivariance and convolution in neural networks to the action

of compact groups. In International Conference on Machine
Learning, ICML, 2018. 3

[30] Taco S Cohen, Mario Geiger, and Maurice Weiler. A gen-

eral theory of equivariant cnns on homogeneous spaces. In

Advances in Neural Information Processing Systems, pages

9142–9153, 2019. 3

[31] Marc Finzi, Gregory Benton, and Andrew G Wilson. Residual

pathway priors for soft equivariance constraints. In Advances
in Neural Information Processing Systems, volume 34, 2021.

3

[32] Tri Dao, Albert Gu, Alexander J. Ratner, Virginia Smith,

Christopher De Sa, and Christopher Ré. A kernel theory of

modern data augmentation. ICML, 97:1528–1537, 2019. 3

[33] Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang,

Yoshua Bengio, and Siamak Ravanbakhsh. Equivariance with

learned canonicalization functions. In NeurIPS 2022 Work-
shop on Symmetry and Geometry in Neural Representations,

2022. 3, 5

[34] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and ko-

ray kavukcuoglu. Spatial transformer networks. In Advances
in Neural Information Processing Systems, volume 28, 2015.

3

[35] Pola Schwöbel, Frederik Rahbæk Warburg, Martin Jørgensen,

Kristoffer Hougaard Madsen, and Søren Hauberg. Probabilis-

tic spatial transformer networks. In The 38th Conference on
Uncertainty in Artificial Intelligence, 2022. 3, 4

[36] George Papamakarios, Eric Nalisnick, Danilo Jimenez

Rezende, Shakir Mohamed, and Balaji Lakshminarayanan.

Normalizing flows for probabilistic modeling and inference.

Journal of Machine Learning Research, 22(57):1–64, 2021.

4, 5

[37] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Den-

sity estimation using real NVP. In International Conference
on Learning Representations, 2017. 5, 6, 12

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages

770–778, 2016. 6

[39] Vincent Stimper, David Liu, Andrew Campbell, Vincent

Berenz, Lukas Ryll, Bernhard Schölkopf, and José Miguel

Hernández-Lobato. normflows: A PyTorch Package for Nor-

malizing Flows. arXiv preprint arXiv:2302.12014, 2023. 12

[40] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-

eterization with gumbel-softmax. In International Conference
on Learning Representations, 2017. 12

[41] Ilya Loshchilov and Frank Hutter. Fixing weight decay regu-

larization in adam. 2017. 13

6221

